Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Neurocrit Care ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918338

ABSTRACT

BACKGROUND: To investigate patients with disorders of consciousness (DoC) for residual awareness, guidelines recommend quantifying glucose brain metabolism using positron emission tomography. However, this is not feasible in the intensive care unit (ICU). Cerebral blood flow (CBF) assessed by arterial spin labeling magnetic resonance imaging (ASL-MRI) could serve as a proxy for brain metabolism and reflect consciousness levels in acute DoC. We hypothesized that ASL-MRI would show compromised CBF in coma and unresponsive wakefulness states (UWS) but relatively preserved CBF in minimally conscious states (MCS) or better. METHODS: We consecutively enrolled ICU patients with acute DoC and categorized them as being clinically unresponsive (i.e., coma or UWS [≤ UWS]) or low responsive (i.e., MCS or better [≥ MCS]). ASL-MRI was then acquired on 1.5 T or 3 T. Healthy controls were investigated with both 1.5 T and 3 T ASL-MRI. RESULTS: We obtained 84 ASL-MRI scans from 59 participants, comprising 36 scans from 35 patients (11 women [31.4%]; median age 56 years, range 18-82 years; 24 ≤ UWS patients, 12 ≥ MCS patients; 32 nontraumatic brain injuries) and 48 scans from 24 healthy controls (12 women [50%]; median age 50 years, range 21-77 years). In linear mixed-effects models of whole-brain cortical CBF, patients had 16.2 mL/100 g/min lower CBF than healthy controls (p = 0.0041). However, ASL-MRI was unable to discriminate between ≤ UWS and ≥ MCS patients (whole-brain cortical CBF: p = 0.33; best hemisphere cortical CBF: p = 0.41). Numerical differences of regional CBF in the thalamus, amygdala, and brainstem in the two patient groups were statistically nonsignificant. CONCLUSIONS: CBF measurement in ICU patients using ASL-MRI is feasible but cannot distinguish between the lower and the upper ends of the acute DoC spectrum. We suggest that pilot testing of diagnostic interventions at the extremes of this spectrum is a time-efficient approach in the continued quest to develop DoC neuroimaging markers in the ICU.

2.
Alzheimers Res Ther ; 16(1): 80, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38610005

ABSTRACT

BACKGROUND: In epilepsy, the ictal phase leads to cerebral hyperperfusion while hypoperfusion is present in the interictal phases. Patients with Alzheimer's disease (AD) have an increased prevalence of epileptiform discharges and a study using intracranial electrodes have shown that these are very frequent in the hippocampus. However, it is not known whether there is an association between hippocampal hyperexcitability and regional cerebral blood flow (rCBF). The objective of the study was to investigate the association between rCBF in hippocampus and epileptiform discharges as measured with ear-EEG in patients with Alzheimer's disease. Our hypothesis was that increased spike frequency may be associated with increased rCBF in hippocampus. METHODS: A total of 24 patients with AD, and 15 HC were included in the analysis. Using linear regression, we investigated the association between rCBF as measured with arterial spin-labelling MRI (ASL-MRI) in the hippocampus and the number of spikes/sharp waves per 24 h as assessed by ear-EEG. RESULTS: No significant difference in hippocampal rCBF was found between AD and HC (p-value = 0.367). A significant linear association between spike frequency and normalized rCBF in the hippocampus was found for patients with AD (estimate: 0.109, t-value = 4.03, p-value < 0.001). Changes in areas that typically show group differences (temporal-parietal cortex) were found in patients with AD, compared to HC. CONCLUSIONS: Increased spike frequency was accompanied by a hemodynamic response of increased blood flow in the hippocampus in patients with AD. This phenomenon has also been shown in patients with epilepsy and supports the hypothesis of hyperexcitability in patients with AD. The lack of a significant difference in hippocampal rCBF may be due to an increased frequency of epileptiform discharges in patients with AD. TRIAL REGISTRATION: The study is registered at clinicaltrials.gov (NCT04436341).


Subject(s)
Alzheimer Disease , Epilepsy , Humans , Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Hippocampus/diagnostic imaging , Temporal Lobe , Cerebrovascular Circulation , Epilepsy/diagnostic imaging
3.
J Cereb Blood Flow Metab ; 44(6): 1039-1052, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38190981

ABSTRACT

Cerebral oxygen metabolism is altered in relapsing-remitting multiple sclerosis (RRMS), possibly a result of disease related cerebral atrophy with subsequent decreased oxygen demand. However, MS inflammation can also inhibit brain metabolism. Therefore, we measured cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) using MRI phase contrast mapping and susceptibility-based oximetry in 44 patients with early RRMS and 36 healthy controls. Cerebral atrophy and white matter lesion load were assessed from high-resolution structural MRI. Expanded Disability Status Scale (EDSS) scores were collected from medical records. The CMRO2 was significantly lower in patients (-15%, p = 0.002) and decreased significantly with age in patients relative to the controls (-1.35 µmol/100 g/min/year, p = 0.036). The lower CMRO2 in RRMS was primarily driven by a higher venous oxygen saturation in the sagittal sinus (p = 0.007) and not a reduction in CBF (p = 0.69). There was no difference in cerebral atrophy between the groups, and no correlation between CMRO2 and MS lesion volume or EDSS score. Therefore, the progressive CMRO2 decline observed before the occurrence of significant cerebral atrophy and despite adequate CBF supports emerging evidence of dysfunctional cellular respiration as a potential pathogenic mechanism and therapeutic target in RRMS.


Subject(s)
Cerebrovascular Circulation , Magnetic Resonance Imaging , Oxygen Consumption , Humans , Adult , Female , Male , Oxygen Consumption/physiology , Cerebrovascular Circulation/physiology , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/metabolism , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/pathology , Multiple Sclerosis, Relapsing-Remitting/physiopathology , Brain/metabolism , Brain/diagnostic imaging , Aging/metabolism , Atrophy , Oxygen/metabolism , Oxygen/blood , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Multiple Sclerosis/diagnostic imaging , Young Adult
4.
Eur J Nucl Med Mol Imaging ; 51(3): 707-720, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37843600

ABSTRACT

PURPOSE: New total-body PET scanners with a long axial field of view (LAFOV) allow for higher temporal resolution due to higher sensitivity, which facilitates perfusion estimation by model-free deconvolution. Fundamental tracer kinetic theory predicts that perfusion can be estimated for all tracers despite their different fates given sufficiently high temporal resolution of 1 s or better, bypassing the need for compartment modelling. The aim of this study was to investigate whether brain perfusion could be estimated using model-free Tikhonov generalized deconvolution for five different PET tracers, [15O]H2O, [11C]PIB, [18F]FE-PE2I, [18F]FDG and [18F]FET. To our knowledge, this is the first example of a general model-free approach to estimate cerebral blood flow (CBF) from PET data. METHODS: Twenty-five patients underwent dynamic LAFOV PET scanning (Siemens, Quadra). PET images were reconstructed with an isotropic voxel resolution of 1.65 mm3. Time framing was 40 × 1 s during bolus passage followed by increasing framing up to 60 min. AIF was obtained from the descending aorta. Both voxel- and region-based calculations of perfusion in the thalamus were performed using the Tikhonov method. The residue impulse response function was used to estimate the extraction fraction of tracer leakage across the blood-brain barrier. RESULTS: CBF ranged from 37 to 69 mL blood min-1 100 mL of tissue-1 in the thalamus. Voxelwise calculation of CBF resulted in CBF maps in the physiologically normal range. The extraction fractions of [15O]H2O, [18F]FE-PE2I, [11C]PIB, [18F]FDG and [18F]FET in the thalamus were 0.95, 0.78, 0.62, 0.19 and 0.03, respectively. CONCLUSION: The high temporal resolution and sensitivity associated with LAFOV PET scanners allow for noninvasive perfusion estimation of multiple tracers. The method provides an estimation of the residue impulse response function, from which the fate of the tracer can be studied, including the extraction fraction, influx constant, volume of distribution and transit time distribution, providing detailed physiological insight into normal and pathologic tissue.


Subject(s)
Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Humans , Positron-Emission Tomography/methods , Fluorodeoxyglucose F18 , Brain/diagnostic imaging , Perfusion
5.
Front Physiol ; 14: 1213352, 2023.
Article in English | MEDLINE | ID: mdl-37731542

ABSTRACT

In humans, resting cerebral perfusion, oxygen consumption and energy metabolism demonstrate large intersubject variation regardless of methodology. Whether a similar large variation is also present longitudinally in individual subjects is much less studied, but knowing the time variance in reproducibility is important when designing and interpreting longitudinal follow-up studies examining brain physiology. Therefore, we examined the reproducibility of cerebral blood flow (CBF), global cerebral metabolic rate of oxygen (CMRO2), global arteriovenous oxygen saturation difference (A-V.O2), and cerebral lactate and N-acetyl-aspartate (NAA) concentrations measured using magnetic resonance imaging (MRI) and spectroscopy (MRS) techniques through repeated measurements at 6 h, 24 h, 7 days and several weeks after initial baseline measurements in young healthy adults (N = 26, 13 females, age range 18-35 years). Using this setup, we calculated the correlation, limit of agreement (LoA) and within-subject coefficient of variation (CoVWS) between baseline values and the subsequent repeated measurements to examine the longitudinal variation in individual cerebral physiology. CBF and CMRO2 correlated significantly between baseline and all subsequent measurements. The strength of the correlations (R2) and reproducibility metrics (LoA and CoVWS) demonstrated the best reproducibility for the within-day measurements and generally declined with longer time between measurements. Cerebral lactate and NAA concentrations also correlated significantly for all measurements, except between baseline and the 7-day measurement for lactate. Similar to CBF and CMRO2, lactate and NAA demonstrated the best reproducibility for within-day repeated measurements. The gradual decline in reproducibility over time should be considered when designing and interpreting studies on brain physiology, for example, in the evaluation of treatment efficacy.

6.
Diabetes Obes Metab ; 25(9): 2605-2615, 2023 09.
Article in English | MEDLINE | ID: mdl-37278273

ABSTRACT

AIM: To investigate the effects of ezetimibe on the urine albumin creatinine ratio (UACR) and kidney parenchyma fat content (kidney-PF) in individuals with type 2 diabetes (T2D) and early chronic kidney disease. MATERIALS AND METHODS: A randomized, double-blind, placebo-controlled study of ezetimibe 10 mg once daily for 16 weeks in individuals with T2D and a UACR of 30 mg/g or higher was conducted. Kidney-PF was assessed with magnetic resonance spectroscopy. Geometric mean changes from baseline were derived from linear regressions. RESULTS: A total of 49 participants were randomized to ezetimibe (n = 25) or placebo (n = 24). Overall, mean ± standard deviation age was 67 ± 7 years, body mass index was 31 ± 4 kg/m2 and the proportion of men was 84%. The mean estimated glomerular filtration rate was 76 ± 22 mL/min/1.73m2 and median (first-third quartile) UACR was 95 (41-297) mg/g. Median kidney-PF was 1.0% (0.3%-2.1%). Compared with placebo, ezetimibe did not significantly reduce UACR (mean [95% confidence interval] change: -3% [-28%-31%]) or kidney-PF (mean change: -38% [-66%-14%]). In participants with baseline kidney-PF above the median, ezetimibe reduced kidney-PF significantly (mean change: -60% [-84%--3%]) compared with placebo, while the reduction in UACR was not significant (mean change: -28% [-54%-15%]). CONCLUSIONS: Ezetimibe did not reduce the UACR or kidney-PF on top of modern T2D management. However, kidney-PF was reduced with ezetimibe in participants with high baseline kidney-PF.


Subject(s)
Diabetes Mellitus, Type 2 , Renal Insufficiency, Chronic , Male , Humans , Middle Aged , Aged , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Albuminuria/drug therapy , Creatinine , Kidney , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/drug therapy , Glomerular Filtration Rate
7.
Front Neurosci ; 17: 1177540, 2023.
Article in English | MEDLINE | ID: mdl-37274207

ABSTRACT

Introduction: Patients with MS are MRI scanned continuously throughout their disease course resulting in a large manual workload for radiologists which includes lesion detection and size estimation. Though many models for automatic lesion segmentation have been published, few are used broadly in clinic today, as there is a lack of testing on clinical datasets. By collecting a large, heterogeneous training dataset directly from our MS clinic we aim to present a model which is robust to different scanner protocols and artefacts and which only uses MRI modalities present in routine clinical examinations. Methods: We retrospectively included 746 patients from routine examinations at our MS clinic. The inclusion criteria included acquisition at one of seven different scanners and an MRI protocol including 2D or 3D T2-w FLAIR, T2-w and T1-w images. Reference lesion masks on the training (n = 571) and validation (n = 70) datasets were generated using a preliminary segmentation model and subsequent manual correction. The test dataset (n = 100) was manually delineated. Our segmentation model https://github.com/CAAI/AIMS/ was based on the popular nnU-Net, which has won several biomedical segmentation challenges. We tested our model against the published segmentation models HD-MS-Lesions, which is also based on nnU-Net, trained with a more homogenous patient cohort. We furthermore tested model robustness to data from unseen scanners by performing a leave-one-scanner-out experiment. Results: We found that our model was able to segment MS white matter lesions with a performance comparable to literature: DSC = 0.68, precision = 0.90, recall = 0.70, f1 = 0.78. Furthermore, the model outperformed HD-MS-Lesions in all metrics except precision = 0.96. In the leave-one-scanner-out experiment there was no significant change in performance (p < 0.05) between any of the models which were only trained on part of the dataset and the full segmentation model. Conclusion: In conclusion we have seen, that by including a large, heterogeneous dataset emulating clinical reality, we have trained a segmentation model which maintains a high segmentation performance while being robust to data from unseen scanners. This broadens the applicability of the model in clinic and paves the way for clinical implementation.

8.
Diagnostics (Basel) ; 13(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37238288

ABSTRACT

BACKGROUND AND PURPOSE: Magnetic resonance spectroscopy (MRS)-a method of analysing metabolites in vivo-has been utilized in several studies of brain glioma biomarkers at lower field strengths. At ultra-high field strengths, MRS provides an improved signal-to-noise-ratio and spectral resolution, but 7T studies on patients with gliomas are sparse. The purpose of this exploratory study was to evaluate the potential clinical implication of the use of single-voxel MRS at 7T to assess metabolic information on lesions in a pilot cohort of patients with grade II and III gliomas. METHODS: We scanned seven patients and seven healthy controls using the semi-localization by adiabatic-selective refocusing sequence on a Philips Achieva 7T system with a standard dual-transmit head coil. The metabolic ratios were calculated relative to water and total creatine. Additionally, 2-hydroxyglutarate (2-HG) MRS was carried out in four of the patients, and the 2-HG concentration was calculated relative to water. RESULTS: When comparing the tumour data to control regions in both patients and healthy controls, we found that the choline/creatine and myo-inositol/creatine ratios were significantly increased and that the N-acetylaspartate/creatine and the neurotransmitter glutamate/creatine ratios were significantly decreased. The N-acetylaspartate/water and glutamate/water ratios were also significantly decreased. The lactate/water and lactate/creatine ratios showed increases, although not significant. The GABA/water ratio was significantly decreased, but the GABA/creatine ratio was not. MRS spectra showed the presence of 2-HG in three of the four patients studied. Three of the patients, including the MRS 2-HG-negative patient, were operated on, and all of them had the IDH mutation. CONCLUSION: Our findings were consistent with the existing literature on 3T and 7T MRS.

9.
J Am Heart Assoc ; 12(3): e027712, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36734354

ABSTRACT

Background GLP-1 (glucagon-like peptide-1) receptor agonists exert beneficial long-term effects on cardiovascular and renal outcomes. In humans, the natriuretic effect of GLP-1 depends on GLP-1 receptor interaction, is accompanied by suppression of angiotensin II, and is independent of changes in renal plasma flow. In rodents, angiotensin II constricts vasa recta and lowers medullary perfusion. The current randomized, controlled, crossover study was designed to test the hypothesis that GLP-1 increases renal medullary perfusion in healthy humans. Methods and Results Healthy male participants (n=10, aged 27±4 years) ingested a fixed sodium intake for 4 days and were examined twice during a 1-hour infusion of either GLP-1 (1.5 pmol/kg per minute) or placebo together with infusion of 0.9% NaCl (750 mL/h). Interleaved measurements of renal arterial blood flow, oxygenation (R2*), and perfusion were acquired in the renal cortex and medulla during infusions, using magnetic resonance imaging. GLP-1 infusion increased medullary perfusion (32±7%, P<0.001) and cortical perfusion (13±4%, P<0.001) compared with placebo. Here, NaCl infusion decreased medullary perfusion (-5±2%, P=0.007), whereas cortical perfusion remained unchanged. R2* values increased by 3±2% (P=0.025) in the medulla and 4±1% (P=0.008) in the cortex during placebo, indicative of decreased oxygenation, but remained unchanged during GLP-1. Blood flow in the renal artery was not altered significantly by either intervention. Conclusions GLP-1 increases predominantly medullary but also cortical perfusion in the healthy human kidney and maintains renal oxygenation during NaCl loading. In perspective, suppression of angiotensin II by GLP-1 may account for the increase in regional perfusion. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT04337268.


Subject(s)
Angiotensin II , Glucagon-Like Peptide 1 , Kidney , Sodium Chloride , Humans , Male , Cross-Over Studies , Glucagon-Like Peptide 1/pharmacology , Kidney Medulla , Perfusion , Renal Circulation , Young Adult , Adult
10.
J Headache Pain ; 24(1): 15, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36823546

ABSTRACT

OBJECTIVE: To examine whether white matter hyperintensities (WMHs) and cerebral microbleeds (CMBs) are more prevalent in people with persistent post-traumatic headache attributed to mild traumatic brain injury (TBI), compared with healthy controls. METHODS: A magnetic resonance imaging (MRI) study of adults with persistent post-traumatic headache attributed to mild TBI and age- and gender-matched healthy controls. A semi-structured interview and validated self-report instruments were used to record data on demographics, clinical characteristics, and comorbidities. Imaging data were obtained on a 3T MRI Scanner using a 32-channel head coil. Participants and controls underwent a single MRI session, in which fluid-attenuated inversion recovery was used to visualize WMHs, and susceptibility-weighted imaging was used to detect CMBs. The primary outcomes were (I) the difference in the mean number of WMHs between participants with persistent post-traumatic headache and healthy controls and (II) the difference in the mean number of CMBs between participants with persistent post-traumatic headache and healthy controls. All images were examined by a certified neuroradiologist who was blinded to the group status of the participants and controls. RESULTS: A total of 97 participants with persistent post-traumatic headache and 96 age- and gender-matched healthy controls provided imaging data eligible for analyses. Among 97 participants with persistent post-traumatic headache, 43 (44.3%) participants presented with ≥ 1 WMH, and 3 (3.1%) participants presented with ≥ 1 CMB. Compared with controls, no differences were found in the mean number of WMHs (2.7 vs. 2.1, P = 0.58) and the mean number of CMBs (0.03 vs. 0.04, P = 0.98). CONCLUSIONS: WMHs and CMBs were not more prevalent in people with persistent post-traumatic headache than observed in healthy controls. Future studies should focus on other MRI techniques to identify radiologic biomarkers of post-traumatic headache.


Subject(s)
Brain Concussion , Post-Traumatic Headache , White Matter , Adult , Humans , Brain Concussion/complications , Brain Concussion/diagnostic imaging , Post-Traumatic Headache/pathology , White Matter/pathology , Magnetic Resonance Imaging/methods , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/pathology
11.
J Cereb Blood Flow Metab ; 43(3): 460-475, 2023 03.
Article in English | MEDLINE | ID: mdl-36369740

ABSTRACT

The healthy cerebral perfusion demonstrates a homogenous distribution of capillary transit times. A disruption of this homogeneity may inhibit the extraction of oxygen. A high degree of capillary transit time heterogeneity (CTH) describes that some capillaries have very low blood flows, while others have excessively high blood flows and consequently short transit times. Very short transit times could hinder the oxygen extraction due to insufficient time for diffusion of oxygen into the tissue. CTH could be a consequence of cerebral vessel disease. We examined whether patients with cerebral steno-occlusive vessel disease demonstrate high CTH and if elevation of cerebral blood flow (CBF) by administration of acetazolamide (ACZ) increases the cerebral metabolic rate of oxygen (CMRO2), or if some patients demonstrate reduced CMRO2 related to detrimental CTH. Thirty-four patients and thirty-one healthy controls participated. Global CBF and CMRO2 were acquired using phase-contrast MRI. Regional brain maps of CTH were acquired using dynamic contrast-enhanced MRI. Patients with impaired cerebrovascular reserve capacity demonstrated elevated CTH and a significant reduction of CMRO2 after administration of ACZ, which could be related to high CTH. Impaired oxygen extraction from CTH could be a contributing part of the declining brain health observed in patients with cerebral vessel disease.


Subject(s)
Brain , Capillaries , Humans , Capillaries/physiology , Brain/blood supply , Magnetic Resonance Imaging , Hemodynamics , Oxygen/metabolism , Acetazolamide , Cerebrovascular Circulation/physiology , Oxygen Consumption/physiology
12.
Geroscience ; 45(2): 1161-1175, 2023 04.
Article in English | MEDLINE | ID: mdl-36534276

ABSTRACT

Hippocampal blood-brain barrier (BBB) permeability may increase in normal healthy ageing and contribute to neurodegenerative disease. To examine this hypothesis, we investigated the correlation between blood-brain barrier (BBB) permeability, regional brain volume, memory functions and health and lifestyle factors in The Metropolit 1953 Danish Male Birth Cohort. We used dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with a gadolinium-based contrast agent to assess BBB permeability in 77 participants in the cohort. BBB permeability was measured as Ki values in the hippocampus, thalamus and white matter. Over a 10-year period, we observed progressive atrophy of both the left and right hippocampus (p = 0.001). There was no significant correlation between current BBB permeability and hippocampal volume, prior atrophy or cognition. The hippocampus volume ratio was associated with better visual and verbal memory scores (p < 0.01). Regional BBB differences revealed higher Ki values in the hippocampus and white matter than in the thalamus (p < 0.001). Participants diagnosed with type II diabetes had significantly higher BBB permeability in the white matter (p = 0.015) and thalamus (p = 0.016), which was associated with a higher Fazekas score (p = 0.024). We do not find evidence that BBB integrity is correlated with age-related hippocampal atrophy or cognitive functions. The association between diabetes, white matter hyperintensities and increased BBB permeability is consistent with the idea that cerebrovascular disease compromises BBB integrity. Our findings suggest that the hippocampus is particularly prone to age-related atrophy, which may explain some of the cognitive changes that accompany older age, but this prior atrophy is not correlated with current BBB permeability.


Subject(s)
Diabetes Mellitus, Type 2 , Neurodegenerative Diseases , Humans , Male , Middle Aged , Blood-Brain Barrier , Hippocampus/diagnostic imaging , Hippocampus/pathology , Cognition , Permeability , Atrophy
13.
J Magn Reson Imaging ; 57(4): 1229-1240, 2023 04.
Article in English | MEDLINE | ID: mdl-35993510

ABSTRACT

BACKGROUND: Dynamic contrast-enhanced MRI (DCE-MRI) has seen increasing use for quantification of low level of blood-brain barrier (BBB) leakage in various pathological disease states and correlations with clinical outcomes. However, currently there exists limited studies on reproducibility in healthy controls, which is important for the establishment of a normality threshold for future research. PURPOSE: To investigate the reproducibility of DCE-MRI and to evaluate the effect of arterial input function (AIF) selection and manual region of interests (ROI) delineation vs. automated global segmentation. STUDY TYPE: Prospective. POPULATION: A total of 16 healthy controls; 11 females; mean age 28.7 years (SD 10.1). FIELD STRENGTH/SEQUENCE: A 3T; GE DCE; 3D TFE T1WI. 2D TSE T2. ASSESSMENT: The influx constant Ki , a measure of BBB permeability, and Vp , the blood plasma volume, was calculated using the Patlak model. Cerebral blood flow (CBF) was calculated using Tikhonov model free deconvolution. Manual tissue ROIs, drawn by H.J.S. (30+ years of experience), were compared to automatic tissue segmentation. STATISTICAL TESTS: Intraclass correlation coefficient (ICC) and repeatability coefficient (RC) was used to assess reproducibility. Bland-Altman plots were used to evaluate agreement between measurements day 1 vs. day 2, and manual vs. segmentation method. RESULTS: Ki showed excellent reproducibility in both white and gray matter with an ICC between 0.79 and 0.82 and excellent agreement between manual ROI and automatic segmentation, with an ICC of 0.89 for Ki in WM. Furthermore, Ki values in gray and white matter conforms with histological tissue characteristics, where gray matter generally has a 2-fold higher vessel density. The highest reproducibility measures of Ki (ICC = 0.83), CBF (ICC = 0.77) and Vd (ICC = 0.83) was obtained with the AIF sampled in the internal carotid artery (ICA). DATA CONCLUSION: DCE-MRI shows excellent reproducibility of pharmacokinetic variables derived from healthy controls. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Brain , Contrast Media , Female , Humans , Adult , Reproducibility of Results , Prospective Studies , Contrast Media/pharmacokinetics , Magnetic Resonance Imaging/methods , Perfusion
14.
Diagnostics (Basel) ; 14(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38201390

ABSTRACT

In order to support or refute the clinical suspicion of cranial giant cell arteritis (GCA), a supplemental imaging modality is often required. High-resolution black blood Magnetic Resonance Imaging (BB MRI) techniques with contrast enhancement can visualize artery wall inflammation in GCA. We compared findings on BB MRI without contrast enhancement with findings on 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/low-dose computed tomography (2-[18F]FDG PET/CT) in ten patients suspected of having GCA and in five control subjects who had a 2-[18F]FDG PET/CT performed as a routine control for malignant melanoma. BB MRI was consistent with 2-[18F]FDG PET/CT in 10 out of 10 cases in the group with suspected GCA. In four out of five cases in the control group, the BB MRI was consistent with 2-[18F]FDG PET/CT. In this small population, BB MRI without contrast enhancement shows promising performance in the diagnosis of GCA, and might be an applicable imaging modality in patients.

15.
Front Neurosci ; 16: 1053783, 2022.
Article in English | MEDLINE | ID: mdl-36532287

ABSTRACT

Purpose: Brain 2-Deoxy-2-[18F]fluoroglucose ([18F]FDG-PET) is widely used in the diagnostic workup of Alzheimer's disease (AD). Current tools for uptake analysis rely on non-personalized templates, which poses a challenge as decreased glucose uptake could reflect neuronal dysfunction, or heterogeneous brain morphology associated with normal aging. Overcoming this, we propose a deep learning method for synthesizing a personalized [18F]FDG-PET baseline from the patient's own MRI, and showcase its applicability in detecting AD pathology. Methods: We included [18F]FDG-PET/MRI data from 123 patients of a local cohort and 600 patients from ADNI. A supervised, adversarial model with two connected Generative Adversarial Networks (GANs) was trained on cognitive normal (CN) patients with transfer-learning to generate full synthetic baseline volumes (sbPET) (192 × 192 × 192) which reflect healthy uptake conditioned on brain anatomy. Synthetic accuracy was measured by absolute relative %-difference (Abs%), relative %-difference (RD%), and peak signal-to-noise ratio (PSNR). Lastly, we deployed the sbPET images in a fully personalized method for localizing metabolic abnormalities. Results: The model achieved a spatially uniform Abs% of 9.4%, RD% of 0.5%, and a PSNR of 26.3 for CN subjects. The sbPET images conformed to the anatomical information dictated by the MRI and proved robust in presence of atrophy. The personalized abnormality method correctly mapped the pathology of AD subjects while showing little to no anomalies for CN subjects. Conclusion: This work demonstrated the feasibility of synthesizing fully personalized, healthy-appearing [18F]FDG-PET images. Using these, we showcased a promising application in diagnosing AD, and theorized the potential value of sbPET images in other neuroimaging routines.

16.
Brain Stimul ; 15(6): 1486-1494, 2022.
Article in English | MEDLINE | ID: mdl-36332891

ABSTRACT

BACKGROUND: The mechanisms underlying the antidepressant effect and cognitive side effects of Electroconvulsive Therapy (ECT) remain elusive. The measurement of cerebral perfusion provides an insight into brain physiology. OBJECTIVE: We investigated ECT-related perfusion changes in depressed patients and tested whether these changes correlate with clinical effects. METHODS: A sample of 22 in-patients was examined at three time points: 1) within two days before, 2) within one week after, and 3) six months after an ECT series. Cerebral perfusion was quantified using arterial spin labeling magnetic resonance imaging. The primary regions of interest were the bilateral dorsolateral prefrontal cortices (DL-PFC) and hippocampi. The depression severity was assessed by the six-item Hamilton Depression Rating Scale, and cognitive performance by the Screen for Cognitive Impairment in Psychiatry. A linear mixed model and partial correlation were used for statistical analyses. RESULTS: Following an ECT series, perfusion decreased in the right (-6.0%, p = .01) and left DL-PFC (-5.6%, p = .001). Perfusion increased in the left hippocampus (4.8%, p = .03), while on the right side the increase was insignificant (2.3%, p = .23). A larger perfusion reduction in the right DL-PFC correlated with a better antidepressant effect, and a larger perfusion increase in the right hippocampus with worse cognitive impairment. CONCLUSION: ECT-induced attenuation of prefrontal activity may be related to clinical improvement, whereas a hippocampal process triggered by the treatment is likely associated with cognitive side effects.


Subject(s)
Electroconvulsive Therapy , Humans , Electroconvulsive Therapy/adverse effects , Electroconvulsive Therapy/methods , Antidepressive Agents/therapeutic use , Magnetic Resonance Imaging , Treatment Outcome , Cognition , Perfusion , Cerebrovascular Circulation
17.
Geroscience ; 44(4): 1905-1923, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35648331

ABSTRACT

Reduced cerebrovascular response to neuronal activation is observed in patients with neurodegenerative disease. In the present study, we examined the correlation between reduced cerebrovascular response to visual activation (ΔCBFVis.Act) and subclinical cognitive deficits in a human population of mid-sixties individuals without neurodegenerative disease. Such a correlation would suggest that impaired cerebrovascular function occurs before overt neurodegenerative disease. A total of 187 subjects (age 64-67 years) of the Metropolit Danish Male Birth Cohort participated in the study. ΔCBFVis.Act was measured using arterial spin labelling (ASL) MRI. ΔCBFVis.Act correlated positively with cognitive performance in: Global cognition (p = 0.046), paired associative memory (p = 0.025), spatial recognition (p = 0.026), planning (p = 0.016), simple processing speed (p < 0.01), and with highly significant correlations with current intelligence (p < 10-5), and more complex processing speed (p < 10-3), the latter two explaining approximately 11-13% of the variance. Reduced ΔCBFVis.Act was independent of brain atrophy. Our findings suggest that inhibited cerebrovascular response to neuronal activation is an early deficit in the ageing brain and associated with subclinical cognitive deficits. Cerebrovascular dysfunction could be an early sign of a trajectory pointing towards the development of neurodegenerative disease. Future efforts should elucidate if maintenance of a healthy cerebrovascular function can protect against the development of dementia.


Subject(s)
Cognitive Dysfunction , Neurodegenerative Diseases , Humans , Male , Aged , Photic Stimulation , Cerebrovascular Circulation/physiology , Cognition
18.
Mult Scler Relat Disord ; 63: 103891, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35661562

ABSTRACT

BACKGROUND: In relapsing-remitting multiple sclerosis (RRMS), early disease control reduces the risk of permanent disability. The blood-brain barrier (BBB) is compromised in MS, and its permeability is a potential biomarker. OBJECTIVE: To investigate BBB permeability measured by MRI as a marker of alemtuzumab efficacy. METHODS: Patients with RRMS initiating alemtuzumab treatment were recruited prospectively. BBB permeability was assessed as the Patlak-derived influx constant (Ki) by dynamic contrast-enhanced MRI before and 6, 12, and 18 months after the first course of alemtuzumab. No Evidence of Disease Activity-3 (NEDA-3) status was ascertained two years after treatment initiation. RESULTS: Patients who maintained NEDA-3 status at two years (n = 7) had a larger decrease in Ki between baseline and six months (-0.029 ml/100 g/min [CI -0.005 - -0.053]) and between baseline and 12 months in normal appearing white matter (0.043 [CI 0.022 - -0.065]), than those who experienced disease activity (n = 8). ROC curve analysis of the Ki change between baseline and 12 months in NAWM predicted a loss of NEDA status at 2 years with 86% sensitivity and 86% specificity (AUC 0.98, p = 0.002). CONCLUSION: BBB permeability predicted alemtuzumab efficacy at two years, indicating that BBB permeability is a biomarker of treatment response in RRMS.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Alemtuzumab/therapeutic use , Blood-Brain Barrier , Humans , Magnetic Resonance Imaging , Multiple Sclerosis/chemically induced , Multiple Sclerosis, Relapsing-Remitting/chemically induced , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Permeability
19.
BMJ Open ; 12(2): e047706, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35105560

ABSTRACT

INTRODUCTION: Nutrient deficiency and immune and inflammatory disturbances in early life may compromise neurodevelopment and be implicated in the aetiology of psychiatric disorders. However, current evidence is limited by its predominantly observational nature. COpenhagen Prospective Study on Neuro-PSYCHiatric Development (COPSYCH) is a research alliance between Copenhagen Prospective Studies on Asthma in Childhood (COPSAC) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research with the overall aim to investigate effects of prenatal and early life exposures on neurodevelopment at 10 years. COPSYCH will investigate the impact of prenatal n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) and high-dose vitamin D supplementation on neurodevelopment reflected by brain development, neurocognition and psychopathology. Moreover, the neurodevelopmental impact of early life exposures such as infections, low grade inflammation and the gut microbiome will be scrutinised. METHODS AND ANALYSIS: COPSYCH is based on the prospective and ongoing COPSAC2010 birth cohort of 700 mother-child pairs. Randomised controlled trials of supplementation with n-3 LCPUFA and/or high-dose vitamin D or placebo in the third trimester were embedded in a factorial 2×2 design (ClinicalTrials.gov: NCT01233297 and NCT00856947). This unique cohort provides deep phenotyping data from 14 previous clinical follow-up visits and exposure assessments since birth. The ongoing 10-year visit is a 2-day visit. Day 1 includes a comprehensive neurocognitive examination, and assessment of psychopathological dimensions, and assessment of categorical psychopathology. Day 2 includes acquisition of brain structural, diffusion and functional sequences using 3 Tesla MRI. Study outcomes are neurocognitive, psychopathological and MRI measures. ETHICS AND DISSEMINATION: This study has been approved by the Danish National Committee on Health Research Ethics and The Danish Data Protection Agency. The study is conducted in accordance with the guiding principles of the Declaration of Helsinki. Parents gave written informed consent before enrolment.


Subject(s)
Fatty Acids, Omega-3 , Gastrointestinal Microbiome , Child , Dietary Supplements , Female , Humans , Pregnancy , Prospective Studies , Randomized Controlled Trials as Topic , Vitamins
20.
Clin Neuroradiol ; 32(3): 643-653, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34542644

ABSTRACT

PURPOSE: To implement and validate an existing algorithm for automatic delineation of white matter lesions on magnetic resonance imaging (MRI) in patients with multiple sclerosis (MS) on a local single-center dataset. METHODS: We implemented a white matter hyperintensity segmentation model, based on a 2D convolutional neural network, using the conventional T2-weighted fluid attenuated inversion recovery (FLAIR) MRI sequence as input. The model was adapted for delineation of MS lesions by further training on a local dataset of 93 MS patients with a total of 3040 lesions. A quantitative evaluation was performed on ten test patients, in which model-generated masks were compared to manually delineated masks from two expert delineators. A subsequent qualitative evaluation of the implemented model was performed by two expert delineators, in which generated delineation masks on a clinical dataset of 53 patients were rated acceptable (< 10% errors) or unacceptable (> 10% errors) based on the total number of true lesions. RESULTS: The quantitative evaluation resulted in an average accuracy score (F1) of 0.71, recall of 0.77 and dice similarity coefficient of 0.62. Our implemented model obtained the highest scores in all three metrics, when compared to three out of the box lesion segmentation models. In the clinical evaluation an average of 94% of our 53 model-generated masks were rated acceptable. CONCLUSION: After adaptation to our local dataset, the implemented segmentation model was able to delineate MS lesions with a high clinical value as rated by delineation experts while outperforming popular out of the box applications. This serves as a promising step towards implementation of automatic lesion delineation in our MS clinic.


Subject(s)
Multiple Sclerosis , Algorithms , Artificial Intelligence , Brain , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...