Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.033
Filter
1.
Bioresour Technol ; 406: 131060, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950831

ABSTRACT

This study surveyed the fates of artificial sweeteners in influent, effluent, and sewage sludge (SS) in wastewater treatment plant, and investigated the effects of Micro-Kaolin (Micro-KL) and Nano-Kaolin (Nano-KL) on nitrogen transformation and sucralose (SUC) and acesulfame (ACE) degradation during SS composting. Results showed the cumulative rate of ACE and SUC in SS was ∼76 %. During SS composting, kaolin reduced NH3 emissions by 30.2-45.38 %, and N2O emissions by 38.4-38.9 %, while the Micro-KL and Nano-KL reduced nitrogen losses by 14.8 % and 12.5 %, respectively. Meanwhile, Micro-KL and Nano-KL increased ACE degradation by 76.8 % and 84.2 %, and SUC degradation by 75.3 % and 77.7 %, and significantly shifted microbial community structure. Furthermore, kaolin caused a positive association between Actinobacteria and sweetener degradation. Taken together, kaolin effectively inhibited nitrogen loss and promoted the degradation of ACE and SUC during the SS composting, which is of great significance for the removal of emerging organic pollutants in SS.

2.
Brain Res ; 1842: 149102, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38969084

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Accumulation of ß-amyloid (Aß) in the brain has been recognized as a key factor in the onset and progression of Alzheimer's disease (AD).The accumulation of Aß in the brain catalyzes the production of reactive oxygen species (ROS), which in turn triggers oxidative damage to cellular components such as DNA, lipids, and proteins. In the present study, we investigated the protective effect of Ganoderic acid A (GA.A) against Aß42-induced apoptosis in PC12 cells. Changes in mitochondrial membrane potential indicated that GA.A treats mitochondrial dysfunction by decreasing Aß42 deposition and inhibiting neural protofiber tangle formation. Changes in intracellular Ca2+ and caspase-3 indicated that GA.A reduced mitochondrial damage by Aß42 in PC12 cells, thereby decreasing ROS accumulation and reducing Aß protofiber-induced cytotoxicity. These features suggest that GA.A has great potential as an effective neuroprotective drug in the treatment of Alzheimer's disease.

3.
Biosens Bioelectron ; 262: 116554, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971038

ABSTRACT

Bradyarrhythmia, a life-threatening cardiovascular disease, is an increasing burden for the healthcare system. Currently, surgery, implanted device, and drug are introduced to treat the bradyarrhythmia in clinical practice. However, these conventional therapeutic strategies suffer from the invasive surgery, power supply, or drug side effect, respectively, hence developing the alternative therapeutic strategy is necessarily imperative. Here, a convenient and effective strategy to treat the bradyarrhythmia is proposed using near-infrared-triggered Au nanorod (NR) based plasmonic photothermal effect (PPE). Moreover, electrophysiology of cardiomyocytes is dynamically monitored by the integrated biosensing-regulating system during and after the treatment. Cardiomyocyte-based bradyarrhythmia recover rhythmic for a long time by regulating plasmonic photothermal effect. Furthermore, the regulatory mechanism is qualitatively investigated to verify the significant thermal stimulation in the recovery process. This study establishes a reliable platform for long-term recording and evaluation of mild photothermal therapy for bradyarrhythmia in vitro, offering an efficient and non-invasive strategy for the potential clinical applications.

4.
Acad Radiol ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971660

ABSTRACT

RATIONALE AND OBJECTIVES: We explored the feasibility of using total tumor apparent diffusion coefficient (ttADC) histogram parameters to predict high-risk cytogenetic abnormalities (HRCA) in patients with multiple myeloma (MM) and compared the performance of an image prediction model based on these parameters with that of a combined prediction model based on these parameters and clinical indicators. METHODS: We retrospectively analyzed the parameters of the ttADC histogram based on whole-body diffusion-weighted images(WB-DWI) and clinical indicators in 92 patients with MM. The patients were divided into HRCA and non-HRCA groups according to the results of the fluorescence in situ hybridization. Logistic regression analysis was used to construct the image prediction and combined prediction models. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve was used to evaluate the performance of the models to identify HRCA. The DeLong test was used to compare the AUC differences of each prediction model. RESULTS: Logistic regression analysis results revealed that the ttADC histogram parameter, ttADC entropy < 7.959 (OR: 39.167; 95% confidence interval [CI]: 3.891-394.208; P < 0.05), was an independent risk factor for HRCA. The image prediction model consisted of ttADC entropy and ttADC SD. The combined prediction model included ttADC entropy along with patient clinical indicators such as biological sex and M protein percentage. The AUCs of the image prediction and combined prediction models were 0.739 and 0.811, respectively (P < .05). The image prediction model showed a sensitivity of 73.9% and a specificity of 68.1%. The combined prediction model showed 82.6% sensitivity and 72.5% specificity. CONCLUSIONS: Using ttADC histogram parameters based on WB-DWI images to predict HRCA in patients with MM is feasible, and combining ttADC parameters with clinical indicators can achieve better predictive performance.

5.
Heliyon ; 10(12): e32658, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38948048

ABSTRACT

Deformation control of deep roadways is a major challenge for mine safety production. Taking a deep roadway with a burial depth of 965 m in a mine in North China as the engineering background, on-site investigation found that significant creep deformation occurred in the surrounding rock of the roadway. The original supporting U-shaped steel support failed due to insufficient supporting strength. The rock mass near the roadway experienced a transition from triaxial stress conditions to biaxial and even uniaxial stress states as a result of excavation and unloading, leading to a gradient stress distribution in the surrounding rock. From the perspective of the roadway's deviatoric stress field distribution, we investigated the gradient failure mechanism of the roadway and validated it through theoretical analysis and numerical simulations. The study found that the ratio of horizontal principal stress and vertical principal stress determines the distribution shape of the surrounding rock deviatoric stress field. The gradient distribution of the stress field in the roadway will cause time-related deformation of the roadway, which will lead to large deformation and failure of the roadway. Based on this, the control mechanism of roadway gradient failure was studied, and then a combined support technology of CFST supports with high bearing capacity was proposed.

6.
Cell Discov ; 10(1): 72, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956027

ABSTRACT

Pluripotent stem cells have the potential to generate embryo models that can recapitulate developmental processes in vitro. Large animals such as pigs may also benefit from stem-cell-based embryo models for improving breeding. Here, we report the generation of blastoids from porcine embryonic stem cells (pESCs). We first develop a culture medium 4FIXY to derive pESCs. We develop a 3D two-step differentiation strategy to generate porcine blastoids from the pESCs. The resulting blastoids exhibit similar morphology, size, cell lineage composition, and single-cell transcriptome characteristics to blastocysts. These porcine blastoids survive and expand for more than two weeks in vitro under two different culture conditions. Large animal blastoids such as those derived from pESCs may enable in vitro modeling of early embryogenesis and improve livestock species' breeding practices.

7.
Sci Rep ; 14(1): 15232, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956281

ABSTRACT

Intravenous immunoglobulin (IVIG) resistance in Kawasaki disease (KD) was associated with coronary artery lesions. Neutrophil percentage-to-albumin ratio (NPAR) is an index of mortality in several inflammatory diseases. This study focused on the association of NPAR with IVIG- resistance in KD. Clinical and laboratory data of 438 children with KD before IVIG treatment were retrospectively analyzed. Notably, high NPAR was associated with older age, high WBC, NP, ALT, total bilirubin and CRP, as well as with high the incidence of IVIG-resistance, and with low hemoglobin (Hb), PLT, ALB and sodium levels. NPAR (OR: 2.366, 95% CI: 1.46-3.897, p = 0.001) and Hb (OR: 0.967, 95% CI: 0.944-0.989, p = 0.004) were independent risk factors for IVIG-resistance. NPAR showed linear relation with IVIG-resistance (p for nonlinear = 0.711) and the nonlinear correlation was found between IVIG-resistance and Hb (p for nonlinear = 0.002). The predictive performance of NPAR was superior to Beijing model (z = 2.193, p = 0.028), and not inferior to Chongqing model (z = 0.983, p = 0.326) and the combination of NPAR and Hb (z = 1.912, p = 0.056). These findings revealed that NPAR is a reliable predictor of IVIG-resistance.


Subject(s)
Biomarkers , Drug Resistance , Immunoglobulins, Intravenous , Mucocutaneous Lymph Node Syndrome , Neutrophils , Humans , Mucocutaneous Lymph Node Syndrome/blood , Mucocutaneous Lymph Node Syndrome/drug therapy , Immunoglobulins, Intravenous/therapeutic use , Male , Female , Child, Preschool , Infant , Biomarkers/blood , Retrospective Studies , Child , Albumins/metabolism
8.
PeerJ ; 12: e17662, 2024.
Article in English | MEDLINE | ID: mdl-38993979

ABSTRACT

Background: miRNAs are small, conserved, single-stranded non-coding RNA that are typically transported by exosomes for their functional roles. The therapeutic potential of exosomal miRNAs has been explored in various diseases including breast cancer, pancreatic cancer, cholangiocarcinoma, skin diseases, Alzheimer's disease, stroke, and glioma. Pathophysiological processes such as cellular inflammation, apoptosis, necrosis, immune dysfunction, and oxidative stress are closely associated with miRNAs. Internal and external factors such as tissue ischemia, hypoxia, pathogen infection, and endotoxin exposure can trigger these reactions and are linked to miRNAs. Paraquat-induced fibrosis is a protracted process that may not manifest immediately after injury but develops during bodily recovery, providing insights into potential miRNA intervention treatments. Rationale: These findings could potentially be applied for further pharmaceutical research and clinical therapy of paraquat-induced pulmonary fibrosis, and are likely to be of great interest to clinicians involved in lung fibrosis research. Methodology: Through a literature review, we identified an association between miR-15a-5p and miR-152-3p and their involvement in the Wnt signaling pathway. This allowed us to deduce the molecular mechanisms underlying regulatory interactions involved in paraquat-induced lung fibrosis. Results: miR-15a-5p and miR-152-3p play roles in body repair processes, and pulmonary fibrosis can be considered a form of reparative response by the body. Although the initial purpose of fibrotic repair is to restore normal body function, excessive tissue fibrosis, unlike scar formation following external skin trauma, can significantly and adversely affect the body. Modulating the Wnt/ß-catenin signaling pathway is beneficial in alleviating tissue fibrosis in various diseases. Conclusions: In this study, we delineate the association between miR-15a-5p and miR-152-3p and the Wnt/ß-catenin signaling pathway, presenting a novel concept for addressing paraquat-induced pulmonary fibrosis.


Subject(s)
MicroRNAs , Paraquat , Pulmonary Fibrosis , Wnt Signaling Pathway , MicroRNAs/metabolism , MicroRNAs/genetics , Wnt Signaling Pathway/drug effects , Paraquat/toxicity , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology , Humans , Animals , beta Catenin/metabolism , beta Catenin/genetics
9.
Mayo Clin Proc ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39001774

ABSTRACT

OBJECTIVE: To investigate the causal effect of protein intake on hypertension and the related mediating pathways. PATIENTS AND METHODS: Using genome-wide association study summary statistics of European ancestry, we applied univariable and multivariable Mendelian randomization to estimate the bidirectional associations of relative protein intake and related metabolomic signatures with hypertension (FinnGen: Ncase=42,857/Ncontrol=162,837; UK Biobank: Ncase=77,723/Ncontrol=330,366) and blood pressure (International Consortium of Blood Pressure: N=757,601) and two-step Mendelian randomization to assess the mediating roles of 40 cardiometabolic factors therein. Mendelian randomization estimates of hypertension from FinnGen and UK Biobank were meta-analyzed without heterogeneity. We performed the study from May 15, 2023, to September 15, 2023. RESULTS: Each 1-SD higher relative protein intake was causally associated with 69% (odds ratio, 0.31; 95% CI, 0.11 to 0.89) lower hypertension risk independent of the effects of other macronutrients, and was the only macronutrient associated with 2.21 (95% CI, 0.52 to 3.91) mm Hg lower pulse pressure, in a unidirectional manner. Higher plant protein-related metabolomic signature (glycine) was associated with lower hypertension risk and pulse pressure, whereas higher animal protein-related metabolomic signatures (leucine, isoleucine, valine, and isovalerylcarnitine [only systolic blood pressure]) were associated with higher hypertension risk, pulse pressure, and systolic blood pressure. The effect of relative protein intake on hypertension was causally mediated by frailty index (mediation proportion, 40.28%), monounsaturated fatty acids (13.81%), saturated fatty acids (11.39%), grip strength (5.34%), standing height (3.99%), and sitting height (3.61%). CONCLUSION: Higher relative protein intake causally reduces the risk of hypertension, partly mediated by physical fitness and circulating fatty acids.

10.
Biochem Pharmacol ; : 116419, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38996929

ABSTRACT

N6-methyladenosine (m6A) serves as the most abundant posttranscription modification. However, the role of m6A in tumorigenesis and chemotherapeutic drugs sensitivity remains largely unclear. Present research focuses on the potential function of the m6A writer KIAA1429 in tumor development and sorafenib sensitivity in liver cancer. We found that the level of KIAA1429 was significantly elevated in liver cancer tissues and cells and was closely associated with poorer prognosis. Functionally, KIAA1429 promoted the proliferation and Warburg effect of liver cancer cells in vitro and in vivo. RNA-seq and MeRIP-seq analysis revealed the glycolysis was one of the most affected pathways by KIAA1429, and m6A-modified HK1 was the most likely targeted gene to regulate the Warburg effect. KIAA1429 depletion decreased Warburg effect and increased sorafenib sensitivity in liver cancer. Mechanistically, KIAA1429 could affect the m6A level of HK1 mRNA through directly binding with it. Moreover, KIAA1429 cooperated with the m6A reader HuR to enhance HK1 mRNA stability, thereby upregulating its expression. These findings demonstrated that KIAA1429/HK1 axis decreases the sensitivity of liver cancer cells to sorafenib by regulating the Warburg effect, which may provide a novel therapeutic target for liver cancer treatment.

11.
World J Gastrointest Surg ; 16(6): 1734-1741, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38983325

ABSTRACT

BACKGROUND: Conventional five-port laparoscopic surgery, the current standard treatment for colorectal carcinoma (CRC), has many disadvantages. AIM: To assess the influence of reduced-port laparoscopic surgery (RPLS) on perioperative indicators, postoperative recovery, and serum inflammation indexes in patients with CRC. METHODS: The study included 115 patients with CRC admitted between December 2019 and May 2023, 52 of whom underwent conventional five-port laparoscopic surgery (control group) and 63 of whom underwent RPLS (research group). Comparative analyses were performed on the following dimensions: Perioperative indicators [operation time (OT), incision length, intraoperative blood loss (IBL), and rate of conversion to laparotomy], postoperative recovery (first postoperative exhaust, bowel movement and oral food intake, and bowel sound recovery time), serum inflammation indexes [high-sensitivity C-reactive protein (hs-CRP), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6)], postoperative complications (anastomotic leakage, incisional infection, bleeding, ileus), and therapeutic efficacy. RESULTS: The two groups had comparable OTs and IBL volumes. However, the research group had a smaller incision length; lower rates of conversion to laparotomy and postoperative total complication; and shorter time of first postoperative exhaust, bowel movement, oral food intake, and bowel sound recovery; all of which were significant. Furthermore, hs-CRP, IL-6, and TNF-α levels in the research group were significantly lower than the baseline and those of the control group, and the total effective rate was higher. CONCLUSION: RPLS exhibited significant therapeutic efficacy in CRC, resulting in a shorter incision length and a lower conversion rate to laparotomy, while also promoting postoperative recovery, effectively inhibiting the inflammatory response, and reducing the risk of postoperative complications.

12.
World J Gastrointest Surg ; 16(6): 1871-1882, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38983345

ABSTRACT

BACKGROUND: The development of laparoscopic technology has provided a new choice for surgery of gastric cancer (GC), but the advantages and disadvantages of laparoscopic total gastrectomy (LTG) and laparoscopic-assisted total gastrectomy (LATG) in treatment effect and safety are still controversial. The purpose of this study is to compare the efficacy and safety of the two methods in the treatment of GC, and to provide a basis for clinical decision-making. AIM: To compare the efficacy of totally LTG (TLTG) and LATG in the context of radical gastrectomy for GC. Additionally, we investigated the safety and feasibility of the total laparoscopic esophagojejunostomy technique. METHODS: Literature on comparative studies of the above two surgical methods for GC (TLTG group and LATG group) published before September 2022 were searched in the PubMed, Web of Science, Wanfang Database, CNKI, and other Chinese and English databases. In addition, the following search keywords were used: Gastric cancer, total gastrectomy, total laparoscopy, laparoscopy-assisted, esophagojejunal anastomosis, gastric/stomach cancer, total gastrectomy, totally/completely laparoscopic, laparoscopic assisted/laparoscopy assisted/laparoscopically assisted, and esophagojejunostomy/esophagojejunal anastomosis. Review Manager 5.3 software was used for the meta-analysis after two researchers independently screened the literature, extracted the data, and evaluated the risk of bias in the included studies. RESULTS: After layer-by-layer screening, 258 pieces of literature were recovered, and 11 of those pieces were eventually included. This resulted in a sample size of 2421 instances, with 1115 cases falling into the TLTG group and 1306 cases into the LATG group. Age or sex differences between the two groups were not statistically significant, according to the meta-analysis, however the average body mass index of the TLTG group was considerably higher than that of the LATG group (P = 0.01). Compared with those in the LATG group, the incision length in the TLTG group was significantly shorter (P < 0.001), the amount of intraoperative blood loss was significantly lower (P = 0.003), the number of lymph nodes removed was significantly greater (P = 0.04), and the time of first postoperative feeding and postoperative hospitalization were also significantly shorter (P = 0.03 and 0.02, respectively). There were no significant differences in tumor size, length of proximal incisal margin, total operation time, anastomotic time, postoperative pain score, postoperative anal exhaust time, postoperative anastomosis-related complications (including anastomotic fistula, anastomotic stenosis, and anastomotic hemorrhage), or overall postoperative complication rate (P > 0.05). CONCLUSION: TLTG and esophagojejunostomy are safe and feasible. Compared with LATG, TLTG has the advantages of less trauma, less bleeding, easier access to lymph nodes, and faster postoperative recovery, and TLTG is also suitable for obese patients.

13.
World J Gastrointest Surg ; 16(6): 1637-1646, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38983358

ABSTRACT

BACKGROUND: Early gastric cancer (EGC) is a common malignant tumor of the digestive system, and its lymph node metastasis and survival prognosis have been concerning. By retrospectively analyzing the clinical data of EGC patients, we can better understand the status of lymph node metastasis and its impact on survival and prognosis. AIM: To evaluate the prognosis of EGC patients and the factors that affect lymph node metastasis. METHODS: The clinicopathological data of 1011 patients with EGC admitted to our hospital between January 2015 and December 2023 were collected in a retrospective cohort study. There were 561 males and 450 females. The mean age was 58 ± 11 years. The patient underwent radical gastrectomy. The status of lymph node metastasis in each group was determined according to the pathological examination results of surgical specimens. The outcomes were as follows: (1) Lymph node metastasis in EGC patients; (2) Analysis of influencing factors of lymph node metastasis in EGC; and (3) Analysis of prognostic factors in patients with EGC. Normally distributed measurement data are expressed as mean ± SD, and a t test was used for comparisons between groups. The data are expressed as absolute numbers or percentages, and the chi-square test was used for comparisons between groups. Rank data were compared using a nonparametric rank sum test. A log-rank test and a logistic regression model were used for univariate analysis. A logistic stepwise regression model and a Cox stepwise regression model were used for multivariate analysis. The Kaplan-Meier method was used to calculate the survival rate and construct survival curves. A log-rank test was used for survival analysis. RESULTS: Analysis of influencing factors of lymph node metastasis in EGC. The results of the multifactor analysis showed that tumor length and diameter, tumor site, tumor invasion depth, vascular thrombus, and tumor differentiation degree were independent influencing factors for lymph node metastasis in patients with EGC (odds ratios = 1.80, 1.49, 2.65, 5.76, and 0.60; 95%CI: 1.29-2.50, 1.11-2.00, 1.81-3.88, 3.87-8.59, and 0.48-0.76, respectively; P < 0.05). Analysis of prognostic factors in patients with EGC. All 1011 patients with EGC were followed up for 43 (0-13) months. The 3-year overall survival rate was 97.32%. Multivariate analysis revealed that age > 60 years and lymph node metastasis were independent risk factors for prognosis in patients with EGC (hazard ratio = 9.50, 2.20; 95%CI: 3.31-27.29, 1.00-4.87; P < 0.05). Further analysis revealed that the 3-year overall survival rates of gastric cancer patients aged > 60 years and ≤ 60 years were 99.37% and 94.66%, respectively, and the difference was statistically significant (P < 0.05). The 3-year overall survival rates of patients with and without lymph node metastasis were 95.42% and 97.92%, respectively, and the difference was statistically significant (P < 0.05). CONCLUSION: The lymph node metastasis rate of EGC patients was 23.64%. Tumor length, tumor site, tumor infiltration depth, vascular cancer thrombin, and tumor differentiation degree were found to be independent factors affecting lymph node metastasis in EGC patients. Age > 60 years and lymph node metastasis are independent risk factors for EGC prognosis.

14.
Cardiovasc Diabetol ; 23(1): 237, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970008

ABSTRACT

BACKGROUND: Atherogenic index of plasma (AIP) is a non-traditional lipid parameter that can reflect the burden of atherosclerosis. A lipid profile resembling atherosclerosis emerged during pregnancy. Although lipid metabolism is pivotal in diabetes pathogenesis, there is no evidence linking AIP to gestational diabetes mellitus (GDM). Therefore, our objective was to explore the relationship between AIP and GDM and assess AIP's predictive capability for GDM. METHODS: This was a secondary analysis based on data from a prospective cohort study in Korea involving 585 single pregnant women. AIP was calculated as log10 (TG/HDL). We examined the relationship between AIP and GDM using logistic regression models, curve fitting, sensitivity analyses, and subgroup analyses. Receiver operating characteristic (ROC) analysis was also used to determine the ability of AIP to predict GDM. RESULTS: The average age of the participants was 32.06 ± 3.76 years. The AIP was 0.24 ± 0.20 on average. The GDM incidence was 6.15%. After adjustment for potentially confounding variables, AIP showed a positive linear relationship with GDM (P for non-linearity: 0.801, OR 1.58, 95% CI 1.27-1.97). The robustness of the connection between AIP and GDM was demonstrated by sensitivity analyses and subgroup analyses. An area under the ROC curve of 0.7879 (95% CI 0.7087-0.8671) indicates that AIP is an excellent predictor of GDM. With a specificity of 75.41% and sensitivity of 72.22%, the ideal AIP cut-off value for identifying GDM was 0.3557. CONCLUSIONS: This study revealed that the AIP at 10-14 weeks of gestation was independently and positively correlated with GDM risk. AIP could serve as an early screening and monitoring tool for pregnant women at high risk of GDM, thereby optimizing GDM prevention strategies. TRIAL REGISTRATION: ClinicalTrials.gov registration no. NCT02276144.


Subject(s)
Atherosclerosis , Biomarkers , Diabetes, Gestational , Predictive Value of Tests , Humans , Diabetes, Gestational/blood , Diabetes, Gestational/diagnosis , Diabetes, Gestational/epidemiology , Female , Pregnancy , Prospective Studies , Adult , Republic of Korea/epidemiology , Risk Factors , Biomarkers/blood , Atherosclerosis/blood , Atherosclerosis/epidemiology , Atherosclerosis/diagnosis , Risk Assessment , Incidence , Triglycerides/blood
15.
Huan Jing Ke Xue ; 45(7): 4014-4022, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022949

ABSTRACT

The influences of landscape pattern on water quality are dependent on spatial-temporal scales. However, the effects of landscape composition, landscape configuration, and landscape slope metrics on seasonal water quality at different spatial scales remain unclear. Based on the total nitrogen, total phosphorus, nitrate-N, and ammonium-N data from 26 sampling sites in the Qingshan Lake watershed, this study coupled landscape pattern analysis, redundancy analysis, and partial redundancy analysis to quantify the spatiotemporal scale effects of landscape pattern on riverine nitrogen (N) and phosphorus (P) concentrations. The results showed that: ① The explanatory ability of landscape pattern at the sub-watershed scale on riverine N and P concentrations was 6.8%-8.4% higher than that at the buffer scale, and this effect was more obvious in the dry season. ② At the sub-watershed scale, the percentage of forestland and the interspersion and juxtaposition degree of residential land had a greater influence on riverine N and P concentrations. At the buffer scale, the slope of farmland and residential land and the aggregation degree of forestland patches were the key factors affecting riverine N and P concentrations. ③ The contribution rate of landscape configuration to riverine N and P concentration variations (20.1%-36.5%) was the highest. The sensitivity of the effect of landscape configuration on riverine N and P concentrations to seasonal changes was the highest, and the effect of landscape slope on riverine N and P concentrations had the highest sensitivity to spatial scale changes. Therefore, landscape pattern-regulated non-point source pollution should be considered from a multi-scale perspective. These results can provide scientific basis for the formulation of landscape pattern optimization measures aiming at non-point source pollution control.

16.
Food Funct ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023128

ABSTRACT

Miao sour soup (MSS), a daily fermented food in Guizhou, China, is rich in microorganisms with various beneficial activities, including anti-inflammatory and antioxidant activities. However, the therapeutic effects of MSS on IBD remain unexplored. This study aimed to investigate the protective effect of MSS against colitis in mice. In this study, we examined the microbial community structure of MSS by metagenomic sequencing and also explored the protective effect of MSS on DSS-induced colitis in mice. We investigated the effects of MSS on intestinal inflammatory response and intestinal barrier function in mice. Finally, the changes in intestinal flora were analyzed based on the 16S rRNA gene sequencing results. Significantly, the experiment result shows that MSS ameliorated the severity of DSS-induced disease in mice by mitigating colitis-associated weight loss, reducing the disease activity index of IBD, alleviating colonic hemorrhagic lesions, increasing colon length, and improving colonic tissue damage. Moreover, MSS preserved intestinal barrier integrity and restored intestinal epithelial function in mice. Additionally, MSS modulated the structure and composition of the intestinal flora. Furthermore, MSS downregulated pro-inflammatory factors and attenuated the NF-κB p65 expression, thereby mitigating the inflammatory response. These findings highlight the protective effect of MSS against DSS-induced colitis, providing substantial scientific support for potential applications of MSS as a functional food.

17.
Cell Death Dis ; 15(7): 504, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009589

ABSTRACT

Abnormal epigenetic modifications are involved in the regulation of Warburg effect in tumor cells. Protein arginine methyltransferases (PRMTs) mediate arginine methylation and have critical functions in cellular responses. PRMTs are deregulated in a variety of cancers, but their precise roles in Warburg effect in cancer is largely unknown. Experiments from the current study showed that PRMT1 was highly expressed under conditions of glucose sufficiency. PRMT1 induced an increase in the PKM2/PKM1 ratio through upregulation of PTBP1, in turn, promoting aerobic glycolysis in non-small cell lung cancer (NSCLC). The PRMT1 level in p53-deficient and p53-mutated NSCLC remained relatively unchanged while the expression was reduced in p53 wild-type NSCLC under conditions of glucose insufficiency. Notably, p53 activation under glucose-deficient conditions could suppress USP7 and further accelerate the polyubiquitin-dependent degradation of PRMT1. Melatonin, a hormone that inhibits glucose intake, markedly suppressed cell proliferation of p53 wild-type NSCLC, while a combination of melatonin and the USP7 inhibitor P5091 enhanced the anticancer activity in p53-deficient NSCLC. Our collective findings support a role of PRMT1 in the regulation of Warburg effect in NSCLC. Moreover, combination treatment with melatonin and the USP7 inhibitor showed good efficacy, providing a rationale for the development of PRMT1-based therapy to improve p53-deficient NSCLC outcomes.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Membrane Proteins , Protein-Arginine N-Methyltransferases , Thyroid Hormone-Binding Proteins , Thyroid Hormones , Tumor Suppressor Protein p53 , Warburg Effect, Oncologic , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Warburg Effect, Oncologic/drug effects , Tumor Suppressor Protein p53/metabolism , Thyroid Hormones/metabolism , Cell Line, Tumor , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cell Proliferation/drug effects , Carrier Proteins/metabolism , Carrier Proteins/genetics , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitin-Specific Peptidase 7/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Animals , Glycolysis/drug effects , Mice, Nude , Glucose/metabolism , Mice , Gene Expression Regulation, Neoplastic , A549 Cells , Polypyrimidine Tract-Binding Protein
18.
Phys Rev E ; 109(6-1): 064201, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39021016

ABSTRACT

It is known that two-dimensional two-component fundamental solitons of the semivortex (SV) type, with vorticities (s_{+},s_{-})=(0,1) in their components, are stable ground states (GSs) in the spin-orbit-coupled (SOC) binary Bose-Einstein condensate with the contact self-attraction acting in both components, in spite of the possibility of the critical collapse in the system. However, excited states (ESs) of the SV solitons, with the vorticity set (s_{+},s_{-})=(S_{+},S_{+}+1) and S_{+}=1,2,3,..., are unstable in the same system. We construct ESs of SV solitons in the SOC system with opposite signs of the self-interaction in the two components. The main finding is stability of the ES-SV solitons, with the extra vorticity (at least) up to S_{+}=6. The threshold value of the norm for the onset of the critical collapse, N_{thr}, in these excited states is higher than the commonly known critical value, N_{c}≈5.85, associated with the single-component Townes solitons, N_{thr} increasing with the growth of S_{+}. A velocity interval for stable motion of the GS-SV solitons is found too. The results suggest a solution for the challenging problem of the creation of stable vortex solitons with high topological charges.

19.
ACS Nano ; 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39033511

ABSTRACT

The development of tin-lead alloyed halide perovskite nanocrystals (PNCs) is highly desirable for creating ultrastable, eco-friendly optoelectronic applications. However, the current incorporation of tin into the lead matrix results in severe photoluminescence (PL) quenching. To date, the precise atomic-scale structural origins of this quenching are still unknown, representing a significant barrier to fully realizing the potential of these materials. Here, we uncover the distinctive defect-related microstructures responsible for PL quenching using atomic-resolution scanning transmission electron microscopy and theoretical calculations. Our findings reveal an increase in point defects and Ruddlesden-Popper (RP) planar faults with increasing tin content. Notably, the point defects include a spectrum of vacancies and previously overlooked antisite defects with bromide vacancies and cation antisite defects emerging as the primary contributors to deep-level defects. Furthermore, the RP planar faults exhibit not only the typical rock-salt stacking pattern found in pure Pb-based PNCs but also previously undocumented microstructures rich in bromide vacancies and deep-level cation antisite defects. Direct strain imaging uncovers severe lattice distortion and significant inhomogeneous strain distributions caused by point defect aggregation, potentially breaking the local force balance and driving RP planar fault formation via lattice slippage. Our work illuminates the nature and evolution of defects in tin-lead alloyed halide perovskite nanocrystals and their profound impact on PL quenching, providing insights that support future material strategies in the development of less toxic tin-lead alloyed perovskite nanocrystals.

20.
Cell Death Differ ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009653

ABSTRACT

Although deubiquitinases (DUBs) have been well described in liver tumorigenesis, their potential roles and mechanisms have not been fully understood. In this study, we identified ubiquitin-specific protease 1 (USP1) as an oncogene with essential roles during hepatocellular carcinoma (HCC) progression. USP1, with elevated expression levels and clinical significance, was identified as a hub DUB for HCC in multiple bioinformatics datasets. Functionally, USP1 overexpression significantly enhanced the malignant behaviors in HCC cell lines and spheroids in vitro, as well as the zebrafish model and the xenograft model in vivo. In contrast, genetic ablation or pharmacological inhibition of USP1 dramatically impaired the phenotypes of HCC cells. Specifically, ectopic USP1 enhanced aggressive properties and metabolic reprogramming of HCC cells by modulating mitochondrial dynamics. Mechanistically, USP1 induced mitochondrial fission by enhancing phosphorylation of Drp1 at Ser616 via deubiquitination and stabilization of cyclin-dependent kinase 5 (CDK5), which could be degraded by the E3 ligase NEDD4L. The USP1/CDK5 modulatory axis was activated in HCC tissues, which was correlated with poor prognosis of HCC patients. Furthermore, Prasugrel was identified as a candidate USP1 inhibitor for targeting the phenotypes of HCC by an extensive computational study combined with experimental validations. Taken together, USP1 induced malignant phenotypes and metabolic reprogramming by modulating mitochondrial dynamics in a CDK5-mediated Drp1 phosphorylation manner, thereby deteriorating HCC progression.

SELECTION OF CITATIONS
SEARCH DETAIL