Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Respir Res ; 25(1): 307, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138486

ABSTRACT

OBJECTIVE: To develop and evaluate the predictive value of a simplified lung ultrasound (LUS) method for forecasting respiratory support in term infants. METHODS: This observational, prospective, diagnostic accuracy study was conducted in a tertiary academic hospital between June and December 2023. A total of 361 neonates underwent LUS examination within 1 h of birth. The proportion of each LUS sign was utilized to predict their respiratory outcomes and compared with the LUS score model. After identifying the best predictive LUS sign, simplified models were created based on different scan regions. The optimal simplified model was selected by comparing its accuracy with both the full model and the LUS score model. RESULTS: After three days of follow-up, 91 infants required respiratory support, while 270 remained healthy. The proportion of confluent B-lines demonstrated high predictive accuracy for respiratory support, with an area under the curve (AUC) of 89.1% (95% confidence interval [CI]: 84.5-93.7%). The optimal simplified model involved scanning the R/L 1-4 region, yielding an AUC of 87.5% (95% CI: 82.6-92.3%). Both the full model and the optimal simplified model exhibited higher predictive accuracy compared to the LUS score model. The optimal cut-off value for the simplified model was determined to be 15.9%, with a sensitivity of 76.9% and specificity of 91.9%. CONCLUSIONS: The proportion of confluent B-lines in LUS can effectively predict the need for respiratory support in term infants shortly after birth and offers greater reliability than the LUS score model.


Subject(s)
Lung , Predictive Value of Tests , Ultrasonography , Humans , Infant, Newborn , Female , Prospective Studies , Male , Lung/diagnostic imaging , Ultrasonography/methods , Respiration, Artificial/methods , Term Birth/physiology , Follow-Up Studies
2.
J Neurosci Methods ; 410: 110222, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39038718

ABSTRACT

BACKGROUND: The field of neonatal sleep analysis is burgeoning with devices that purport to offer alternatives to polysomnography (PSG) for monitoring sleep patterns. However, the majority of these devices are limited in their capacity, typically only distinguishing between sleep and wakefulness. This study aims to assess the efficacy of a novel wearable electroencephalographic (EEG) device, the LANMAO Sleep Recorder, in capturing EEG data and analyzing sleep stages, and to compare its performance against the established PSG standard. METHODS: The study involved concurrent sleep monitoring of 34 neonates using both PSG and the LANMAO device. Initially, the study verified the consistency of raw EEG signals captured by the LANMAO device, employing relative spectral power analysis and Pearson correlation coefficients (PCC) for validation. Subsequently, the LANMAO device's integrated automated sleep staging algorithm was evaluated by comparing its output with expert-generated sleep stage classifications. RESULTS: Analysis revealed that the PCC between the relative spectral powers of various frequency bands during different sleep stages ranged from 0.28 to 0.48. Specifically, the correlation for delta waves was recorded at 0.28. The automated sleep staging algorithm of the LANMAO device demonstrated an overall accuracy of 79.60 %, Cohen kappa of 0.65, and F1 Score of 76.93 %. Individual accuracy for Wake at 87.20 %, NREM at 85.70 %, and REM Sleep at 81.30 %. CONCLUSION: While the LANMAO Sleep Recorder's automated sleep staging algorithm necessitates further refinement, the device shows promise in accurately recording neonatal EEG during sleep. Its potential for minimal invasiveness makes it an appealing option for monitoring sleep conditions in newborns, suggesting a novel approach in the field of neonatal sleep analysis.


Subject(s)
Electroencephalography , Polysomnography , Humans , Infant, Newborn , Electroencephalography/methods , Electroencephalography/instrumentation , Polysomnography/methods , Polysomnography/instrumentation , Male , Female , Sleep Stages/physiology , Wearable Electronic Devices , Sleep/physiology , Signal Processing, Computer-Assisted , Algorithms
3.
Nat Sci Sleep ; 16: 1011-1025, 2024.
Article in English | MEDLINE | ID: mdl-39071545

ABSTRACT

Background: Neonatal sleep is pivotal for their growth and development, yet manual interpretation of raw images is time-consuming and labor-intensive. Quantitative Electroencephalography (QEEG) presents significant advantages in terms of objectivity and convenience for investigating neonatal sleep patterns. However, research on the sleep patterns of healthy neonates remains scarce. This study aims to identify QEEG markers that distinguish between different neonatal sleep cycles and analyze QEEG alterations across various sleep stages in relation to postmenstrual age. Methods: From September 2023 to February 2024, full-term neonates admitted to the neonatology department at the Obstetrics and Gynecology Hospital of Fudan University were enrolled in this study. Electroencephalographic (EEG) recordings were obtained from neonates aged 37-42 weeks, within 1-7 days post-birth. The ROC curve was employed to evaluate QEEG features related to amplitude, range EEG (rEEG), spectral density, and connectivity across different sleep stages. Furthermore, regression analyses were performed to investigate the association between these QEEG characteristics and postmenstrual age. Results: The alpha frequency band's spectral_diff_F3 emerged as the most potent discriminator between active sleep (AS) and quiet sleep (QS). In distinguishing AS from wakefulness (W), the theta frequency's spectral_diff_C4 was the most effective, whereas the delta frequency's spectral_diff_P4 excelled in differentiating QS from W. During AS and QS phases, there was a notable increase in entropy within the delta frequency band across all monitored brain regions and in the spectral relative power within the theta frequency band, correlating with postmenstrual age (PMA). Conclusion: Spectral difference showcases the highest discriminative capability across awake and various sleep states. The observed patterns of neonatal QEEG alterations in relation to PMA are consistent with the maturation of neonatal sleep, offering insights into the prediction and evaluation of brain development outcomes.

4.
Cardiol Young ; : 1-16, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602085

ABSTRACT

BACKGROUND: Kawasaki disease is a systemic vascular disease with an unclear pathophysiology that primarily affects children under the age of five. Research on immune control in Kawasaki disease has been gaining attention. This study aims to apply a bibliometric analysis to examine the present and future directions of immune control in Kawasaki disease. METHODS: By utilizing the themes "Kawasaki disease," "Kawasaki syndrome," and "immune control," the Web of Science Core Collection database was searched for publications on immune control in Kawasaki disease. This bibliometric analysis was carried out using VOSviewers, CiteSpace, and the R package "bibliometrix." RESULTS: In total, 294 studies on immune control in Kawasaki disease were published in Web of Science Core Collection. The three most significant institutions were Chang Gung University, the University of California San Diego, and Kaohsiung Chang Gung Memorial Hospital. China, the United States, and Japan were the three most important countries. In this research field, Clinical and Experimental Immunology was the top-referred journal, while the New England Journal of Medicine was the most co-cited journal. The Web of Science Core Collection document by McCrindle BW et al. published in 2017 was the most cited reference. Additionally, the author keywords concentrated on "COVID-19," "SARS-CoV-2," and "multisystem inflammatory syndrome in children" in recent years. CONCLUSION: The research trends and advancements in immune control in Kawasaki disease are thoroughly summarised in this bibliometric analysis, which is the first to do so. The data indicate recent research frontiers and hot directions, making it easier for researchers to study the immune control of Kawasaki disease.

5.
Brain Behav ; 14(5): e3483, 2024 May.
Article in English | MEDLINE | ID: mdl-38680038

ABSTRACT

BACKGROUND: Electroencephalography (EEG), a widely used noninvasive neurophysiological diagnostic tool, has experienced substantial advancements from 2004 to 2022, particularly in neonatal applications. Utilizing a bibliometric methodology, this study delineates the knowledge structure and identifies emergent trends within neonatal EEG research. METHODS: An exhaustive literature search was conducted on the Web of Science Core Collection (WoSCC) database to identify publications related to neonatal EEG from 2004 to 2022. Analytical tools such as VOSviewer, CiteSpace, and the R package "bibliometrix" were employed to facilitate this investigation. RESULTS: The search yielded 2501 articles originating from 79 countries, with the United States and England being the predominant contributors. A yearly upward trend in publications concerning neonatal EEG was observed. Notable research institutions leading this field include the University of Helsinki, University College London, and University College Cork. Clinical Neurophysiology is identified as the foremost journal in this realm, with Pediatrics as the most frequently co-cited journal. The collective body of work from 9977 authors highlights Sampsa Vanhatalo as the most prolific contributor, while Mark Steven Scher is recognized as the most frequently co-cited author. Key terms such as "seizures," "epilepsy," "hypoxic-ischemic encephalopathy," "amplitude-integrated EEG," and "brain injury" represent the focal research themes. CONCLUSION: This bibliometric analysis offers the first comprehensive review, encapsulating research trends and progress in neonatal EEG. It reveals current research frontiers and crucial directions, providing an essential resource for researchers engaged in neonatal neuroscience.


Subject(s)
Bibliometrics , Electroencephalography , Humans , Electroencephalography/methods , Infant, Newborn
SELECTION OF CITATIONS
SEARCH DETAIL