Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 162
Filter
1.
Invest Ophthalmol Vis Sci ; 65(10): 8, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39102262

ABSTRACT

Purpose: Neuroinflammation is a characteristic feature of neurodegenerative diseases. Mesenchymal stem cell-derived exosomes (MSC-exo) have shown neuroprotective effects through immunoregulation, but the therapeutic efficacy remains unsatisfactory. This study aims to enhance the neuroprotective capacity of MSC-exo through IL-23 priming for treating retinal degeneration in mice. Methods: MSC were primed with IL-23 stimulation in vitro, and subsequently, exosomes (MSC-exo and IL-23-MSC-exo) were isolated and characterized. Two retinal degenerative disease models (NaIO3-induced mice and rd10 mice) received intravitreal injections of these exosomes. The efficacy of exosomes was assessed by examining retinal structural and functional recovery. Furthermore, exosomal microRNA (miRNA) sequencing was conducted, and the effects of exosomes on the M1 and M2 microglial phenotype shift were evaluated. Results: IL-23-primed MSC-derived exosomes (IL-23-MSC-exo) exhibited enhanced capability in protecting photoreceptor cells and retinal pigment epithelium (RPE) cells against degenerative damage and fostering the restoration of retinal neural function in both NaIO3-induced retinal degeneration mice and rd10 mice when compared with MSC-exo. The exosomal miRNA suppression via Drosha knockdown in IL-23-primed MSC would abolish the neuroprotective role of IL-23-MSC-exo, highlighting the miRNA-dependent mechanism. Bioinformatic analysis, along with further in vivo biological studies, revealed that IL-23 priming induced a set of anti-inflammatory miRNAs in MSC-exo, prompting the transition of M1 to M2 microglial polarization. Conclusions: IL-23 priming presents as a potential avenue for amplifying the immunomodulatory and neuroprotective effects of MSC-exo in treating retinal degeneration.


Subject(s)
Disease Models, Animal , Exosomes , Interleukin-23 , Mesenchymal Stem Cells , Mice, Inbred C57BL , Retinal Degeneration , Animals , Exosomes/metabolism , Exosomes/transplantation , Retinal Degeneration/therapy , Retinal Degeneration/metabolism , Retinal Degeneration/prevention & control , Mice , Mesenchymal Stem Cells/metabolism , Interleukin-23/metabolism , MicroRNAs/genetics , Intravitreal Injections , Neuroprotective Agents , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Iodates/toxicity , Cells, Cultured , Microglia/metabolism , Male
3.
Pathogens ; 13(8)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39204311

ABSTRACT

Enteroviruses (EVs and RVs) are prevalent worldwide and cause various diseases in humans, of which the VP1-pocket is a target of antivirals, with a lipid molecule as a pocket factor to stabilize the virion. However, the characterization of the structure of the VP1-pocket in EVs is poor. Here, we compared the published capsid crystals of EVs and RVs and proposed a structural framework for the VP1-pocket: Frame 1-4, which is located at the CD loop, GH loop, and C-terminus, presenting with an outward opening appearance or not. The non-outward viral strains-CVB3, Echo 11, RV-A81, and RV-B70-are more thermally stable, with a breakpoint temperature (B.T.) of 51~62 °C for genome releasing, which is 4~10 °C higher than its outward temperature of 41~47 °C, and infectivity preservation when treated at 50 °C for 3 min. Its outward versus non-outward opening is correlated significantly with the B.T. for genome release (r = -0.90; p = 0.0004) and infectivity (r = -0.82, p = 0.0039). The energy of Frames 1, 2, and 4, including Van der Waals attractive and repulsive interactions and hydrogen bonds, showed significant correlations with the B.T. (r = -0.67, 0.75, and -0.8; p = 0.034, 0.013, and 0.006, respectively). These characters of the VP1-pocket could be predictors for virion thermostability and aid in the development of vaccines or antivirals.

4.
World J Gastrointest Oncol ; 16(7): 3341-3349, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39072148

ABSTRACT

BACKGROUND: The most primary sites of angiosarcoma are the skin, breast gland, and soft tissues. Primary hepatic angiosarcoma (PHA) is a rare malignant tumor of mesothelial tissue originating from the liver. PHA often presents with multiple intrahepatic foci or metastasis at the time of presentation due to its nonspecific clinical presentation and highly aggressive nature. There are no established or effective treatment guidelines for PHA, so early detection and early treatment are of great value for patient survival. Unfortunately, there is a paucity of literature on the imaging features of PHA, making the diagnosis and treatment of this disease a considerable challenge. CASE SUMMARY: In this case report, we present a 59-year-old man who initially presented with abdominal pain and radiating pain in the right shoulder. Magnetic resonance imaging and positron emission tomography-computed tomography revealed multiple intrahepatic nodules that needed to be differentiated from tumors of vascular epithelial origin and tumors with progressive enhancement features, and signs of tumor metastasis were assessed. The patient was then subjected to contrast-enhanced ultrasonography (CEUS) to further clarify the extent of tumor infiltration and the state of microcirculatory perfusion. The manifestations observed on CEUS were similar to the classical characteristic presentation of hepatocellular carcinoma, called "quick wash-in and quick wash-out". In addition, CEUS showed that the lesion exhibited gradual infiltration and growth along the liver pedicle structures with no invading blood vessels. Finally, based on pathological and immunohistochemical tests and the above imaging manifestations, it was confirmed that the patient had infiltrating PHA, which is a rare pathological type of PHA. The patient underwent transcatheter arterial chemoembolization and chemotherapy. Four months after the onset of symptoms, the follow-up radiological examination revealed poor treatment efficacy and rapid deterioration. CONCLUSION: This case report complements the imaging modalities of a rare infiltrative PHA, in which CEUS and quantitative analysis are found to offer substantial advantages in characterizing the microcirculatory perfusion of the lesion, providing clinicians with diagnostic information at the earliest opportunity to make a diagnosis and develop a treatment strategy to prolong the patient survival.

5.
J Neuroinflammation ; 21(1): 164, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918759

ABSTRACT

The microglia-mediated neuroinflammation have been shown to play a crucial role in the ocular pathological angiogenesis process, but specific immunotherapies for neovascular ocular diseases are still lacking. This study proposed that targeting GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) might be a novel immunotherapy for these angiogenesis diseases. We found a significant upregulation of CGAS and STING genes in the RNA-seq data derived from retinal tissues of the patients with proliferative diabetic retinopathy. In experimental models of ocular angiogenesis including laser-induced choroidal neovascularization (CNV) and oxygen-induced retinopathy (OIR), the cGAS-STING pathway was activated as angiogenesis progressed. Either genetic deletion or pharmacological inhibition of STING resulted in a remarkable suppression of neovascularization in both models. Furthermore, cGAS-STING signaling was specifically activated in myeloid cells, triggering the subsequent RIP1-RIP3-MLKL pathway activation and leading to necroptosis-mediated inflammation. Notably, targeted inhibition of the cGAS-STING pathway with C-176 or SN-011 could significantly suppress pathological angiogenesis in CNV and OIR. Additionally, the combination of C-176 or SN-011 with anti-VEGF therapy led to least angiogenesis, markedly enhancing the anti-angiogenic effectiveness. Together, our findings provide compelling evidence for the importance of the cGAS-STING-necroptosis axis in pathological angiogenesis, highlighting its potential as a promising immunotherapeutic target for treating neovascular ocular diseases.


Subject(s)
Membrane Proteins , Mice, Inbred C57BL , Neuroinflammatory Diseases , Nucleotidyltransferases , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/antagonists & inhibitors , Membrane Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/antagonists & inhibitors , Animals , Humans , Mice , Neuroinflammatory Diseases/metabolism , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Choroidal Neovascularization/drug therapy , Signal Transduction/drug effects , Signal Transduction/physiology , Mice, Knockout , Diabetic Retinopathy/metabolism
6.
Clin Nutr ; 43(6): 1475-1487, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723301

ABSTRACT

BACKGROUND & AIMS: The past few decades have witnessed a rapid growth in the prevalence of nonalcoholic fatty liver disease (NAFLD). While the ketogenic diet (KD) is considered for managing NAFLD, the safety and efficacy of the KD on NAFLD has been a controversial topic. Here, we aimed to investigate the effect of KD of different durations on metabolic endpoints in mice with NAFLD and explore the underlying mechanisms. METHODS: NAFLD mice were fed with KD for 1, 2, 4 and 6 weeks, respectively. The blood biochemical indexes (blood lipids, AST, ALT and etc.) and liver fat were measured. The LC-MS/MS based proteomic analysis was performed on liver tissues. Metallothionein-2 (MT2) was knocked down with adeno-associated virus (AAV) or small interfering RNA (siRNA) in NAFLD mice and AML-12 cells, respectively. H&E, BODIPY and ROS staining were performed to examine lipid deposition and oxidative stress. Furthermore, MT2 protein levels, nucleus/cytoplasm distribution and DNA binding activity of peroxisome proliferators-activated receptors α (PPARα) were evaluated. RESULTS: KD feeding for 2 weeks showed the best improvement on NAFLD phenotype. Proteomic analysis revealed that MT2 was a key candidate for different metabolic endpoints of NAFLD affected by different durations of KD feeding. MT2 knockdown in NAFLD mice blocked the effects of 2 weeks of KD feeding on HFD-induced steatosis. In mouse primary hepatocytes and AML-12 cells, MT2 protein levels were induced by ß-hydroxybutyric acid (ß-OHB). MT2 Knockdown blunted the effects of ß-OHB on alleviating PA-induced lipid deposition. Mechanistically, 2 weeks of KD or ß-OHB treatment reduced oxidative stress and upregulated the protein levels of MT2 in nucleus, which subsequently increased its DNA binding activity and PPARα protein expression. CONCLUSIONS: Collectively, these findings indicated that KD feeding prevented NAFLD in a time dependent manner and MT2 is a potential target contributing to KD improvement on steatosis.


Subject(s)
Diet, Ketogenic , Metallothionein , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Oxidative Stress , Up-Regulation , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/genetics , Metallothionein/genetics , Metallothionein/metabolism , Diet, Ketogenic/methods , Mice , Male , Liver/metabolism , Antioxidants/metabolism , PPAR alpha/metabolism , PPAR alpha/genetics , Disease Models, Animal , Lipid Metabolism , Time Factors
7.
Nanoscale ; 16(21): 10414-10427, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38742415

ABSTRACT

With the increasing emphasis on health and the continuous improvement of medical standards, more and more micro/nano devices are being used in the medical field. However, the existing micro/nano devices cannot effectively solve various problems encountered in medical processes and achieve specific therapeutic effects. Based on this, this article designs a new type of nanoscale drilling rig. The nanoscale drilling rig is composed of double-layer nested carbon nanotubes with multiple electrodes, and is powered by an external power source, making it easy to perform long-term surgery in the human body. Through coding strategies, we can adjust the surface charge density and distribution of the nanoscale drilling rig, thereby controlling its periodical rotation and achieving precise medical treatment. In addition, in order to control the length of the nanoscale drill bit, meet the treatment needs of different parts of the human body, and reduce damage to the human body, we have designed a structure of ion electric double layers so that the drill bit can be fixed in different positions, reducing the risk of treatment to a certain extent. This drilling rig enriches the functions of micro/nano devices, which is beneficial for the development of the medical industry.

8.
J Phys Chem Lett ; 15(19): 5120-5129, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38709198

ABSTRACT

In the past few decades, nanometer-scale pores have been employed as powerful tools for sensing biological molecules. Owing to its unique structure and properties, solid-state nanopores provide interesting opportunities for the development of DNA sequencing technology. Controlling DNA translocation in nanopores is an important means of improving the accuracy of sequencing. Here we present a proof of principle study of accelerating DNA captured across targeted graphene nanopores using surface charge density and find the intrinsic mechanism of the combination of electroosmotic flow induced by charges of nanopore and electrostatic attraction/repulsion between the nanopore and ssDNA. The theoretical study performed here provides a new means for controlling DNA transport dynamics and makes better and cheaper application of graphene in molecular sequencing.


Subject(s)
DNA , Graphite , Nanopores , Static Electricity , Graphite/chemistry , DNA/chemistry , DNA, Single-Stranded/chemistry , Electroosmosis , Sequence Analysis, DNA/methods
9.
Eur J Pharmacol ; 974: 176631, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38692425

ABSTRACT

OBJECTIVE: Dasatinib and quercetin (D & Q) have demonstrated promise in improving aged-related pathophysiological dysfunctions in humans and mice. Herein we aimed to ascertain whether the heat stress (HS)-induced cognitive deficits in aged or even young adult male mice can be reduced by D & Q therapy. METHODS: Before the onset of HS, animals were pre-treated with D & Q or placebo for 3 consecutive days every 2 weeks over a 10-week period. Cognitive function, intestinal barrier permeability, and blood-brain barrier permeability were assessed. RESULTS: Compared to the non-HS young adult male mice, the HS young adult male mice or the aged male mice had significantly lesser extents of the exacerbated stress reactions, intestinal barrier disruption, endotoxemia, systemic inflammation and oxidative stress, blood-brain barrier disruption, hippocampal inflammation and oxidative stress, and cognitive deficits evaluated at 7 days post-HS. All the cognitive deficits and other syndromes that occurred in young adult HS mice or in aged HS mice were significantly attenuated by D & Q therapy (P < 0.01). Compared to the young adult HS mice, the aged HS mice had significantly (P < 0.01) higher severity of cognitive deficits and other related syndromes. CONCLUSIONS: First, our data show that aged male mice are more vulnerable to HS-induced cognitive deficits than those of the young adult male mice. Second, we demonstrate that a combination of D and Q therapy attenuates cognitive deficits in heat stressed aged or young adult male mice via broad normalization of the brain-gut-endotoxin axis function.


Subject(s)
Blood-Brain Barrier , Dasatinib , Oxidative Stress , Quercetin , Animals , Male , Dasatinib/pharmacology , Dasatinib/therapeutic use , Quercetin/pharmacology , Quercetin/therapeutic use , Mice , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Oxidative Stress/drug effects , Aging/drug effects , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Heat-Shock Response/drug effects , Permeability/drug effects , Drug Therapy, Combination , Hippocampus/drug effects , Hippocampus/metabolism , Cognition/drug effects
10.
Ther Adv Musculoskelet Dis ; 16: 1759720X241240837, 2024.
Article in English | MEDLINE | ID: mdl-38559313

ABSTRACT

Background: Ultrasound (US) has a high sensitivity in detecting monosodium urate (MSU) deposition in gout patients. However, the value of US in predicting gout flares has been reported only in a few monocentric studies. Objective: To investigate the association between gout flares in the previous year and US-detected MSU burden using two different US scores. Design: A retrospective study. Methods: Patients with gout were consecutively recruited to undergo musculoskeletal US examinations of their knees, ankles, and feet. The score derived from Outcome Measure in Rheumatology (hereinafter referred to as MSU score) and musculoskeletal US features-based (hereinafter referred to as MSKF score) were used to quantify the MSU burden of gout. Odds ratios for frequent gout flares were calculated. Results: We enrolled 1894 patients with gout (mean age: 45 years; gout duration: 5 years; males: 96.1%), experiencing a median of three flares over the past year. Of these, 428 (22.6%) patients reported frequent (⩾7) gout flares. The MSU and MSKF median scores were 6 and 9, respectively. For each five-point increase in MSU and MSKF score, the odds ratio of frequent gout flares increased 1.13-fold and 1.24-fold, respectively. The area under the curve (AUC) for the MSU and MSKF score was 0.635 [95% confidence interval (CI): 0.604-0.665] and 0.688 (95% CI: 0.659-0.718), respectively, (AUC difference 0.054, p value for AUC difference < 0.001). Conclusion: The MSU and MSKF scores were significantly associated with the number of gout flares in the previous year. The MSKF score outperformed the MSU score in terms of frequent gout flare discrimination.

11.
Lupus Sci Med ; 11(1)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38599668

ABSTRACT

OBJECTIVES: Systemic lupus erythematosus (SLE) is a highly heterogeneous disease, and B cell abnormalities play a central role in the pathogenesis of SLE. Long non-coding RNAs (lncRNAs) have also been implicated in the pathogenesis of SLE. The expression of lncRNAs is finely regulated and cell-type dependent, so we aimed to identify B cell-expressing lncRNAs as biomarkers for SLE, and to explore their ability to reflect the status of SLE critical pathway and disease activity. METHODS: Weighted gene coexpression network analysis (WGCNA) was used to cluster B cell-expressing genes of patients with SLE into different gene modules and relate them to clinical features. Based on the results of WGCNA, candidate lncRNA levels were further explored in public bulk and single-cell RNA-sequencing data. In another independent cohort, the levels of the candidate were detected by RT-qPCR and the correlation with disease activity was analysed. RESULTS: WGCNA analysis revealed one gene module significantly correlated with clinical features, which was enriched in type I interferon (IFN) pathway. Among non-coding genes in this module, lncRNA RP11-273G15.2 was differentially expressed in all five subsets of B cells from patients with SLE compared with healthy controls and other autoimmune diseases. RT-qPCR validated that RP11-273G15.2 was highly expressed in SLE B cells and positively correlated with IFN scores (r=0.7329, p<0.0001) and disease activity (r=0.4710, p=0.0005). CONCLUSION: RP11-273G15.2 could act as a diagnostic and disease activity monitoring biomarker for SLE, which might have the potential to guide clinical management.


Subject(s)
Interferon Type I , Lupus Erythematosus, Systemic , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Gene Regulatory Networks , Interferon Type I/genetics , Biomarkers
12.
Front Biosci (Landmark Ed) ; 29(3): 98, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38538261

ABSTRACT

PURPOSE: Numerous studies have emphasised the importance of necroptosis in the malignant progression of colorectal cancer (CRC). However, whether necroptosis-related genes (NRGs) can be used to predict the prognosis of CRC remains to be revealed. METHODS: Patients with CRC were divided into two clusters based on the expression of NRGs, and prognosis was compared between the two clusters. A prognostic model was established based on NRGs, and its predictive efficiency was validated using Kaplan-Meier (K-M) curves, receiver operating characteristic (ROC) curves and a nomogram. Immune infiltration, single-cell and drug sensitivity analyses were used to examine the effects of NRGs on the prognosis of CRC. RESULTS: The prognostic model served as a valid and independent predictor of CRC prognosis. Immune infiltration and single-cell analyses revealed that the unique immune microenvironment of CRC was regulated by NRGs. Drug sensitivity analysis showed that patients in the high- and low-risk groups were sensitive to different drugs. In addition, H2BC18 was found to play an important role in regulating the malignant progression of CRC. CONCLUSION: This study provides novel insights into precision immunotherapy based on NRGs in CRC. The NRG-based prognostic model may help to identify targeted drugs and develop more effective and individualised treatment strategies for patients with CRC.


Subject(s)
Colorectal Neoplasms , Necroptosis , Humans , Prognosis , Necroptosis/genetics , Histones , Gene Expression Profiling , Colorectal Neoplasms/genetics , Tumor Microenvironment/genetics
13.
Lipids Health Dis ; 23(1): 77, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468241

ABSTRACT

BACKGROUND: Obesity is associated with elevated serum uric acid (SUA) levels and frequent gout flares. Losing weight can reduce the SUA level and gout flares. The effect of orlistat on SUA levels and gout flares in patients with overweight/obesity and hyperuricemia (HUA) has not been extensively studied. This study investigated the effects of orlistat on SUA levels and gout flares compared to placebo in overweight and obese patients with HUA. METHODS: A total of 72 Chinese patients with overweight/obesity and HUA were randomly divided into a placebo group (35, 48.6%) and an orlistat group (37, 51.4%); the trial lasted 12 weeks. The primary endpoints were the relative changes in body weight, the SUA level, and gout flares in the per-protocol population. RESULTS: Orlistat reduced the proportion of patients with gout flares (log-rank P = 0.023, hazard ratio = 0.31, 95% confidence interval 0.11-0.85). There was no significant difference in SUA level between the two groups. The average weight loss of the orlistat group was 2.85 kg, and the average weight loss of the placebo group was 0.76 kg. The weight loss in the orlistat group was significantly greater than that in the control group (P < 0.05). CONCLUSIONS: This study is the first to demonstrate that orlistat has no significant effect on SUA levels in patients with overweight/obesity and HUA. The utility of orlistat as an adjunct therapy to prevent gout flares during weight loss in patients with HUA was emphasized. TRIAL REGISTRATION: Clinicaltrials.gov NCT05496075.


Subject(s)
Hyperuricemia , Orlistat , Overweight , Humans , Male , Double-Blind Method , Gout/complications , Gout/drug therapy , Hyperuricemia/complications , Hyperuricemia/drug therapy , Obesity/complications , Obesity/drug therapy , Orlistat/adverse effects , Overweight/complications , Overweight/drug therapy , Uric Acid , Weight Loss
14.
Fertil Steril ; 122(1): 162-173, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38355031

ABSTRACT

OBJECTIVE: To investigate the association between serum uric acid and women's ovarian reserve. DESIGN: Retrospective observational study and Mendelian randomization study. SETTING: University-affiliated in vitro fertilization center. PATIENTS: Observational analyses were undertaken using data from 8,257 women with infertility who finished their first in vitro fertilization treatments between May 2017 and December 2021. Mendelian randomization analyses were based on genome-wide association summary statistics from several biobanks of predominantly European ancestries. INTERVENTIONS: Observational study involved testing log2 transformed serum uric acid levels (for linear, negative regression, and logistic regression analyses); original uric acid levels (for nonlinear association analyses). Mendelian randomization study involved testing genetically predicted uric acid levels. MAIN OUTCOME MEASURES: Biomarkers including antimüllerian hormone, basal antral follicle count, follicle-stimulating hormone, luteinizing hormone, ratio of follicle-stimulating hormone to luteinizing hormone, estradiol; indices of ovarian response to stimulation including poor ovarian response according to different criteria and oocyte yield. RESULTS: In retrospective observational study, all ovarian reserve-related outcomes demonstrated significant differences across serum uric acid quartiles. A two-fold uric acid increase was associated with increased antimüllerian hormone (adjusted ß = 0.69; 95% confidence interval [CI], 0.43-0.95), antral follicle count (adjusted incidence rate ratio = 1.10, 95% CI, 1.05-1.14), luteinizing hormone (adjusted ß = 0.53, 95% CI, 0.28-0.78), decreased risks of Bologna poor ovarian response (adjusted odds ratio = 0.97; 95% CI, 0.95-0.99) and groups 2-4 Poseidon poor ovarian response (group 2: 0.63, 0.56-0.71; group 3: 0.71, 0.65-0.78; group 4: 0.50, 0.46-0.55), whereas an increased risk of group 1 (1.26, 1.13-1.41). Nonlinear analyses showed a common inflection point at 320-340 µmol/L of uric acid. Interactions between uric acid and antimüllerian hormone and antral follicle count were presented in association with oocyte yield. Mendelian randomization results suggested a significant association between genetically predicted uric acid levels and antimüllerian hormone levels (ß = 0.08; 95% CI, 0.04-0.12) but none for uric acid in relation to polycystic ovarian syndrome or other related hormones. CONCLUSION: Higher uric acid levels were associated with better ovarian reserve and increased levels of antimüllerian hormone albeit an increased risk of unexpected poor ovarian response.


Subject(s)
Mendelian Randomization Analysis , Ovarian Reserve , Uric Acid , Humans , Female , Ovarian Reserve/genetics , Uric Acid/blood , Adult , Retrospective Studies , Infertility, Female/blood , Infertility, Female/genetics , Infertility, Female/therapy , Infertility, Female/epidemiology , Infertility, Female/diagnosis , Infertility, Female/physiopathology , Fertilization in Vitro , Biomarkers/blood , Anti-Mullerian Hormone/blood , Genome-Wide Association Study , Ovulation Induction/statistics & numerical data
15.
Biochem Biophys Res Commun ; 702: 149559, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38341923

ABSTRACT

OBJECTIVE: Ketogenic diets (KD) have been shown to alleviate insulin resistance (IR) by exerting anti-lipogenic and insulin sensitizing effects in the liver through a variety of pathways. The present study sought to investigate whether a ketogenic diet also improves insulin sensitization in skeletal muscle cells through alleviating endoplasmic reticulum stress. METHODS: High-fat diet-induced IR mice were allowed to a 2-week ketogenic diet. Insulin resistance and glucose tolerance were evaluated through GTT, ITT, and HOMA-IR. The C2C12 myoblasts exposed to palmitic acid were used to evaluate the insulin sensitization effects of ß-hydroxybutyric acid (ß-OHB). Molecular mechanisms concerning ER stress signaling activation and glucose uptake were assessed. RESULTS: The AKT/GSK3ß pathway was inhibited, ER stress signaling associated with IRE1, PERK, and BIP was activated, and the number of Glut4 proteins translocated to membrane decreased in the muscle of HFD mice. However, all these changes were reversed after 2 weeks of feeding on a ketogenic diet. Consistently in C2C12 myoblasts, the AKT/GSK3ß pathway was inhibited by palmitic acid (PA) treatment. The endoplasmic reticulum stress-related proteins, IRE1, and BIP were increased, and the number of Glut4 proteins on the cell membrane decreased. However, ß-OHB treatment alleviated ER stress and improved the glucose uptake of C2C12 cells. CONCLUSION: Our data reveal that KD ameliorated HFD-induced insulin resistance in skeletal muscle, which was partially mediated by inhibiting endoplasmic reticulum stress. The insulin sensitization effect of ß-OHB is associated with up regulation of AKT/GSK3ß pathway and the increase in the number of Glut4 proteins on the cell membrane.


Subject(s)
Diet, Ketogenic , Insulin Resistance , Mice , Animals , Insulin Resistance/physiology , Diet, High-Fat/adverse effects , Proto-Oncogene Proteins c-akt/metabolism , Palmitic Acid/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , Endoplasmic Reticulum Stress , Insulin/metabolism , Muscle, Skeletal/metabolism , Glucose/metabolism , Mice, Inbred C57BL
16.
Proc Natl Acad Sci U S A ; 121(10): e2319366121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38422020

ABSTRACT

Acute myeloid leukemia (AML) is an aging-related and heterogeneous hematopoietic malignancy. In this study, a total of 1,474 newly diagnosed AML patients with RNA sequencing data were enrolled, and targeted or whole exome sequencing data were obtained in 94% cases. The correlation of aging-related factors including age and clonal hematopoiesis (CH), gender, and genomic/transcriptomic profiles (gene fusions, genetic mutations, and gene expression networks or pathways) was systematically analyzed. Overall, AML patients aged 60 y and older showed an apparently dismal prognosis. Alongside age, the frequency of gene fusions defined in the World Health Organization classification decreased, while the positive rate of gene mutations, especially CH-related ones, increased. Additionally, the number of genetic mutations was higher in gene fusion-negative (GF-) patients than those with GF. Based on the status of CH- and myelodysplastic syndromes (MDS)-related mutations, three mutant subgroups were identified among the GF- AML cohort, namely, CH-AML, CH-MDS-AML, and other GF- AML. Notably, CH-MDS-AML demonstrated a predominance of elderly and male cases, cytopenia, and significantly adverse clinical outcomes. Besides, gene expression networks including HOXA/B, platelet factors, and inflammatory responses were most striking features associated with aging and poor prognosis in AML. Our work has thus unraveled the intricate regulatory circuitry of interactions among different age, gender, and molecular groups of AML.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Aged , Humans , Male , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Aging/genetics , Mutation , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Prognosis
17.
J Med Chem ; 67(4): 2667-2689, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38348819

ABSTRACT

Fibroblast growth factor receptor 4 (FGFR4) has been considered as a potential anticancer target due to FGF19/FGFR4 mediated aberrant signaling in hepatocellular carcinoma (HCC). Several FGFR4 inhibitors have been reported, but none have gained approval. Herein, a series of 5-formyl-pyrrolo[3,2-b]pyridine-3-carboxamides and a series of 6-formylpyridyl ureas were characterized as selective reversible-covalent FGFR4 inhibitors. The representative 6-formylpyridyl urea 8z exhibited excellent potency against FGFR4WT, FGFR4V550L, and FGFR4V550M with IC50 values of 16.3, 12.6, and 57.3 nM, respectively. It also potently suppressed proliferation of Ba/F3 cells driven by FGFR4WT, FGFR4V550L, and FGFR4V550M, and FGFR4-dependent Hep3B and Huh7 HCC cells, with IC50 values of 1.2, 13.5, 64.5, 15.0, and 20.4 nM, respectively. Furthermore, 8z displayed desirable microsomal stability and significant in vivo efficacy in the Huh7 HCC cancer xenograft model in nude mice. The study provides a promising new lead for anticancer drug discovery directed toward overcoming FGFR4 gatekeeper mutation mediated resistance in HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Humans , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Receptor, Fibroblast Growth Factor, Type 4 , Urea/pharmacology , Urea/therapeutic use , Mice, Nude , Fibroblast Growth Factors/metabolism , Cell Line, Tumor
18.
Mol Nutr Food Res ; 68(2): e2300115, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38039425

ABSTRACT

BACKGROUND: Oral inosine loading is a new method to evaluate the effects of purine on urate metabolism. However, individuals respond differently to acute purine intake, and the effects on the metabolism of other purines remain to be explored. METHODS: 35 male participants are recruited. Participants received 500 mg of inosine orally after an overnight fast, and blood and urine samples are collected before and at various time points over 180 min after inosine administration. RESULTS: The serum urate concentration is significantly different between the hyperuricemia (n = 14) and non-hyperuricemia (n = 16) groups before inosine intake, but there is no in urate change after inosine intake. When grouped according to the baseline estimated glomerular filtration rate (eGFR), the increase in urate level in the high-eGFR group is significantly higher than that in the low-eGFR group (p  =  0.047). The high-eGFR group showed higher levels of serum xanthine and xanthine oxidase (XOD), the key enzyme in urate synthesis, after inosine loading (p < 0.01). CONCLUSIONS: The increase in urate level is positively related to eGFR after oral acute inosine administration, which may have been due to a higher level of XOD.


Subject(s)
Hyperuricemia , Uric Acid , Humans , Male , Purines/metabolism , Hyperuricemia/drug therapy , Inosine/metabolism , Metabolic Networks and Pathways , China
19.
Front Med ; 18(2): 327-343, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38151667

ABSTRACT

The treatment of PML/RARA+ acute promyelocytic leukemia (APL) with all-trans-retinoic acid and arsenic trioxide (ATRA/ATO) has been recognized as a model for translational medicine research. Though an altered microenvironment is a general cancer hallmark, how APL blasts shape their plasma composition is poorly understood. Here, we reported a cross-sectional correlation network to interpret multilayered datasets on clinical parameters, proteomes, and metabolomes of paired plasma samples from patients with APL before or after ATRA/ATO induction therapy. Our study revealed the two prominent features of the APL plasma, suggesting a possible involvement of APL blasts in modulating plasma composition. One was characterized by altered secretory protein and metabolite profiles correlating with heightened proliferation and energy consumption in APL blasts, and the other featured APL plasma-enriched proteins or enzymes catalyzing plasma-altered metabolites that were potential trans-regulatory targets of PML/RARA. Furthermore, results indicated heightened interferon-gamma signaling characterizing a tumor-suppressing function of the immune system at the first hematological complete remission stage, which likely resulted from therapy-induced cell death or senescence and ensuing supraphysiological levels of intracellular proteins. Overall, our work sheds new light on the pathophysiology and treatment of APL and provides an information-rich reference data cohort for the exploratory and translational study of leukemia microenvironment.


Subject(s)
Arsenic Trioxide , Blood Proteins , Leukemia, Promyelocytic, Acute , Tretinoin , Humans , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/blood , Tretinoin/therapeutic use , Arsenic Trioxide/therapeutic use , Cross-Sectional Studies , Blood Proteins/metabolism , Male , Female , Metabolome , Adult , Antineoplastic Agents/therapeutic use , Middle Aged
20.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1868(12): 159409, 2023 12.
Article in English | MEDLINE | ID: mdl-37871796

ABSTRACT

Our previous studies have implicated an important role of adipokine chemerin in exercise-induced improvements of glycolipid metabolism and fatty liver in diabetes rat, but the underlying mechanisms remain unknown. This study first used an exogenous chemerin supplement to clarify the roles of decreased chemerin in exercised diabetes mice and possible mechanisms of glucose and lipid metabolism key enzymes and proteins [such as adipose triglyceride lipase (ATGL), lipoprotein lipase (LPL), phosphoenolpyruvate carboxykinase (PEPCK), and glucose transporter 4 (GLUT4)]. In addition, two kinds of adipose-specific chemerin knockout mice were generated to demonstrate the regulation of chemerin on glucose and lipid metabolism enzymes and proteins. We found that in diabetes mice, exercise-induced improvements of glucose and lipid metabolism and fatty liver, and exercise-induced increases of ATGL, LPL, and GLUT4 in liver, gastrocnemius and fat were reversed by exogenous chemerin. Furthermore, in chemerin knockdown mice, chemerin(-/-)∙adiponectin mice had lower body fat mass, improved blood glucose and lipid, and no fatty liver; while chemerin(-/-)∙fabp4 mice had hyperlipemia and unchanged body fat mass. Peroxisome proliferator-activated receptor γ (PPARγ), ATGL, LPL, GLUT4 and PEPCK in the liver and gastrocnemius had improve changes in chemerin(-/-)·adiponectin mice while deteriorated alterations in chemerin(-/-)·fabp4 mice, although PPARγ, ATGL, LPL, and GLUT4 increased in the fat of two kinds of chemerin(-/-) mice. CONCLUSIONS: Decreased chemerin exerts an important role in exercise-induced improvements of glucose and lipid metabolism and fatty liver in diabetes mice, which was likely to be through PPARγ mediating elevations of ATGL, LPL and GLUT4 in peripheral metabolic organs.


Subject(s)
Diabetes Mellitus , Fatty Liver , Physical Conditioning, Animal , Animals , Mice , Rats , Chemokines/metabolism , Glucose/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Lipid Metabolism , PPAR gamma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL