Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
1.
bioRxiv ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38948728

ABSTRACT

Poor intervertebral disc (IVD) healing causes IVD degeneration (IVDD) and progression to herniation and back pain. This study identified distinct roles of TNFα-receptors (TNFRs) in contributing to poor healing in painful IVDD. We first isolated IVDD tissue of back pain subjects and determined the complex pro-inflammatory mixture contained many chemokines for recruiting inflammatory cells. Single-cell RNA-sequencing of human IVDD tissues revealed these pro-inflammatory cytokines were dominantly expressed by a small macrophage-population. Human annulus fibrosus (hAF) cells treated with IVDD-conditioned media (CM) underwent senescence with greatly reduced metabolic rates and limited inflammatory responses. TNFR1 inhibition partially restored hAF cell metabolism sufficiently to enable a robust chemokine and cytokine response to CM. We showed that the pro-reparative TNFR2 was very limited on hIVD cell membranes so that TNFR2 inhibition with blocking antibodies or activation using Atsttrin had no effect on hAF cells with CM challenge. However, TNFR2 was expressed in high levels on macrophages identified in scRNA-seq analyses, suggesting their role in repair responses. Results therefore point to therapeutic strategies for painful IVDD involving immunomodulation of TNFR1 signaling in IVD cells to enhance metabolism and enable a more robust inflammatory response including recruitment or delivery of TNFR2 expressing immune cells to enhance IVD repair.

3.
Sci Rep ; 14(1): 12935, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839973

ABSTRACT

The inhibition of tumor necrosis factor (TNF)-α trimer formation renders it inactive for binding to its receptors, thus mitigating the vicious cycle of inflammation. We designed a peptide (PIYLGGVFQ) that simulates a sequence strand of human TNFα monomer using a series of in silico methods, such as active site finding (Acsite), protein-protein interaction (PPI), docking studies (GOLD and Flex-X) followed by molecular dynamics (MD) simulation studies. The MD studies confirmed the intermolecular interaction of the peptide with the TNFα. Fluorescence-activated cell sorting and fluorescence microscopy revealed that the peptide effectively inhibited the binding of TNF to the cell surface receptors. The cell culture assays showed that the peptide significantly inhibited the TNFα-mediated cell death. In addition, the nuclear translocation of the nuclear factor kappa B (NFκB) was significantly suppressed in the peptide-treated A549 cells, as observed in immunofluorescence and gel mobility-shift assays. Furthermore, the peptide protected against joint damage in the collagen-induced arthritis (CIA) mouse model, as revealed in the micro focal-CT scans. In conclusion, this TNFα antagonist would be helpful for the prevention and repair of inflammatory bone destruction and subsequent loss in the mouse model of CIA as well as human rheumatoid arthritis (RA) patients. This calls upon further clinical investigation to utilize its potential effect as an antiarthritic drug.


Subject(s)
Peptides , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Animals , Mice , Peptides/pharmacology , Peptides/chemistry , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , Molecular Docking Simulation , A549 Cells , Molecular Dynamics Simulation , NF-kappa B/metabolism , NF-kappa B/antagonists & inhibitors , Male , Antirheumatic Agents/pharmacology , Antirheumatic Agents/chemistry , Antirheumatic Agents/therapeutic use , Protein Binding , Disease Models, Animal
5.
Protein Cell ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38512816

ABSTRACT

Obesity has a multifactorial etiology and is known to be a state of chronic low-grade inflammation, known as meta-inflammation. This state is associated with the development of metabolic disorders such as glucose intolerance and nonalcoholic fatty liver disease. Pyruvate is a glycolytic metabolite and a crucial node in various metabolic pathways. However, its role and molecular mechanism in obesity and associated complications are obscure. In this study, we reported that pyruvate substantially inhibited adipogenic differentiation in vitro and its administration significantly prevented HFD-induced weight gain, white adipose tissue inflammation, and metabolic dysregulation. To identify the target proteins of pyruvate, drug affinity responsive target stability was employed with proteomics, cellular thermal shift assay, and isothermal drug response to detect the interactions between pyruvate and its molecular targets. Consequently, we identified cytosolic phospholipase A2 (cPLA2) as a novel molecular target of pyruvate and demonstrated that pyruvate restrained diet-induced obesity, white adipose tissue inflammation, and hepatic steatosis in a cPLA2-dependent manner. Studies with global ablation of cPLA2 in mice showed that the protective effects of pyruvate were largely abrogated, confirming the importance of pyruvate/cPLA2 interaction in pyruvate attenuation of inflammation and obesity. Overall, our study not only establishes pyruvate as an antagonist of cPLA2 signaling and a potential therapeutic option for obesity, but it also sheds light on the mechanism of its action. Pyruvate's prior clinical use indicates that it can be considered a safe and viable alternative for obesity, whether consumed as a dietary supplement or as part of a regular diet.

6.
Alzheimers Res Ther ; 16(1): 66, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38539243

ABSTRACT

BACKGROUND: Pathogenic heterozygous mutations in the progranulin gene (GRN) are a key cause of frontotemporal dementia (FTD), leading to significantly reduced biofluid concentrations of the progranulin protein (PGRN). This has led to a number of ongoing therapeutic trials aiming to treat this form of FTD by increasing PGRN levels in mutation carriers. However, we currently lack a complete understanding of factors that affect PGRN levels and potential variation in measurement methods. Here, we aimed to address this gap in knowledge by systematically reviewing published literature on biofluid PGRN concentrations. METHODS: Published data including biofluid PGRN concentration, age, sex, diagnosis and GRN mutation were collected for 7071 individuals from 75 publications. The majority of analyses (72%) had focused on plasma PGRN concentrations, with many of these (56%) measured with a single assay type (Adipogen) and so the influence of mutation type, age at onset, sex, and diagnosis were investigated in this subset of the data. RESULTS: We established a plasma PGRN concentration cut-off between pathogenic mutation carriers and non-carriers of 74.8 ng/mL using the Adipogen assay based on 3301 individuals, with a CSF concentration cut-off of 3.43 ng/mL. Plasma PGRN concentration varied by GRN mutation type as well as by clinical diagnosis in those without a GRN mutation. Plasma PGRN concentration was significantly higher in women than men in GRN mutation carriers (p = 0.007) with a trend in non-carriers (p = 0.062), and there was a significant but weak positive correlation with age in both GRN mutation carriers and non-carriers. No significant association was seen with weight or with TMEM106B rs1990622 genotype. However, higher plasma PGRN levels were seen in those with the GRN rs5848 CC genotype in both GRN mutation carriers and non-carriers. CONCLUSIONS: These results further support the usefulness of PGRN concentration for the identification of the large majority of pathogenic mutations in the GRN gene. Furthermore, these results highlight the importance of considering additional factors, such as mutation type, sex and age when interpreting PGRN concentrations. This will be particularly important as we enter the era of trials for progranulin-associated FTD.


Subject(s)
Frontotemporal Dementia , Male , Humans , Female , Progranulins/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Intercellular Signaling Peptides and Proteins/genetics , Virulence , Mutation/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics
8.
Nature ; 625(7995): 557-565, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38172636

ABSTRACT

Osteoarthritis (OA) is the most common joint disease. Currently there are no effective methods that simultaneously prevent joint degeneration and reduce pain1. Although limited evidence suggests the existence of voltage-gated sodium channels (VGSCs) in chondrocytes2, their expression and function in chondrocytes and in OA remain essentially unknown. Here we identify Nav1.7 as an OA-associated VGSC and demonstrate that human OA chondrocytes express functional Nav1.7 channels, with a density of 0.1 to 0.15 channels per µm2 and 350 to 525 channels per cell. Serial genetic ablation of Nav1.7 in multiple mouse models demonstrates that Nav1.7 expressed in dorsal root ganglia neurons is involved in pain, whereas Nav1.7 in chondrocytes regulates OA progression. Pharmacological blockade of Nav1.7 with selective or clinically used pan-Nav channel blockers significantly ameliorates the progression of structural joint damage, and reduces OA pain behaviour. Mechanistically, Nav1.7 blockers regulate intracellular Ca2+ signalling and the chondrocyte secretome, which in turn affects chondrocyte biology and OA progression. Identification of Nav1.7 as a novel chondrocyte-expressed, OA-associated channel uncovers a dual target for the development of disease-modifying and non-opioid pain relief treatment for OA.


Subject(s)
Chondrocytes , NAV1.7 Voltage-Gated Sodium Channel , Osteoarthritis , Voltage-Gated Sodium Channel Blockers , Animals , Humans , Mice , Calcium/metabolism , Calcium Signaling/drug effects , Chondrocytes/drug effects , Chondrocytes/metabolism , Disease Progression , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , NAV1.7 Voltage-Gated Sodium Channel/deficiency , NAV1.7 Voltage-Gated Sodium Channel/genetics , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Neurons/metabolism , Osteoarthritis/complications , Osteoarthritis/drug therapy , Osteoarthritis/genetics , Osteoarthritis/metabolism , Pain/complications , Pain/drug therapy , Pain/metabolism , Voltage-Gated Sodium Channel Blockers/pharmacology , Voltage-Gated Sodium Channel Blockers/therapeutic use
9.
Cytokine Growth Factor Rev ; 76: 142-159, 2024 04.
Article in English | MEDLINE | ID: mdl-37981505

ABSTRACT

Progranulin (PGRN), encoded by the GRN gene in humans, was originally isolated as a secreted growth factor that implicates in a multitude of processes ranging from regulation of tumorigenesis, inflammation to neural proliferation. Compelling evidence indicating that GRN mutation can lead to various common neuronal degenerative diseases and rare lysosomal storage diseases. These findings have unveiled a critical role for PGRN as a lysosomal protein in maintaining lysosomal function. The phenotypic spectrum of PGRN imbalance has expanded to encompass a broad spectrum of diseases, including autoimmune diseases, metabolic, musculoskeletal and cardiovascular diseases. These diseases collectively referred to as Progranulinopathy- a term encompasses the wide spectrum of disorders influenced by PGRN imbalance. Unlike its known extracellular function as a growth factor-like molecule associated with multiple membrane receptors, PGRN also serves as an intracellular co-chaperone engaged in the folding and traffic of its associated proteins, particularly the lysosomal hydrolases. This chaperone activity is required for PGRN to exert its diverse functions across a broad range of diseases, encompassing both the central nervous system and peripheral systems. In this comprehensive review, we present an update of the emerging role of PGRN in Progranulinopathy, with special focus on elucidating the intricate interplay between PGRN and a diverse array of proteins at various levels, ranging from extracellular fluids and intracellular components, as well as various pathophysiological processes involved. This review seeks to offer a comprehensive grasp of PGRN's diverse functions, aiming to unveil intricate mechanisms behind Progranulinopathy and open doors for future research endeavors.


Subject(s)
Intercellular Signaling Peptides and Proteins , Lysosomal Storage Diseases , Humans , Progranulins/genetics , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Neurons , Molecular Chaperones/metabolism
10.
Biomaterials ; 301: 122289, 2023 10.
Article in English | MEDLINE | ID: mdl-37639975

ABSTRACT

Hydrogels with long-term storage stability, controllable sustained-release properties, and biocompatibility have been garnering attention as carriers for drug/growth factor delivery in tissue engineering applications. Chitosan (CS)/Graphene Oxide (GO)/Hydroxyethyl cellulose (HEC)/ß-glycerol phosphate (ß-GP) hydrogel is capable of forming a 3D gel network at physiological temperature (37 °C), rendering it an excellent candidate for use as an injectable biomaterial. This work focused on an injectable thermo-responsive CS/GO/HEC/ß-GP hydrogel, which was designed to deliver Atsttrin, an engineered derivative of a known chondrogenic and anti-inflammatory growth factor-like molecule progranulin. The combination of the CS/GO/HEC/ß-GP hydrogel and Atsttrin provides a unique biochemical and biomechanical environment to enhance fracture healing. CS/GO/HEC/ß-GP hydrogels with increased amounts of GO exhibited rapid sol-gel transition, higher viscosity, and sustained release of Atsttrin. In addition, these hydrogels exhibited a porous interconnected structure. The combination of Atsttrin and hydrogel successfully promoted chondrogenesis and osteogenesis of bone marrow mesenchymal stem cells (bmMSCs) in vitro. Furthermore, the work also presented in vivo evidence that injection of Atsttrin-loaded CS/GO/HEC/ß-GP hydrogel stimulated diabetic fracture healing by simultaneously inhibiting inflammatory and stimulating cartilage regeneration and endochondral bone formation signaling pathways. Collectively, the developed injectable thermo-responsive CS/GO/HEC/ßG-P hydrogel yielded to be minimally invasive, as well as capable of prolonged and sustained delivery of Atsttrin, for therapeutic application in impaired fracture healing, particularly diabetic fracture healing.


Subject(s)
Chitosan , Diabetes Mellitus , Progranulins , Hydrogels , Fracture Healing
11.
Arthritis Res Ther ; 25(1): 146, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37559125

ABSTRACT

BACKGROUND: Tau protein serves a pro-inflammatory function in neuroinflammation. However, the role of tau in other inflammatory disorders such as rheumatoid arthritis (RA) is less explored. This study is to investigate the role of endogenous tau and the potential mechanisms in the pathogenesis of inflammatory arthritis. METHODS: We established collagen-induced arthritis (CIA) model in wild-type and Tau-/- mice to compare the clinical score and arthritis incidence. Micro-CT analysis was used to evaluate bone erosion of ankle joints. Histological analysis was performed to assess inflammatory cell infiltration, cartilage damage, and osteoclast activity in the ankle joints. Serum levels of pro-inflammatory cytokines were measured by ELISA. The expression levels of macrophage markers were determined by immunohistochemistry staining and quantitative real-time PCR. RESULTS: Tau expression was upregulated in joints under inflammatory condition. Tau deletion in mice exhibited milder inflammation and protected against the progression of CIA, evidenced by reduced serum levels of pro-inflammatory cytokines and attenuated bone loss, inflammatory cell infiltration, cartilage damage, and osteoclast activity in the ankle joints. Furthermore, tau deficiency led to the inhibition of classically activated type 1 (M1) macrophage polarization in the synovium. CONCLUSION: Tau is a previously unrecognized critical regulator in the pathogenesis of RA and may provide a potential therapeutic target for autoimmune and inflammatory joint diseases.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Mice , Animals , tau Proteins/adverse effects , tau Proteins/metabolism , Macrophages/metabolism , Arthritis, Rheumatoid/drug therapy , Cytokines/metabolism
12.
Aesthet Surg J Open Forum ; 5: ojad067, 2023.
Article in English | MEDLINE | ID: mdl-37575888

ABSTRACT

Background: The ability to predict breast implant augmentation complications can significantly inform patient management. A frailty measure, such as the modified 5-item frailty index (mFI-5), is becoming an increasingly established risk factor for adverse postoperative outcomes. The authors hypothesized that the mFI-5 is predictive of 30-day postoperative complications in breast augmentation. Objectives: To investigate if mFI-5 can predict the likelihood and magnitude of 30-day complications resulting from breast augmentations. Methods: A retrospective review study of the National Surgical Quality Improvement Program database for patients who underwent breast implant augmentation without other concurrent procedures, from 2015 to 2019. Age, BMI, number of major comorbidities, American Society of Anesthesiologists (ASA) classifications, smoking status, mFI-5 score, and modified Charlson comorbidity index score were compared as predictors of all-cause 30-day complications and 30-day surgical-site complications using regression analyses. Results: Overall, 2478 patients were analyzed, and among them, 53 patients developed complications (2.14%). mFI-5 score significantly predicted surgical-site infection (SSI) complications (odds ratio [OR] = 4.24, P = .026). Frail patients had a higher occurrence of SSIs than nonfrail patients (P = .049). Multivariable analyses showed ASA class predicted 30-day SSI complications (OR = 5.77, P = .027) and mFI-5 approached, but did not reach full significance in predicting overall 30-day complications (OR = 3.14, P = .085). Conclusions: To date, the impact of frailty on breast implant procedure outcomes has not been studied. Our analysis demonstrates that the mFI-5 is a significant predictor for SSIs in breast implant augmentation surgery and is associated with overall complications. By preoperatively identifying frail patients, the surgical team can better account for postoperative support to minimize the risk of complications.

13.
Elife ; 122023 07 07.
Article in English | MEDLINE | ID: mdl-37417730

ABSTRACT

Diabetes mellitus is a group of chronic diseases characterized by high blood glucose levels. Diabetic patients have a higher risk of sustaining osteoporotic fractures than non-diabetic people. The fracture healing is usually impaired in diabetics, and our understanding of the detrimental effects of hyperglycemia on fracture healing is still inadequate. Metformin is the first-line medicine for type 2 diabetes (T2D). However, its effects on bone in T2D patients remain to be studied. To assess the impacts of metformin on fracture healing, we compared the healing process of closed-wound fixed fracture, non-fixed radial fracture, and femoral drill-hole injury models in the T2D mice with and without metformin treatment. Our results demonstrated that metformin rescued the delayed bone healing and remolding in the T2D mice in all injury models. In vitro analysis indicated that compromised proliferation, osteogenesis, chondrogenesis of the bone marrow stromal cells (BMSCs) derived from the T2D mice were rescued by metformin treatment when compared to WT controls. Furthermore, metformin could effectively rescue the impaired detrimental lineage commitment of BMSCs isolated from the T2D mice in vivo as assessed by subcutaneous ossicle formation of the BMSC implants in recipient T2D mice. Moreover, the Safranin O staining of cartilage formation in the endochondral ossification under hyperglycemic condition significantly increased at day 14 post-fracture in the T2D mice receiving metformin treatment. The chondrocyte transcript factors SOX9 and PGC1α, important to maintain chondrocyte homeostasis, were both significantly upregulated in callus tissue isolated at the fracture site of metformin-treated MKR mice on day 12 post-fracture. Metformin also rescued the chondrocyte disc formation of BMSCs isolated from the T2D mice. Taken together, our study demonstrated that metformin facilitated bone healing, more specifically bone formation and chondrogenesis in T2D mouse models.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Fractures, Bone , Mesenchymal Stem Cells , Metformin , Mice , Animals , Metformin/pharmacology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Bony Callus , Osteogenesis
14.
Elife ; 122023 06 27.
Article in English | MEDLINE | ID: mdl-37366155

ABSTRACT

A subtype of myeloid monocyte mediates the transition from autoimmunity to joint destruction in rheumatoid arthritis.


Subject(s)
Arthritis, Rheumatoid , Humans , Autoimmunity , Osteoclasts
15.
Diabetes Metab Syndr Obes ; 16: 901-912, 2023.
Article in English | MEDLINE | ID: mdl-37021127

ABSTRACT

Objective: This study is aimed to determine the metabolomic effects of the hybrid medicine formula Yi-Qi-Bu-Shen (YQBS) on the neurotransmitter aspects of cognitive impairment in diabetic rats. Methods: In the current study, streptozotocin (STZ) was used to induce diabetic animal model in male Sprague Dawley (SD) rats. After successful establishment of diabetic SD rats' model, age-matched healthy SD rats and diabetic SD rats were treated with low and high doses of YQBS, and then tested for learning memory ability and analyzed for pathological changes. In addition, neurotransmitter metabolic changes in hippocampal subdivisions of rats from different treated groups were analyzed using liquid chromatography-mass spectrometry (LC-MS) technique. Results: YQBS could significantly improve memory-cognitive impairment in diabetic rats as evidenced by the shortening of latency to target and the reduction of latency first entrance to target. Moreover, YQBS also improved the pathological alterations in the hippocampal region in the brains of diabetic rats. Metabolomic analysis showed that the expression of noradrenaline hydrochloride was down-regulated and the expressions of levodopa and 5-hydroxytryptophan were up-regulated in the hippocampal tissues of diabetic rats treated with YQBS. Conclusion: These findings demonstrate that YQBS has protective effects against diabetic cognitive dysfunction, which might act through alteration in tyrosine and tryptophan metabolism.

16.
Cytokine Growth Factor Rev ; 70: 54-66, 2023 04.
Article in English | MEDLINE | ID: mdl-36906448

ABSTRACT

Glucocorticoid (GC) is one of the most prescribed medicines to treat various inflammatory and autoimmune diseases. However, high doses and long-term use of GCs lead to multiple adverse effects, particularly glucocorticoid-induced osteoporosis (GIO). Excessive GCs exert detrimental effects on bone cells, including osteoblasts, osteoclasts, and osteocytes, leading to impaired bone formation and resorption. The actions of exogenous GCs are considered to be strongly cell-type and dose dependent. GC excess inhibits the proliferation and differentiation of osteoblasts and enhances the apoptosis of osteoblasts and osteocytes, eventually contributing to reduced bone formation. Effects of GC excess on osteoclasts mainly include enhanced osteoclastogenesis, increased lifespan and number of mature osteoclasts, and diminished osteoclast apoptosis, which result in increased bone resorption. Furthermore, GCs have an impact on the secretion of bone cells, subsequently disturbing the process of osteoblastogenesis and osteoclastogenesis. This review provides timely update and summary of recent discoveries in the field of GIO, with a particular focus on the effects of exogenous GCs on bone cells and the crosstalk among them under GC excess.


Subject(s)
Glucocorticoids , Osteoporosis , Humans , Glucocorticoids/pharmacology , Osteoclasts , Osteoporosis/chemically induced , Osteoporosis/pathology , Osteoblasts , Osteogenesis
17.
Biosci Trends ; 17(2): 126-135, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36889696

ABSTRACT

Gaucher disease (GD), one of the most common lysosomal storage diseases, is caused by GBA1 mutations resulting in defective glucocerebrosidase (GCase) and consequent accumulation of its substrates ß-glucosylceramide (ß-GlcCer). We reported progranulin (PGRN), a secretary growth factor-like molecule and an intracellular lysosomal protein was a crucial co-factor of GCase. PGRN binds to GCase and recruits Heat Shock Protein 70 (Hsp70) to GCase through its C-terminal Granulin (Grn) E domain, termed as ND7. In addition, both PGRN and ND7 are therapeutic against GD. Herein we found that both PGRN and its derived ND7 still displayed significant protective effects against GD in Hsp70 deficient cells. To delineate the molecular mechanisms underlying PGRN's Hsp70-independent regulation of GD, we performed a biochemical co-purification and mass spectrometry with His-tagged PGRN and His-tagged ND7 in Hsp70 deficient cells, which led to the identification of ERp57, also referred to as protein disulfide isomerase A3 (PDIA3), as a protein that binds to both PGRN and ND7. Within type 2 neuropathic GD patient fibroblasts L444P, bearing GBA1 L444P mutation, deletion of ERp57 largely abolished the therapeutic effects of PGRN and ND7, as manifested by loss of effects on lysosomal storage, GCase activity, and ß-GlcCer accumulation. Additionally, recombinant ERp57 effectively restored the therapeutic effects of PGRN and ND7 in ERp57 knockout L444P fibroblasts. Collectively, this study reports ERp57 as a previously unrecognized binding partner of PGRN that contributes to PGRN regulation of GD.


Subject(s)
Gaucher Disease , Progranulins , Humans , Gaucher Disease/drug therapy , Gaucher Disease/genetics , Gaucher Disease/metabolism , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Glucosylceramidase/therapeutic use , Lysosomes/metabolism , Mutation , Progranulins/genetics , Progranulins/metabolism , Progranulins/therapeutic use , Protein Disulfide-Isomerases/genetics , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/therapeutic use
18.
Proc Natl Acad Sci U S A ; 120(1): e2210442120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36574647

ABSTRACT

Mutations in GBA1, encoding glucocerebrosidase (GCase), cause Gaucher disease (GD) and are also genetic risks in developing Parkinson's disease (PD). Currently, the approved therapies are only effective for directly treating visceral symptoms, but not for primary neuronopathic involvement in GD (nGD). Progranulin (PGRN), encoded by GRN, is a novel modifier of GCase, but the impact of PGRN in GBA1 mutation-associated pathologies in vivo remains unknown. Herein, Grn-/- mice crossed into Gba9v/9v mice, a Gba1 mutant line homozygous for the Gba1 D409V mutation, generating Grn-/-Gba9v/9v (PG9V) mice. PG9V mice exhibited neurobehavioral deficits, early onset, and more severe GD phenotypes compared to Grn-/- and Gba9v/9v mice. Moreover, PG9V mice also displayed PD-like phenotype. Mechanistic analysis revealed that PGRN deficiency caused severe neuroinflammation with microgliosis and astrogliosis, along with impaired autophagy associated with the Gba1 mutation. A PGRN-derived peptide, termed ND7, ameliorated the disease phenotype in GD patient fibroblasts ex vivo. Unexpectedly, ND7 penetrated the blood-brain barrier (BBB) and effectively ameliorated the nGD manifestations and PD pathology in Gba9v/null and PG9V mice. Collectively, this study not only provides the first line of in vivo but also ex vivo evidence demonstrating the crucial role of PGRN in GBA1/Gba1 mutation-related pathologies, as well as a clinically relevant mouse model for mechanistic and potential therapeutics studies for nGD and PD. Importantly, a BBB penetrant PGRN-derived biologic was developed that may provide treatment for rare lysosomal storage diseases and common neurodegenerative disorders, particularly nGD and PD.


Subject(s)
Gaucher Disease , Parkinson Disease , Progranulins , Animals , Mice , Brain/metabolism , Gaucher Disease/genetics , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Lysosomes/metabolism , Mutation , Parkinson Disease/genetics , Progranulins/genetics , Mice, Knockout
19.
Circulation ; 147(9): 728-742, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36562301

ABSTRACT

BACKGROUND: The metalloprotease ADAMTS-7 (a disintegrin and metalloproteinase with thrombospondin type 1 motif 7) is a novel locus associated with human coronary atherosclerosis. ADAMTS-7 deletion protects against atherosclerosis and vascular restenosis in rodents. METHODS: We designed 3 potential vaccines consisting of distinct B cell epitopic peptides derived from ADAMTS-7 and conjugated with the carrier protein KLH (keyhole limpet hemocyanin) as well as aluminum hydroxide as an adjuvant. Arterial ligation or wire injury was used to induce neointima in mice, whereas ApoE-/- and LDLR-/- (LDLR [low-density lipoprotein receptor]) mice fed a high-fat diet were applied to assess atherosclerosis. In addition, coronary stent implantation was performed on vaccine-immunized Bama miniature pigs, followed by optical coherence tomography to evaluate coronary intimal hyperplasia. RESULTS: A vaccine, ATS7vac, was screened out from 3 candidates to effectively inhibit intimal thickening in murine carotid artery ligation models after vaccination. As well, immunization with ATS7vac alleviated neointima formation in murine wire injury models and mitigated atherosclerotic lesions in both hyperlipidemic ApoE-/- and LDLR-/- mice without lowering lipid levels. Preclinically, ATS7vac markedly impeded intimal hyperplasia in swine stented coronary arteries, but without significant immune-related organ injuries. Mechanistically, ATS7vac vaccination produced specific antibodies against ADAMTS-7, which markedly repressed ADAMTS-7-mediated COMP (cartilage oligomeric matrix protein) and TSP-1 (thrombospondin-1) degradation and subsequently inhibited vascular smooth muscle cell migration but promoted re-endothelialization. CONCLUSIONS: ATS7vac is a novel atherosclerosis vaccine that also alleviates in-stent restenosis. The application of ATS7vac would be a complementary therapeutic avenue to the current lipid-lowering strategy for atherosclerotic disease.


Subject(s)
Atherosclerosis , Neointima , Animals , Mice , ADAM Proteins/metabolism , Atherosclerosis/pathology , Disease Models, Animal , Hyperplasia/metabolism , Lipids , Myocytes, Smooth Muscle/metabolism , Neointima/metabolism , Swine , Thrombospondins/metabolism , Vaccines, Subunit/metabolism , ADAMTS7 Protein
20.
J Adv Res ; 41: 63-75, 2022 11.
Article in English | MEDLINE | ID: mdl-36328754

ABSTRACT

INTRODUCTIONS: Excessive mechanical stress is closely associated with cell death in various conditions. Exposure of chondrocytes to excessive mechanical loading leads to a catabolic response as well as exaggerated cell death. Ferroptosis is a recently identified form of cell death during cell aging and degeneration. However, it's potential association with mechanical stress remains to be illustrated. OBJECTIVES: To identify whether excessive mechanical stress can cause ferroptosis. To explore the role of mechanical overloading in chondrocyte ferroptosis. METHODS: Chondrocytes were collected from loading and unloading zones of cartilage in patients with osteoarthritis (OA), and the ferroptosis phenotype was analyzed through transmission electron microscope and microarray. Moreover, the relationship between ferroptosis and OA was analyzed by GPX4-conditional knockout (Col2a1-CreERT: GPX4flox/flox) mice OA model and chondrocytes cultured with high strain mechanical stress. Furthermore, the role of Piezo1 ion channel in chondrocyte ferroptosis and OA development was explored by using its inhibitor (GsMTx4) and agonist (Yoda1). Additionally, chondrocyte was cultured in calcium-free medium with mechanical stress, and ferroptosis phenotype was tested. RESULTS: Human cartilage and mouse chondrocyte experiments revealed that mechanical overloading can induce GPX4-associated ferroptosis. Conditional knockout of GPX4 in cartilage aggravated experimental OA process, while additional treatment with ferroptosis suppressor protein (FSP-1) and coenzyme Q10 (CoQ10) abated OA development in GPX4-CKO mice. In mouse OA model and chondrocyte experiments, inhibition of Piezo1 channel activity increased GPX4 expression, attenuated ferroptosis phenotype and reduced the severity of osteoarthritis. Additionally, high strain mechanical stress induced ferroptosis damage in chondrocyte was largely abolished by blocking calcium influx through calcium-free medium. CONCLUSIONS: Our findings show that mechanical overloading induces ferroptosis through Piezo1 activation and subsequent calcium influx in chondrocytes, which might provide a potential target for OA treatment.


Subject(s)
Cartilage, Articular , Ferroptosis , Osteoarthritis , Animals , Humans , Mice , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Disease Models, Animal , Ion Channels/metabolism , Osteoarthritis/genetics , Osteoarthritis/metabolism , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...