ABSTRACT
The prostate stromal mesenchyme controls organ-specific development. In cancer, the stromal compartment shows altered gene expression compared to non-cancer. The lineage relationship between cancer-associated stromal cells and normal tissue stromal cells is not known. Nor is the cause underlying the expression difference. Previously, the embryonal carcinoma (EC) cell line, NCCIT, was used by us to study the stromal induction property. In the current study, stromal cells from non-cancer (NP) and cancer (CP) were isolated from tissue specimens and co-cultured with NCCIT cells in a trans-well format to preclude heterotypic cell contact. After 3 days, the stromal cells were analyzed by gene arrays for microRNA (miRNA) and mRNA expression. In co-culture, NCCIT cells were found to alter the miRNA and mRNA expression of NP stromal cells to one like that of CP stromal cells. In contrast, NCCIT had no significant effect on the gene expression of CP stromal cells. We conclude that the gene expression changes in stromal cells can be induced by diffusible factors synthesized by EC cells, and suggest that cancer-associated stromal cells represent a more primitive or less differentiated stromal cell type.
Subject(s)
Embryonal Carcinoma Stem Cells/metabolism , MicroRNAs/genetics , Prostate/metabolism , Prostate/pathology , Cell Communication , Cell Line, Tumor , Cell Shape , Coculture Techniques , Culture Media , Cytoplasm/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Male , MicroRNAs/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Stromal Cells/metabolism , Stromal Cells/pathologyABSTRACT
PURPOSE: Interstitial cystitis/painful bladder syndrome (IC/PBS) is characterized by chronic pain, pressure and discomfort felt in the pelvis or bladder. An in-depth shotgun proteomics study was carried out to profile the urinary proteome of women with IC/PBS to identify possible specific proteins and networks associated with IC%PBS. MATERIALS AND METHODS: Urine samples from ten female IC/PBS patients and ten female asymptomatic, healthy control subjects were analyzed in quadruplicate by liquid chromatography-tandem mass spectrometry (LC-MS/MS) on a hybrid linear ion trap-orbitrap mass spectrometer. Gas-phase fractionation (GPF) was used to enhance protein identification. Differences in protein quantity were determined by peptide spectral counting. RESULTS: alpha-1B-glycoprotein (A1BG) and orosomucoid-1 (ORM1) were detected in all IC%PBS patients, and > or = 60% of these patients had elevated expression of these two proteins compared to control subjects. Transthyretin (TTR) and hemopexin (HPX) were detected in all control individuals, but > or = 60% of the IC/PBS patients had decreased expression levels of these two proteins. Enrichment functional analysis showed cell adhesion and response to stimuli were down-regulated whereas response to inflammation, wounding, and tissue degradation were up-regulated in IC/PBS. Activation of neurophysiological processes in synaptic inhibition, and lack of DNA damage repair may also be key components of IC%PBS. CONCLUSION: There are qualitative and quantitative differences between the urinary proteomes of women with and without IC%PBS. We identified a number of proteins as well as pathways%networks that might contribute to the pathology of IC%PBS or result from perturbations induced by this condition.
Subject(s)
Biomarkers/urine , Cystitis, Interstitial/etiology , Proteins/analysis , Proteomics/methods , Urine/chemistry , Chronic Disease , Cystitis, Interstitial/pathology , Female , Humans , Pilot ProjectsABSTRACT
PURPOSE: Interstitial cystitis/painful bladder syndrome (IC/PBS) is characterized by chronic pain, pressure and discomfort felt in the pelvis or bladder. An in-depth shotgun proteomics study was carried out to profile the urinary proteome of women with IC/PBS to identify possible specific proteins and networks associated with IC/PBS. MATERIALS AND METHODS: Urine samples from ten female IC/PBS patients and ten female asymptomatic, healthy control subjects were analyzed in quadruplicate by liquid chromatography-tandem mass spectrometry (LC-MS/MS) on a hybrid linear ion trap-orbitrap mass spectrometer. Gas-phase fractionation (GPF) was used to enhance protein identification. Differences in protein quantity were determined by peptide spectral counting. RESULTS: a-1B-glycoprotein (A1BG) and orosomucoid-1 (ORM1) were detected in all IC/PBS patients, and = 60 percent of these patients had elevated expression of these two proteins compared to control subjects. Transthyretin (TTR) and hemopexin (HPX) were detected in all control individuals, but = 60 percent of the IC/PBS patients had decreased expression levels of these two proteins. Enrichment functional analysis showed cell adhesion and response to stimuli were down-regulated whereas response to inflammation, wounding, and tissue degradation were up-regulated in IC/PBS. Activation of neurophysiological processes in synaptic inhibition, and lack of DNA damage repair may also be key components of IC/PBS. CONCLUSION: There are qualitative and quantitative differences between the urinary proteomes of women with and without IC/PBS. We identified a number of proteins as well as pathways/networks that might contribute to the pathology of IC/PBS or result from perturbations induced by this condition.