Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 831
Filter
1.
Article in English | MEDLINE | ID: mdl-38970366

ABSTRACT

As the most abundant messenger RNA (mRNA) modification in mRNA, N  6-methyladenosine (m6A) plays a crucial role in RNA fate, impacting cellular and physiological processes in various tumor types. However, our understanding of the function and role of the m6A methylome in tumor heterogeneity remains limited. Herein, we collected and analyzed m6A methylomes across nine human tissues from 97 m6A sequencing (m6A-seq) and RNA sequencing samples. Our findings demonstrate that m6A exhibits different heterogeneity in most tumor tissues compared to normal tissues, which contributes to the diverse clinical outcomes in different cancer types. We also found that the cancer type-specific m6A level regulated the expression of different cancer-related genes in distinct cancer types. Utilizing a novel and reliable method called "m6A-express", we predicted m6A-regulated genes and revealed that cancer type-specific m6A-regulated genes contributed to the prognosis, tumor origin, and infiltration level of immune cells in diverse patient populations. Furthermore, we identified cell-specific m6A regulators that regulate cancer-specific m6A and constructed a regulatory network. Experimental validation was performed, confirming that the cell-specific m6A regulator CAPRIN1 controls the m6A level of TP53. Overall, our work reveals the clinical relevance of m6A in various tumor tissues and explains how such heterogeneity is established. These results further suggest the potential of m6A for cancer precision medicine for patients with different cancer types.

2.
Transl Lung Cancer Res ; 13(6): 1383-1395, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38973945

ABSTRACT

Background and Objective: A significant number of individuals diagnosed with non-small cell lung cancer (NSCLC) have distant metastases, and the concept of oligometastatic NSCLC has shown promise in achieving a cure. Stereotactic body radiation therapy (SBRT) is currently considered a viable treatment option for a limited number of tumor metastases. It has also been demonstrated that third-generation tyrosine kinase inhibitors (TKIs) are effective in extending the survival of patients with epidermal growth factor receptor (EGFR)-mutated NSCLC. Hence, the combination of SBRT with third-generation TKIs holds the potential to enhance treatment efficacy in patients with oligometastatic EGFR-mutated NSCLC. This review aimed to assess the possibility of combining SBRT with TKIs as an optimum treatment option for patients with oligometastatic EGFR-mutated NSCLC. Methods: We performed a narrative review by searching the PubMed, Web of Science, Elsevier and ClinicalTrials.gov databases for articles published in the English language from January 2009 to February 2024 and by reviewing the bibliographies of key references to identify important literature related to combining SBRT with third-generation TKIs in oligometastatic EGFR-mutated NSCLC. Key Content and Findings: This review aimed to assess the viability of combining SBRT and EGFR-TKIs in oligometastatic EGFR-mutated NSCLC. Current clinical trials suggest that the combined therapies have better progression free survival (PFS) when using SBRT as either concurrent with EGFR-TKIs or consolidated with EGFR-TKIs. Furthermore, research with third-generation EGFR-TKIs and SBRT combinations has demonstrated tolerable toxicity levels without significant additional adverse effects as compared to prior therapies. However, further clinical trials are required to establish its effectiveness. Conclusions: The combined approach of SBRT and TKIs can effectively impede the progression of oligometastatic NSCLC in patients harboring EGFR mutations and, most notably, can prolong progression-free survival rates. However, the feasibility of combining SBRT with third-generation TKIs in clinical trials remains unclear.

3.
Cell Signal ; : 111282, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971568

ABSTRACT

Diabetic kidney disease (DKD) is often featured with redox dyshomeostatis. Pyruvate dehydrogenase kinase 4 (PDK4) is the hub for DKD development. However, the mechanism by which PDK4 mediates DKD is poorly understood. The current work aimed to elucidate the relationship between PDK4 and DKD from the perspective of redox manipulation. Oxidative stress was observed in the human proximal tubular cell line (HK-2 cells) treated with a high concentration of glucose and palmitic acid (HGL). The mechanistic study showed that PDK4 could upregulate Kelch-like ECH-associated protein 1 (Keap1) in HGL-treated HK-2 cells through the suppression of autophagy, resulting in the depletion of nuclear factor erythroid 2-related factor 2 (Nrf2), the master regulator of redox homeostasis. At the cellular level, pharmacological inhibition or genetic knockdown of PDK4 could boost Nrf2, followed by the increase of a plethora of antioxidant enzymes and ferroptosis-suppression enzymes. Meanwhile, the inhibition or knockdown of PDK4 remodeled iron metabolism, further mitigating oxidative stress and lipid peroxidation. The same trend was observed in the DKD mice model. The current work highlighted the role of PDK4 in the development of DKD and suggested that PDK4 might be a promising target for the management of DKD.

4.
Biosens Bioelectron ; 261: 116488, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38905860

ABSTRACT

Long-stranded non-coding RNAs (lncRNA) have important roles in disease as transcriptional regulators, mRNA processing regulators and protein synthesis factors. However, traditional methods for detecting lncRNA are time-consuming and labor-intensive, and the functions of lncRNA are still being explored. Here, we present a surface enhanced Raman spectroscopy (SERS) based biosensor for the detection of lncRNA associated with liver cancer (LC) as well as in situ cellular imaging. Using the dual SERS probes, quantitative detection of lncRNA (DAPK1-215) can be achieved with an ultra-low detection limit of 952 aM by the target-triggered assembly of core-satellite nanostructures. And the reliability of this assay can be further improved with the R2 value of 0.9923 by an internal standard probe that enables the signal dynamic calibration. Meanwhile, the high expression of DAPK1-215 mainly distributed in the cytoplasm was observed in LC cells compared with the normal ones using the SERS imaging method. Moreover, results of cellular function assays showed that DAPK1-215 promoted the migration and invasion of LC by significantly reducing the expression of the structural domain of death associated protein kinase. The development of this biosensor based on SERS can provide a sensitive and specific method for exploring the expression of lncRNA that would be a potential biomarker for the screening of LC.


Subject(s)
Liver Neoplasms , Nanostructures , RNA, Long Noncoding , Spectrum Analysis, Raman , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/chemistry , Spectrum Analysis, Raman/methods , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Nanostructures/chemistry , Biosensing Techniques/methods , Surface Plasmon Resonance/methods , Cell Line, Tumor , Limit of Detection , Gold/chemistry
5.
Eur J Med Res ; 29(1): 327, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877527

ABSTRACT

BACKGROUND: Some previous observational studies have linked deep venous thrombosis (DVT) to thyroid diseases; however, the findings were contradictory. This study aimed to investigate whether some common thyroid diseases can cause DVT using a two-sample Mendelian randomization (MR) approach. METHODS: This two-sample MR study used single nucleotide polymorphisms (SNPs) identified by the FinnGen genome-wide association studies (GWAS) to be highly associated with some common thyroid diseases, including autoimmune hyperthyroidism (962 cases and 172,976 controls), subacute thyroiditis (418 cases and 187,684 controls), hypothyroidism (26,342 cases and 59,827 controls), and malignant neoplasm of the thyroid gland (989 cases and 217,803 controls. These SNPs were used as instruments. Outcome datasets for the GWAS on DVT (6,767 cases and 330,392 controls) were selected from the UK Biobank data, which was obtained from the Integrative Epidemiology Unit (IEU) open GWAS project. The inverse variance weighted (IVW), MR-Egger and weighted median methods were used to estimate the causal association between DVT and thyroid diseases. The Cochran's Q test was used to quantify the heterogeneity of the instrumental variables (IVs). MR Pleiotropy RESidual Sum and Outlier test (MR-PRESSO) was used to detect horizontal pleiotropy. When the causal relationship was significant, bidirectional MR analysis was performed to determine any reverse causal relationships between exposures and outcomes. RESULTS: This MR study illustrated that autoimmune hyperthyroidism slightly increased the risk of DVT according to the IVW [odds ratio (OR) = 1.0009; p = 0.024] and weighted median methods [OR = 1.001; p = 0.028]. According to Cochran's Q test, there was no evidence of heterogeneity in IVs. Additionally, MR-PRESSO did not detect horizontal pleiotropy (p = 0.972). However, no association was observed between other thyroid diseases and DVT using the IVW, weighted median, and MR-Egger regression methods. CONCLUSIONS: This study revealed that autoimmune hyperthyroidism may cause DVT; however, more evidence and larger sample sizes are required to draw more precise conclusions.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Thyroid Diseases , Venous Thrombosis , Humans , Venous Thrombosis/genetics , Venous Thrombosis/epidemiology , Mendelian Randomization Analysis/methods , Thyroid Diseases/genetics , Thyroid Diseases/epidemiology , Thyroid Diseases/complications , Genetic Predisposition to Disease , Hyperthyroidism/genetics , Hyperthyroidism/complications
6.
Imeta ; 3(3): e195, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898990

ABSTRACT

Gut Universe Database (GutUDB) provides a comprehensive, systematic, and practical platform for researchers, and is dedicated to the management, analysis, and visualization of knowledge related to intestinal diseases. Based on this database, eight major categories of omics data analyses are carried out to explore the genotype-phenotype characteristics of a certain intestinal disease. The first tool for comprehensive omics data research on intestinal diseases will help each researcher better understand intestinal diseases.

7.
Phytomedicine ; 132: 155812, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38905845

ABSTRACT

BACKGROUND: Inflammatory bowel disease (IBD) represents a significant global health challenge, and there is an urgent need to explore novel therapeutic interventions. Natural products have demonstrated highly promising effectiveness in the treatment of IBD. PURPOSE: This study systematically reviews the latest research advancements in leveraging natural products for IBD treatment. METHODS: This manuscript strictly adheres to the PRISMA guidelines. Relevant literature on the effects of natural products on IBD was retrieved from the PubMed, Web of Science and Cochrane Library databases using the search terms "natural product," "inflammatory bowel disease," "colitis," "metagenomics", "target identification", "drug delivery systems", "polyphenols," "alkaloids," "terpenoids," and so on. The retrieved data were then systematically summarized and reviewed. RESULTS: This review assessed the different effects of various natural products, such as polyphenols, alkaloids, terpenoids, quinones, and others, in the treatment of IBD. While these natural products offer promising avenues for IBD management, they also face challenges in terms of clinical translation and drug discovery. The advent of metagenomics, single-cell sequencing, target identification techniques, drug delivery systems, and other cutting-edge technologies heralds a new era in overcoming these challenges. CONCLUSION: This paper provides an overview of current research progress in utilizing natural products for the treatment of IBD, exploring how contemporary technological innovations can aid in discovering and harnessing bioactive natural products for the treatment of IBD.

8.
Chem Commun (Camb) ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38912537

ABSTRACT

The progress of proton exchange membrane fuel cells (PEMFCs) in the clean energy sector is notable for its efficiency and eco-friendliness, although challenges remain in terms of durability, cost and power density. The oxygen reduction reaction (ORR) is a key sluggish process and although current platinum-based catalysts are effective, their high cost and instability is a significant barrier. Single-atom catalysts (SACs) offer an economically viable alternative with comparable catalytic activity for ORR. The primary concern regarding SACs is their operational stability under PEMFCs conditions. In this article, we review current strategies for increasing the catalytic activity of SACs, including increasing active site density, optimizing metal center coordination through heteroatom doping, and engineering porous substrates. To enhance durability, we discuss methods to stabilize metal centers, mitigate the effects of the Fenton reaction, and improve graphitization of the carbon matrix. Future research should apply computational chemistry to predict catalyst properties, develop in situ characterization for real-time active site analysis, explore novel catalysts without the use of platinum-based catalysts to reduce dependence on rare and noble metal, and investigate the long-term stability of catalyst under operating conditions. The aim is to engineer SACs that meet and surpass the performance benchmarks of PEMFCs, contributing to a sustainable energy future.

9.
Drug Dev Res ; 85(4): e22219, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38845211

ABSTRACT

Sepsis is a life-threatening organ dysfunction that endangers patient lives and is caused by an imbalance in the host defense against infection. Sepsis continues to be a significant cause of morbidity and mortality in critically sick patients. Oxymatrine (OMT), a quinolizidine alkaloid derived from the traditional Chinese herb Sophora flavescens Aiton, has been shown to have anti-inflammatory effects on a number of inflammatory illnesses according to research. In this study, we aimed to evaluate the therapeutic effects of OMT on sepsis and explore the underlying mechanisms. We differentiated THP-1 cells into THP-1 macrophages and studied the anti-inflammatory mechanism of OMT in a lipopolysaccharide (LPS)-induced THP-1 macrophage sepsis model. Activation of the receptor for advanced glycation end products (RAGE), as well as NF-κB, was assessed by Western blot analysis and immunofluorescence staining. ELISA was used to measure the levels of inflammatory factors. We found that OMT significantly inhibited HMGB1-mediated RAGE/NF-κB activation and downstream inflammatory cytokine production in response to LPS stimulation. Finally, an in vivo experiment was performed on septic mice to further study the effect of OMT on injured organs. The animal experiments showed that OMT significantly inhibited HMGB1-mediated RAGE/NF-κB activation, protected against the inflammatory response and organ injury induced by CLP, and prolonged the survival rate of septic mice. Herein, we provide evidence that OMT exerts a significant therapeutic effect on sepsis by inhibiting the HMGB1/RAGE/NF-κB signaling pathway.


Subject(s)
Alkaloids , HMGB1 Protein , Inflammation , Lipopolysaccharides , NF-kappa B , Quinolizines , Receptor for Advanced Glycation End Products , Sepsis , Signal Transduction , Alkaloids/pharmacology , Alkaloids/therapeutic use , Quinolizines/pharmacology , Quinolizines/therapeutic use , Animals , Sepsis/drug therapy , Sepsis/complications , Sepsis/metabolism , NF-kappa B/metabolism , HMGB1 Protein/metabolism , HMGB1 Protein/antagonists & inhibitors , Humans , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction/drug effects , Mice , Inflammation/drug therapy , Inflammation/metabolism , Male , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , THP-1 Cells , Mice, Inbred C57BL , Macrophages/drug effects , Macrophages/metabolism , Matrines
10.
Anal Methods ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38920338

ABSTRACT

The degree of the carbohydrate antigen 125 (CA-125) level in serum is positively correlated with the severity of ovarian cancer. In this study, a facile photoelectrochemical (PEC) immunoassay was devised for sensitive detection of CA-125 employing enzyme-catalyzed precipitation to weaken the photocurrent of hollow porous In2O3 nanotubes incorporating CdS nanoparticles. Upon the addition of the target analyte, horseradish peroxidase (HRP) enriches as a result of the formation of the sandwich immunocomplex, which can catalyze the conversion of 4-chloro1-naphthol (4-CN) to benzo-4-chlorohexadienone (4-CD) employing H2O2 as a cofactor. The as-produced insoluble precipitate acts as an obstacle to hinder the absorption of visible light by photoactive materials, thereby resulting in a decrease in photocurrent. Moreover, the weakened signal can be easily read out by a digital multimeter (DMM), advancing the convenience of the detection system. The preliminary analysis data indicate that the PEC immunoassay shows an efficient response to CA-125 levels ranging from 0.1 to 100 U mL-1 with a limit of detection (LOD) as low as 0.046 U mL-1 (S/N = 3). Most importantly, the proposed portable method has shown satisfactory performance in terms of selectivity, reproducibility, stability, and analysis in complex biological matrices.

11.
Curr Med Chem ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38919079

ABSTRACT

The kidneys play an irreplaceable role in metabolism and excretion. However, Acute Kidney Injury (AKI) often occurs due to high local concentrations of drugs, inflammation, and trauma. Activated optical probes with excellent detection performance can effectively identify biomarkers in the initial stage of AKI and play an important role in evaluating AKI and preventing the development of diseases. This article summarizes representative design strategies for molecular probes and special diagnostic applications. These molecular probes show great potential in basic research and clinical diagnosis, enabling enhanced images of tissue structure and biomarkers, as well as early diagnosis of AKI. In addition, the difficulties and challenges that optical probes may face in the development and application of AKI are also discussed in this article.

12.
Cell ; 187(13): 3409-3426.e24, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38744281

ABSTRACT

Alterations in extracellular matrix (ECM) architecture and stiffness represent hallmarks of cancer. Whether the biomechanical property of ECM impacts the functionality of tumor-reactive CD8+ T cells remains largely unknown. Here, we reveal that the transcription factor (TF) Osr2 integrates biomechanical signaling and facilitates the terminal exhaustion of tumor-reactive CD8+ T cells. Osr2 expression is selectively induced in the terminally exhausted tumor-specific CD8+ T cell subset by coupled T cell receptor (TCR) signaling and biomechanical stress mediated by the Piezo1/calcium/CREB axis. Consistently, depletion of Osr2 alleviates the exhaustion of tumor-specific CD8+ T cells or CAR-T cells, whereas forced Osr2 expression aggravates their exhaustion in solid tumor models. Mechanistically, Osr2 recruits HDAC3 to rewire the epigenetic program for suppressing cytotoxic gene expression and promoting CD8+ T cell exhaustion. Thus, our results unravel Osr2 functions as a biomechanical checkpoint to exacerbate CD8+ T cell exhaustion and could be targeted to potentiate cancer immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Transcription Factors , Animals , Female , Humans , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Cyclic AMP Response Element-Binding Protein/metabolism , Extracellular Matrix/metabolism , Histone Deacetylases/metabolism , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Cell Exhaustion , Transcription Factors/metabolism , Tumor Microenvironment , Stress, Mechanical
13.
Am J Kidney Dis ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38750878

ABSTRACT

RATIONALE & OBJECTIVE: Light and heavy chain deposition disease (LHCDD) is a rare form of monoclonal immunoglobulin (Ig) deposition disease, and limited clinical data are available characterizing this condition. Here we describe the clinicopathological characteristics and outcomes of LHCDD. STUDY DESIGN: Case series. SETTING & PARTICIPANTS: 13 patients with biopsy-proven LHCDD diagnosed between January 2008 and December 2022 at one of 2 Chinese medical centers. FINDINGS: Among the 13 patients described, 6 were men and 7 were women, with a mean age of 52.6±8.0 years. Patients presented with hypertension (76.9%), anemia (84.6%), increased serum creatinine concentrations (84.6%; median, 1.7mg/dL), proteinuria (100%; average urine protein, 3.0g/24h), nephrotic syndrome (30.8%), and microscopic hematuria (76.9%). Serum immunofixation electrophoresis showed monoclonal Ig for 11 patients (84.6%). Serum free light chain ratios were abnormal in 11 patients (84.6%), and heavy/light chain ratios were abnormal in 9 of 10 patients (90%) with available data. Five patients were diagnosed with multiple myeloma. A histological diagnosis of nodular mesangial sclerosis was made in 10 patients (76.9%). Immunofluorescence demonstrated deposits of IgG subclass in 7 patients (γ-κ, n=4; γ-λ, n=3) and IgA in 5 patients (α-κ, n=2; α-λ, n=3). Six patients underwent IgG subclass staining (γ1, n=3; γ2, n=2; γ3, n=1). The deposits of IgD-κ were confirmed by mass spectrometry in 1 patient. Among 12 patients for whom data were available during a median of 26.5 months, 11 received chemotherapy and 1 received conservative treatment. One patient died, and disease progressed to kidney failure in 3 (25%). Among the 9 patients evaluable for hematological and kidney disease progression, 5 (56%) had a hematologic response and 1 (11%) exhibited improvement in kidney disease. LIMITATIONS: Retrospective descriptive study, limited number of patients, urine protein electrophoresis or immunofixation electrophoresis test results missing for most patients. CONCLUSIONS: In this case series of LHCDD, light and heavy chain deposition in kidney tissues were most frequent with monoclonal IgG1-κ. Among patients with evaluable data, more than half had a hematologic response, but a kidney response was uncommon.

14.
J Dermatol Sci ; 114(3): 124-132, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749796

ABSTRACT

BACKGROUND: Ultraviolet (UV) damage is closely related to skin photoaging and many skin diseases, including dermatic tumors. N6-methyladenosine (m6A) modification is an important epigenetic regulatory mechanism. However, the role of m6A methylation in apoptosis induced by repeated UV irradiation has not been characterized. OBJECTIVE: To explore m6A methylation changes and regulatory mechanisms in the repeated UV-induced skin damage process, especially apoptosis. METHODS: HaCaT cells and BALB/c-Nu nude mice were exposed to repeated UVB/UVA+UVB irradiation. Colorimetry and flow cytometry were used to measure cellular viability and apoptosis. m6A-modified genes were detected via colorimetry and methylated RNA immunoprecipitation (MeRIP) sequencing. Methyltransferases and demethylases were detected via RT-PCR, western blotting and immunohistochemistry. Transfection of siRNA and plasmid was performed to knock down or overexpress the selected genes. RESULTS: After UVB irradiation, 861 m6A peaks were increased and 425 m6A peaks were decreased in HaCaT cells. The differentially modified genes were enriched in apoptosis-related pathways. The m6A demethylase FTO was decreased in both HaCaT cells and mouse skin after UV damage. Overexpressing FTO could improve cell viability, inhibit apoptosis and decrease RNA-m6A methylation, including LPCAT3-m6A, which increase LPCAT3 expression, cell viability promotion and apoptosis inhibition. CONCLUSION: Our study identified the cell m6A methylation change lists after repeated UVB irradiation, and revealed that FTO and LPCAT3 play key roles in the m6A methylation pathogenesis of UV-induced skin cell apoptosis. FTO-m6A-LPCAT3 might serve as a novel upstream target for preventing and treating photoaging and UV-induced skin diseases.


Subject(s)
Adenosine , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Apoptosis , HaCaT Cells , Mice, Inbred BALB C , Mice, Nude , Skin Aging , Ultraviolet Rays , Ultraviolet Rays/adverse effects , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Animals , Apoptosis/radiation effects , Apoptosis/genetics , Humans , Mice , Adenosine/analogs & derivatives , Adenosine/metabolism , Methylation/radiation effects , Skin Aging/radiation effects , Skin Aging/genetics , Skin/radiation effects , Skin/pathology , Skin/metabolism , Keratinocytes/radiation effects , Keratinocytes/metabolism , Cell Survival/radiation effects , Epigenesis, Genetic/radiation effects , Female
15.
Nat Aging ; 4(6): 771-782, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38724734

ABSTRACT

Excessive amounts of reactive oxygen species (ROS) lead to macromolecular damage and high levels of cell death with consequent pathological sequelae. We hypothesized that switching cell death to a tissue regenerative state could potentially improve the short-term and long-term detrimental effects of ROS-associated acute tissue injury, although the mechanisms regulating oxidative stress-induced cell fate decisions and their manipulation for improving repair are poorly understood. Here, we show that cells exposed to high oxidative stress enter a poly (ADP-ribose) polymerase 1 (PARP1)-mediated regulated cell death, and that blocking PARP1 activation promotes conversion of cell death into senescence (CODIS). We demonstrate that this conversion depends on reducing mitochondrial Ca2+ overload as a consequence of retaining the hexokinase II on mitochondria. In a mouse model of kidney ischemia-reperfusion damage, PARP inhibition reduces necrosis and increases transient senescence at the injury site, alongside improved recovery from damage. Together, these data provide evidence that converting cell death into transient senescence can therapeutically benefit tissue regeneration.


Subject(s)
Cell Death , Cellular Senescence , Oxidative Stress , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Oxidative Stress/drug effects , Cellular Senescence/drug effects , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Mice , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Cell Death/drug effects , Reperfusion Injury/pathology , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Reactive Oxygen Species/metabolism , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Calcium/metabolism , Disease Models, Animal
16.
BMC Oral Health ; 24(1): 568, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745216

ABSTRACT

BACKGROUND: Understanding the tooth anatomy is crucial for ensuring effective endodontic treatment. This study investigated the root canal morphology of the second mesiobuccal (MB2) canal in maxillary first molars (MFMs) in a Chinese population using cone-beam computed tomography (CBCT). METHODS: This study evaluated 486 MFMs with MB2 canals from 285 participants undergoing CBCT examination and determined the Vertucci's classification and position of the MB2 canal orifice. The prevalence of the MB2 canal was correlated with the sex, age, and tooth side. The correlations between the prevalence of the MB2 canal and sex and tooth side were assessed using the Fisher's exact test. The chi-square test was used for evaluating the correlation between the prevalence of the MB2 canal and age. RESULTS: The number of type II, III, IV, V, VI, VII, and other root canals in the MFMs was 30.9%, 0.6%, 65.0%, 1.2%, 1.2%, 0.4%, and 0.6%, respectively. Among the 201 cases with bilateral inclusion, 87.6% showed consistent canal configuration. Results of the first clear apparent position (FCAP) of the MB2 canals showed that 434, 44, and 3 teeth had FCAP at the upper, middle, and bottom one-third of the root, respectively. The FCAPs of the MB2 canal in the MFMs with types II, IV, and VI, as well as types III and V canals showed significant differences (p<0.05). The horizontal distance between the MB1 and MB2 canal orifices in the type II canals of MFMs was significantly lesser than those in the type IV canals of MFMs (p < 0.01). The longitudinal distance between the pulp chamber floor plane and MB2 canal orifice significantly correlated with age (p < 0.05). CONCLUSIONS: The morphology of the mesiobuccal root canal in the MFMs is complex. Complete understanding of the anatomical morphology of the root canal combined with the CBCT and dental operating microscope is necessary for the accurate detection of the MB2 canal and consequently improved success rate of root canal treatment. Our study findings can help endodontists improve endodontic treatment outcomes.


Subject(s)
Cone-Beam Computed Tomography , Dental Pulp Cavity , Maxilla , Molar , Humans , Cone-Beam Computed Tomography/methods , Molar/anatomy & histology , Molar/diagnostic imaging , Male , Female , Adult , Dental Pulp Cavity/diagnostic imaging , Dental Pulp Cavity/anatomy & histology , Middle Aged , Maxilla/diagnostic imaging , Maxilla/anatomy & histology , China , Adolescent , Aged , Young Adult , East Asian People
17.
Biomater Sci ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758027

ABSTRACT

Due to the immunosuppressive tumor microenvironment (TME) and potential systemic toxicity, chemotherapy often fails to elicit satisfactory anti-tumor responses, so how to activate anti-tumor immunity to improve the therapeutic efficacy remains a challenging problem. Photothermal therapy (PTT) serves as a promising approach to activate anti-tumor immunity by inducing the release of tumor neoantigens in situ. In this study, we designed tetrasulfide bonded mesoporous silicon nanoparticles (MSNs) loaded with the traditional drug doxorubicin (DOX) inside and modified their outer layer with polydopamine (DOX/MSN-4S@PDA) for comprehensive anti-tumor studies in vivo and in vitro. The MSN core contains GSH-sensitive tetrasulfide bonds that enhance DOX release while generating hydrogen sulfide (H2S) to improve the therapeutic efficacy of DOX. The polydopamine (PDA) coating confers acid sensitivity and mild photothermal properties upon exposure to near-infrared (NIR) light, while the addition of hyaluronic acid (HA) to the outermost layer enables targeted delivery to CD44-expressing tumor cells, thereby enhancing drug accumulation at the tumor site and reducing toxic side effects. Our studies demonstrate that DOX/MSN@PDA-HA can reverse the immunosuppressive tumor microenvironment in vivo, inducing potent immunogenic cell death (ICD) of tumor cells and improving anti-tumor efficacy. In addition, DOX/MSN@PDA-HA significantly suppresses tumor metastasis to the lung and liver. In summary, DOX/MSN@PDA-HA exhibits controlled drug release, excellent biocompatibility, and remarkable tumor inhibition capabilities through synergistic chemical/photothermal combined therapy.

18.
Nano Lett ; 24(19): 5847-5854, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38700109

ABSTRACT

We report a new design of polymer phenylacetylene (PA) ligands and the ligand exchange methodology for colloidal noble metal nanoparticles (NPs). PA-terminated poly(ethylene glycol) (PEG) can bind to metal NPs through acetylide (M-C≡C-R) that affords a high grafting density. The ligand-metal interaction can be switched between σ bonding and extended π backbonding by changing grafting conditions. The σ bonding of PEG-PA with NPs is strong and it can compete with other capping ligands including thiols, while the π backbonding is much weaker. The σ bonding is also demonstrated to improve the catalytic performance of Pd for ethanol oxidation and prevent surface absorption of the reaction intermediates. Those unique binding characteristics will enrich the toolbox in the control of colloidal surface chemistry and their applications using polymer ligands.

19.
Cancer Cell Int ; 24(1): 164, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730293

ABSTRACT

Kidney Clear Cell Carcinoma (KIRC), the predominant form of kidney cancer, exhibits a diverse therapeutic response to Immune Checkpoint Inhibitors (ICIs), highlighting the need for predictive models of ICI efficacy. Our study has constructed a prognostic model based on 13 types of Programmed Cell Death (PCD), which are intertwined with tumor progression and the immune microenvironment. Validated by analyses of comprehensive datasets, this model identifies seven key PCD genes that delineate two subtypes with distinct immune profiles and sensitivities to anti-PD-1 therapy. The high-PCD group demonstrates a more immune-suppressive environment, while the low-PCD group shows better responses to PD-1 treatment. In particular, TOP2A emerged as crucial, with its inhibition markedly reducing KIRC cell growth and mobility. These findings underscore the relevance of PCDs in predicting KIRC outcomes and immunotherapy response, with implications for enhancing clinical decision-making.

20.
PLoS One ; 19(5): e0303201, 2024.
Article in English | MEDLINE | ID: mdl-38723054

ABSTRACT

OBJECTIVE: To evaluate the efficacy and safety of herbal medicine and acupuncture combination for pediatric epilepsy treatment. METHODS: Databases were searched from their interception until October 2023 to identify randomized controlled trials focusing on the therapeutic efficacy of herbal medicine-acupuncture combination (intervention group) for pediatric epilepsy. The primary outcome was the risk of treatment failure, whereas the secondary outcomes included the risk of post-treatment electroencephalogram (EEG) abnormalities and adverse events. Subgroup analyses were conducted based on the type of herbal compound formulas. Meta-regression analysis was conducted to examine the influence of patient demographics and clinical history on the therapeutic efficacy of herbal medicine-acupuncture combination for pediatric epilepsy. To assess the cumulative evidence, trial sequential analysis (TSA) was performed. RESULTS: The analysis included 10 trials involving a total of 882 pediatric patients. Meta-analysis revealed that the intervention group had a lower risk of treatment failure than the control group (risk ratio [RR] = 0.3, 95% confidence interval [CI]: 0.19-0.47, P<0.00001, I2 = 0%, 10 trials). Subgroup analyses showed that therapeutic efficacy was consistent among the different herbal compound formulas. Meta-regression analysis revealed that the efficacy of the treatments did not significantly vary with patient age, male sex, and duration of seizure history. TSA suggested that herbal medicine-acupuncture combination exerted a robust and conclusive effect on seizure treatment. Although the combined used of herbal medicine and acupuncture was not associated with a lower risk of post-treatment EEG abnormalities (RR = 0.82, 95%CI:0.6-1.11, P = 0.2, 3 trials), the risk of adverse events was reduced (RR = 0.27, 95%CI:0.18-0.41, P<0.00001, 4 trials). CONCLUSION: The meta-analysis suggested that combined use of herbal medicine and acupuncture is a promising and safe clinical approach for pediatric epilepsy treatment. Further large-scale studies are necessary to conclusively determine the efficacy and safety of herbal medicine and acupuncture in pediatric epilepsy treatment.


Subject(s)
Acupuncture Therapy , Epilepsy , Randomized Controlled Trials as Topic , Humans , Acupuncture Therapy/adverse effects , Acupuncture Therapy/methods , Child , Epilepsy/therapy , Epilepsy/drug therapy , Treatment Outcome , Herbal Medicine/methods , Combined Modality Therapy , Male , Female , Child, Preschool
SELECTION OF CITATIONS
SEARCH DETAIL
...