Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Med Chem ; 63(15): 8534-8553, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32706964

ABSTRACT

Starting from RO6800020 (1), our former γ-secretase modulator (GSM) lead compound, we utilized sequential structural replacements to improve the potency (IC50), pharmacokinetic properties including the free fraction (fraction unbound (fu)) in plasma, and in vivo efficacy. Importantly, we used novel CF3-alkoxy groups as bioisosteric replacements of a fluorinated phenyl ring and properties such as lipophilicity, solubility, metabolic stability, and free fraction could be balanced, maintaining low Pgp efflux needed for CNS penetration. In addition, by reducing aromaticity, we prevented phototoxicity. Additional substitution in the triazolopyridine core disturbed the binding to phosphatidylinositol 4-kinase, catalytic ß (PIK4CB). We also introduced less lipophilic head heterocycles devoid of covalent binding (CVB) liability. After these changes, further modifications to the trifluoroethoxy bioisosteric replacement allowed rebalancing of properties, such as lipophilicity, and also potency. Our optimization strategy culminated with in vivo active RO7101556 (18B) having excellent properties and being selected as an advanced candidate.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Amyloid beta-Peptides/metabolism , Animals , Cell Line , Enzyme Inhibitors/pharmacokinetics , Humans , Mice, Transgenic , Models, Molecular , Neurons/drug effects , Neurons/metabolism
2.
ACS Med Chem Lett ; 11(6): 1257-1268, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32551009

ABSTRACT

γ-Secretase (GS) is a key target for the potential treatment of Alzheimer's disease. While inhibiting GS led to serious side effects, its modulation holds a lot of potential to deliver a safe treatment. Herein, we report the discovery of a potent and selective gamma secretase modulator (GSM) (S)-3 (RO7185876), belonging to a novel chemical class, the triazolo-azepines. This compound demonstrates an excellent in vitro and in vivo DMPK profile. Furthermore, based on its in vivo efficacy in a pharmacodynamic mouse model and the outcome of the dose range finding (DRF) toxicological studies in two species, this compound was selected to undergo entry in human enabling studies (e.g., GLP toxicology and scale up activities).

3.
J Med Chem ; 54(1): 312-9, 2011 Jan 13.
Article in English | MEDLINE | ID: mdl-21128645

ABSTRACT

The inhibition of Aurora kinases in order to arrest mitosis and subsequently inhibit tumor growth via apoptosis of proliferating cells has generated significant discussion within the literature. We report a novel class of Aurora kinase inhibitors based upon a phthalazinone pyrazole scaffold. The development of the phthalazinone template resulted in a potent Aurora-A selective series of compounds (typically >1000-fold selectivity over Aurora-B) that display good pharmacological profiles with significantly improved oral bioavailability compared to the well studied Aurora inhibitor VX-680.


Subject(s)
Antineoplastic Agents/chemical synthesis , Phthalazines/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrazoles/chemical synthesis , Administration, Oral , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Aurora Kinase B , Aurora Kinases , Biological Availability , Cell Line, Tumor , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Phthalazines/chemistry , Phthalazines/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacology , Structure-Activity Relationship
4.
J Med Chem ; 51(15): 4465-75, 2008 Aug 14.
Article in English | MEDLINE | ID: mdl-18630890

ABSTRACT

Aurora kinase inhibitors have attracted a great deal of interest as a new class of antimitotic agents. We report a novel class of Aurora inhibitors based on a pentacyclic scaffold. A prototype pentacyclic inhibitor 32 (AKI-001) derived from two early lead structures improves upon the best properties of each parent and compares favorably to a previously reported Aurora inhibitor, 39 (VX-680). The inhibitor exhibits low nanomolar potency against both Aurora A and Aurora B enzymes, excellent cellular potency (IC50 < 100 nM), and good oral bioavailability. Phenotypic cellular assays show that both Aurora A and Aurora B are inhibited at inhibitor concentrations sufficient to block proliferation. Importantly, the cellular activity translates to potent inhibition of tumor growth in vivo. An oral dose of 5 mg/kg QD is well tolerated and results in near stasis (92% TGI) in an HCT116 mouse xenograft model.


Subject(s)
Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/pharmacokinetics , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Administration, Oral , Animals , Aurora Kinase A , Aurora Kinase B , Aurora Kinases , Benzimidazoles/chemical synthesis , Benzimidazoles/chemistry , Biological Availability , Cell Line, Tumor , Crystallography, X-Ray , Dogs , Heterocyclic Compounds, 4 or More Rings/administration & dosage , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Humans , Lactams/chemistry , Mice , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemical synthesis , Protein Serine-Threonine Kinases/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL