Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 427
1.
BMC Psychiatry ; 24(1): 382, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773479

BACKGROUND: Evidence regarding the relationship between fasting blood glucose (FBG) and suicide attempts (SA) in patients with major depressive disorder (MDD) was limited. Therefore, the objective of this research was to investigate whether FBG was independently related to SA in Chinese patients with first-episode drug-naïve (FEDN) MDD after adjusting for other covariates. METHODS: The present study was a cross-sectional study. A total of 1718 participants (average age: 34.9 ± 12.4 years, 65.8% females) with FEDN MDD were involved in a hospital in China from September 2016 to December 2018. Multiple logistic regression analysis and smooth curve fitting were used to estimate the association between FBG and the risk of SA. The threshold effect was examined by the two-piecewise linear regression model. Interaction and stratified analyses were conducted according to sex, education, marital status, comorbid anxiety, and psychotic symptoms. RESULTS: The prevalence of SA in patients with FEDN MDD was 20.1%. The result of fully adjusted binary logistic regression showed FBG was positively associated with the risk of SA (odds ratio (OR) = 1.62, 95% CI: 1.13-2.32). Smoothing plots also revealed a nonlinear relationship between FBG and SA, with the inflection point of FBG being 5.34 mmol/l. The effect sizes and the confidence intervals on the left and right sides of the inflection point were 0.53 (0.32-0.88, P = 0.014) and 1.48 (1.04-2.10, P = 0.030), respectively. CONCLUSIONS: A U-shaped relationship between FBG and SA in FEDN MDD patients was found, with the lowest risk of SA at a FBG of 5.34 mmol/l, indicating that both the lower and higher FBG levels may lead to an increased risk of SA.


Blood Glucose , Depressive Disorder, Major , Suicide, Attempted , Humans , Female , Male , Depressive Disorder, Major/blood , Depressive Disorder, Major/epidemiology , Adult , Cross-Sectional Studies , Suicide, Attempted/statistics & numerical data , Suicide, Attempted/psychology , China/epidemiology , Blood Glucose/analysis , Middle Aged , Fasting/blood , Young Adult , Risk Factors , Prevalence , East Asian People
2.
FASEB J ; 38(9): e23645, 2024 May 15.
Article En | MEDLINE | ID: mdl-38703043

Inflammation assumes a pivotal role in the aortic remodeling of aortic dissection (AD). Asiatic acid (AA), a triterpene compound, is recognized for its strong anti-inflammatory properties. Yet, its effects on ß-aminopropionitrile (BAPN)-triggered AD have not been clearly established. The objective is to determine whether AA attenuates adverse aortic remodeling in BAPN-induced AD and clarify potential molecular mechanisms. In vitro studies, RAW264.7 cells pretreated with AA were challenged with lipopolysaccharide (LPS), and then the vascular smooth muscle cells (VSMCs)-macrophage coculture system was established to explore intercellular interactions. To induce AD, male C57BL/6J mice at three weeks of age were administered BAPN at a dosage of 1 g/kg/d for four weeks. To decipher the mechanism underlying the effects of AA, RNA sequencing analysis was conducted, with subsequent validation of these pathways through cellular experiments. AA exhibited significant suppression of M1 macrophage polarization. In the cell coculture system, AA facilitated the transformation of VSMCs into a contractile phenotype. In the mouse model of AD, AA strikingly prevented the BAPN-induced increases in inflammation cell infiltration and extracellular matrix degradation. Mechanistically, RNA sequencing analysis revealed a substantial upregulation of CX3CL1 expression in BAPN group but downregulation in AA-treated group. Additionally, it was observed that the upregulation of CX3CL1 negated the beneficial impact of AA on the polarization of macrophages and the phenotypic transformation of VSMCs. Crucially, our findings revealed that AA is capable of downregulating CX3CL1 expression, accomplishing this by obstructing the nuclear translocation of NF-κB p65. The findings indicate that AA holds promise as a prospective treatment for adverse aortic remodeling by suppressing the activity of NF-κB p65/CX3CL1 signaling pathway.


Aortic Dissection , Chemokine CX3CL1 , Mice, Inbred C57BL , Pentacyclic Triterpenes , Signal Transduction , Transcription Factor RelA , Vascular Remodeling , Animals , Mice , Male , Aortic Dissection/metabolism , Aortic Dissection/pathology , Aortic Dissection/drug therapy , Pentacyclic Triterpenes/pharmacology , Vascular Remodeling/drug effects , RAW 264.7 Cells , Signal Transduction/drug effects , Transcription Factor RelA/metabolism , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Aminopropionitrile/pharmacology , Macrophages/metabolism , Macrophages/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects
3.
Heliyon ; 10(9): e29800, 2024 May 15.
Article En | MEDLINE | ID: mdl-38698989

When contributors' goals and legislative and political structures vary, as they often do in the case of worldwide fish populations, it becomes more challenging to implement ethical fishing tactics. Canada, the United States, and Mexico all fish from Pacific regions anchovies in the California Modern. Climate-driven numbers and geographic dynamics may pollute the waters of collaborative aquaculture and lead to overloading. This research expands upon prior works using a game theoretic model of Tran's boundary sardine fisheries in different climatic conditions to account for ecological links. More significant economic advantages accrue from cooperation fishing tactics that consider the mackerel's role as feed for other species in the natural system, as opposed to plans that merely take note of the worth of mackerel harvests to a particular fishing nation. The maximum environmental benefit is obtained at a fishery rate for sardines barely less than the sardine Fishery Management Safe Yield. Ecological-based control of fisheries can increase sustainability and profits, but only if investors and policy makers consider the ecology in business-applicable models. Understanding and adapting to the fast alterations in habitat distributions due to climate change and designing ways to achieve viable and lucrative fishery amidst altering environments will necessitate an increased emphasis on ecosystem-based governance.

4.
Talanta ; 276: 126282, 2024 May 23.
Article En | MEDLINE | ID: mdl-38788382

Herein, spore@Cu-trimesic acid (TMA) biocomposites were prepared by self-assembling Cu-based metal-organic framework on the surface of Bacillus velezensis spores. The laccase-like activity of spore@Cu-TMA biocomposites was enhanced by 14.9 times compared with that of pure spores due to the reaction of Cu2+ ions with laccase on the spore surface and the microporous structure of Cu-TMA shell promoting material transport and increasing substrate accessibility. Spore@Cu-TMA rapidly oxidized and transformed 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) into ABTS●+ without using H2O2. Under optimum conditions, the ABTS●+ could be stored for 21 days at 4 °C and 7 days at 37 °C without the addition of any stabilizers, allowing for the large-scale preparation and long-term storage of ABTS●+. The ultrarobust stable ABTS●+ obtained with the use of Cu-TMA could effectively reduce the "back reaction" by preventing the leaching of the metabolites released by the spores. On the basis of these findings, a rapid, low-cost, and eco-friendly colorimetric platform was successfully developed for the detection of antioxidant capacity. Determination of antioxidant capacity for several antioxidants such as caffeic acid, glutathione, and Trolox revealed their corresponding limits of detection at 4.83, 8.89, and 7.39 nM, respectively, with linear ranges of 0.01-130, 0.01-140, and 0.01-180 µM, respectively. This study provides a facile way to prepare ultrarobust stable ABTS●+ and presents a potential application of spore@Cu-TMA biocomposites in food detection and bioanalysis.

5.
Diabetes Obes Metab ; 2024 May 15.
Article En | MEDLINE | ID: mdl-38747214

Obesity has become a major global problem that significantly confers an increased risk of developing life-threatening complications, including type 2 diabetes mellitus, fatty liver disease and cardiovascular diseases. Protein arginine methyltransferases (PRMTs) are enzymes that catalyse the methylation of target proteins. They are ubiquitous in eukaryotes and regulate transcription, splicing, cell metabolism and RNA biology. As a key, epigenetically modified enzyme, protein arginine methyltransferase 1 (PRMT1) is involved in obesity-related metabolic processes, such as lipid metabolism, the insulin signalling pathway, energy balance and inflammation, and plays an important role in the pathology of obesity-related metabolic disorders. This review summarizes recent research on the role of PRMT1 in obesity-related metabolic disorders. The primary objective was to comprehensively elucidate the functional role and regulatory mechanisms of PRMT1. Moreover, this study attempts to review the pathogenesis of PRMT1-mediated obesity-related metabolic disorders, thereby offering pivotal information for further studies and clinical treatment.

6.
Biol Trace Elem Res ; 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38676878

Tight junctions (TJs) are the key determinant of barrier function in the mammary gland, with their disruption being associated with the pathogenesis and progression of mastitis, especially in the case of Staphylococcus aureus (S. aureus) infection. This study investigated whether selenium (Se) could attenuate S. aureus-induced mastitis by inhibiting inflammation and protecting mammary gland TJs in mice. The expression profiles of S. aureus-infected gland tissues derived from the gene expression omnibus dataset were analyzed. We found cytokine production, cell junctions, the nuclear transcription factor-κB (NF-κB) signalling pathway, and inflammatory responses associated with the differentially expressed genes, as revealed by Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analyses. Se reduced the mRNA expression and production of inflammatory cytokines, including tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and decreased phosphorylation levels of the NF-κB complex. Moreover, Se alleviated structural damage and microvillus injury in mammary glands. Immunohistochemical staining revealed that Se increased the expression of Claudin-3; Western blot analysis revealed increased protein levels of Occludin and Tricellulin in the group supplemented with dietary Se. In summary, Se counteracted TJ disruption and attenuated NF-κB-mediated inflammatory responses in S. aureus-infected mouse mammary glands.

7.
Biomed Pharmacother ; 174: 116565, 2024 May.
Article En | MEDLINE | ID: mdl-38603888

Neural cell adhesion molecule L1 (L1CAM) is a cell-surface glycoprotein involved in cancer occurrence and migration. Up to today, L1CAM-targeted therapy appeared limited efficacy in clinical trials although quite a few attempts by monoclonal antibody (mAb) or chimeric antigen receptor T-cell therapy (CAR-T) have been reported. Therefore, the development of new effective therapies targeting L1CAM is highly desirable. It has been demonstrated that T cell-engaging bispecific antibody (TCE) plays an effective role in cancer immunotherapy by redirecting the cytotoxic activity of CD3+ T cells to tumor cells, resulting in tumor cell death. In this study, we designed and characterized a novel bispecific antibody (CE7-TCE) based on the IgG-(L)-ScFv format, which targets L1CAM and CD3 simultaneously. In vitro, CE7-TCE induced specific killing of L1CAM-positive tumor cells through T cells. In vivo, CE7-TCE inhibited tumor growth in human peripheral blood mononuclear cell/tumor cell co-grafting models. To overcome the adaptive immune resistance (AIR) that impairs the efficacy of TCEs, we conducted a combination therapy of CE7-TCE with Pembrolizumab (anti-PD1 mAb), which enhanced the anti-tumor activity of CE7-TCE. Our results confirmed the feasibility of using L1CAM as a TCE target for the treatment of solid tumors and revealed the therapeutic potential of CE7-TCE combined with immune checkpoint inhibitors.


Antibodies, Bispecific , Neural Cell Adhesion Molecule L1 , T-Lymphocytes , Animals , Female , Humans , Mice , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/immunology , Antineoplastic Agents, Immunological/pharmacology , CD3 Complex/immunology , Cell Line, Tumor , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/therapy , Neural Cell Adhesion Molecule L1/immunology , Neural Cell Adhesion Molecule L1/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Xenograft Model Antitumor Assays
8.
Acta Pharmacol Sin ; 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605180

Antibody drug conjugate (ADC) therapy has become one of the most promising approaches in cancer immunotherapy. Bispecific targeting could enhance the efficacy and safety of ADC by improving its specificity, affinity and internalization. In this study we constructed a HER2/HER3-targeting bispecific ADC (BsADC) and characterized its physiochemical properties, target specificity and internalization in vitro, and assessed its anti-tumor activities in breast cancer cell lines and in animal models. The HER2/HER3-targeting BsADC had a drug to antibody ratio (DAR) of 2.89, displayed a high selectivity against the target JIMT-1 breast cancer cells in vitro, as well as a slightly higher level of internalization than HER2- or HER3-monospecific ADCs. More importantly, the bispecific ADC potently inhibited the viability of MCF7, JIMT-1, BT474, BxPC-3 and SKOV-3 cancer cells in vitro. In JIMT-1 breast cancer xenograft mice, a single injection of bispecific ADC (3 mg/kg, i.v.) significantly inhibited the tumor growth with an efficacy comparable to that caused by combined injection of HER2 and HER3-monospecific ADCs (3 mg/kg for each). Our study demonstrates that the bispecific ADC concept can be applied to development of more potent new cancer therapeutics than the monospecific ADCs.

9.
Front Physiol ; 15: 1271874, 2024.
Article En | MEDLINE | ID: mdl-38562618

Metabolic syndromes are characterized by various complications caused by disrupted glucose and lipid metabolism, which are major factors affecting the health of a population. However, existing diagnostic and treatment strategies have limitations, such as the lack of early diagnostic and therapeutic approaches, variability in patient responses to treatment, and cost-effectiveness. Therefore, developing alternative solutions for metabolic syndromes is crucial. N6-methyladenosine (m6A) is one of the most abundant modifications that determine the fate of RNA. m6A modifications are closely associated with metabolic syndrome development and present novel prospects for clinical applications. Aberrant m6A modifications have been detected during inflammatory infiltration, apoptosis, autophagy, iron sagging, necrosis, and scorching during metabolic syndrome pathogenesis and progression. However, few reviews have systematically described the correlation between m6A modifications and these factors concerning metabolic syndrome pathogenesis and progression. This study summarizes the m6A methylation regulators and their roles in metabolic syndrome development, highlighting the potential of m6A modification as a biomarker in metabolic disorders.

10.
Front Psychiatry ; 15: 1366475, 2024.
Article En | MEDLINE | ID: mdl-38585486

Background: This study aimed to identify socio-demographic, physiologic, and psychologic related factors of the first-time suicide attempt (FSA) in the past 14 days in Chinese adult patients with first-episode drug-naïve (FEDN) major depressive disorder (MDD). Methods: A total of 1718 adult patients with FEDN MDD were enrolled in this cross-sectional survey. Depression, anxiety symptoms, and suicide attempts were assessed. Additionally, biological samples were collected and measured, while Logistic regression analysis was employed to explore the risk factors for FSA in the past 14 days among FEDN MDD patients. Results: Among suicide attempters, 12.11% (208 out of 1718) reported experiencing FSA in the past 14 days. Logistic regression analysis showed that the risk factors for FSA included more severe anxiety symptoms (OR=1.37, 95%CI: 1.28-1.48, p<0.001), higher levels of total cholesterol (TC) (OR=1.42, 95%CI: 1.13-1.77, p=0.003), and elevated thyroid-stimulating hormone (TSH) (OR=1.13, 95%CI: 1.03-1.25, p=0.01). The regression model exhibited good discriminatory power for FSA with an area under the curve (AUC) of 0.82. Conclusion: FEDN MDD patients with more severe anxiety and higher levels of TSH and TC are more likely to develop FSA in the past 14 days. These factors are risk factors for short-term (in the past 14 days) FSA and may serve as indicators for early intervention.

11.
Plants (Basel) ; 13(7)2024 Mar 29.
Article En | MEDLINE | ID: mdl-38611511

(1) Background: Climate change significantly impacts the phenology and dynamics of radial tree growth in alpine dryland forests. However, there remains a scarcity of reliable information on the physiological processes of tree growth and cambial phenology in response to long-term climate change in cold and semi-arid regions. (2) Methods: We employed the process-based Vaganov-Shashkin (VS) model to simulate the phenology and growth patterns of Chinese pine (Pinus tabuliformis) in the eastern Qilian Mountains, northeastern Tibetan Plateau. The model was informed by observed temperature and precipitation data to elucidate the relationships between climate factors and tree growth. (3) Results: The simulated tree-ring index closely aligned with the observed tree-ring chronology, validating the VS model's effectiveness in capturing the climatic influences on radial growth and cambial phenology of P. tabuliformis. The model outputs revealed that the average growing season spanned from mid-April to mid-October and experienced an extension post-1978 due to ongoing warming trends. However, it is important to note that an increase in the duration of the growing season did not necessarily result in a higher level of radial growth. (4) Conclusions: While the duration of the growing season was primarily determined by temperature, the growth rate was predominantly influenced by water conditions during the growing season, making it the most significant factor contributing to ring formation. Our study provides valuable insights into the potential mechanisms underlying tree growth responses to climate change in cold and semi-arid regions.

12.
Phytopathology ; 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38489164

Development of durable resistance effective against a broad range of pathotypes is crucial for restoration of pathogen-damaged ecosystems. This study dissected the complex genetic architecture for limber pine quantitative disease resistance (QDR) to Cronartium ribicola using a genome-wide association study (GWAS). Eighteen-month-old seedlings were inoculated for resistance screening under controlled conditions. Disease development was quantitatively assessed for QDR-related traits over four years post inoculation. To reveal genomic architecture contributing to QDR-related traits, a set of genes related to disease resistance with genome-wide distribution was selected for targeted sequencing for genotyping of single-nucleotide polymorphisms (SNPs). GWAS revealed a set of SNPs significantly associated with quantitative traits for limber pine QDR to WPBR, including number of needle spots and stem cankers, as well as survival four years post-inoculation. The peaks of marker-trait associations displayed a polygenic pattern with genomic regions as potential resistant quantitative trait loci (QTLs), distributed over ten of the 12 linkage groups (LGs) of Pinus. None of them were linked to the Cr4-controlled major gene resistance (MGR) previously mapped on LG08. Both normal canker and bole infection were mapped on LG05, and the associated SNPs explained their phenotypic variance up to 52%, tagging a major resistant QTL. Candidate genes containing phenotypically associated SNPs encoded putative nucleotide-binding site leucine-rich repeat (NBS-LRR) proteins, LRR-receptor-like kinase (LRR-RLK), cytochrome P450 superfamily protein, heat shock cognate protein 70, glutamate receptor, RNA-binding family protein, and unknown protein. The confirmation of resistant QTLs broadens the genetic pool of limber pine resistance germplasm for resistance breeding.

13.
ACS Nano ; 18(11): 8307-8324, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38437643

Periodontitis is a chronic inflammatory disease closely associated with reactive oxygen species (ROS) involvement. Eliminating ROS to control the periodontal microenvironment and alleviate the inflammatory response could potentially serve as an efficacious therapy for periodontitis. Melatonin (MT), renowned for its potent antioxidant and anti-inflammatory characteristics, is frequently employed as an ROS scavenger in inflammatory diseases. However, the therapeutic efficacy of MT remains unsatisfactory due to the low water solubility and poor bioavailability. Carbon dots have emerged as a promising and innovative nanomaterial with facile synthesis, environmental friendliness, and low cost. In this study, melatonin-derived carbon dots (MT-CDs) were successfully synthesized via the hydrothermal method. The MT-CDs have good water solubility and biocompatibility and feature excellent ROS-scavenging capacity without additional modification. The in vitro experiments proved that MT-CDs efficiently regulated intracellular ROS, which maintained mitochondrial homeostasis and suppressed the production of inflammatory mediators. Furthermore, findings from the mouse model of periodontitis indicated that MT-CDs significantly inhibited the deterioration of alveolar bone and reduced osteoclast activation and inflammation, thereby contributing to the regeneration of damaged tissue. In terms of the mechanism, MT-CDs may scavenge ROS, thereby preventing cellular damage and the production of inflammatory factors by regulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. The findings will offer a vital understanding of the advancement of secure and effective ROS-scavenging platforms for more biomedical applications.


Melatonin , Periodontitis , Mice , Animals , Melatonin/pharmacology , Melatonin/therapeutic use , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Heme Oxygenase-1 , Periodontitis/drug therapy , Water , Carbon
14.
Front Psychiatry ; 15: 1342933, 2024.
Article En | MEDLINE | ID: mdl-38463431

Objective: Major depressive disorder (MDD) sufferers frequently have psychotic symptoms, yet the underlying triggers remain elusive. Prior research suggests a link between insulin resistance (IR) and increased occurrence of psychotic symptoms. Hence, this study sought to investigate the potential association between psychotic symptoms in Chinese patients experiencing their first-episode drug-naïve (FEDN) MDD and the triglyceride glucose (TyG) index, an alternative measure of insulin resistance (IR). Methods: Between September 2016 and December 2018, 1,718 FEDN MDD patients with an average age of 34.9 ± 12.4 years were recruited for this cross-sectional study at the First Hospital of Shanxi Medical University in China. The study collected clinical and demographic data and included assessments of anxiety, depression, and psychotic symptoms using the 14-item Hamilton Anxiety Rating Scale (HAMA), the 17-item Hamilton Depression Rating Scale (HAMD-17), and the positive subscales of the Positive and Negative Syndrome Scale (PANSS), respectively. Measurements of metabolic parameters, fasting blood glucose (FBG), and thyroid hormones were also gathered. To assess the correlation between the TyG index and the likelihood of psychotic symptoms, the study used multivariable binary logistic regression analysis. Additionally, two-segmented linear regression models were employed to investigate possible threshold effects in case non-linearity relationships were identified. Results: Among the patients, 9.95% (171 out of 1,718) exhibited psychotic symptoms. Multivariable logistic regression analysis showed a positive correlation between the TyG index and the likelihood of psychotic symptoms (OR = 2.12, 95% CI: 1.21-3.74, P = 0.01) after adjusting for confounding variables. Moreover, smoothed plots revealed a nonlinear relationship with the TyG index, revealing an inflection point at 8.42. Interestingly, no significant link was observed to the left of the inflection point (OR = 0.50, 95% CI: 0.04-6.64, P = 0.60), whereas beyond this point, a positive correlation emerged between the TyG index and psychotic symptoms (OR = 2.42, 95% CI: 1.31-4.48, P = 0.01). Particularly, a considerable 142% rise in the probability of experiencing psychotic symptoms was found with each incremental elevation in the TyG index. Conclusions: Understanding the non-linear link between the TyG index and the risk of psychotic symptoms in Chinese patients with FEDN MDD highlights the potential for targeted therapeutic approaches. By acknowledging the threshold effect observed, there is an opportunity to mitigate risk factors associated with IR-related psychiatric comorbidities through tailored interventions. These preliminary results stress the need for further longitudinal research to solidify these insights and contribute to more effective therapeutic strategies.

15.
Polymers (Basel) ; 16(6)2024 Mar 15.
Article En | MEDLINE | ID: mdl-38543430

Advanced lithography requires highly sensitive photoresists to improve the lithographic efficiency, and it is critical, yet challenging, to develop high-sensitivity photoresists and imaging strategies. Here, we report a novel strategy for ultra-high sensitivity using hexafluoroisopropanol (HFIP)-containing fluoropolymer photoresists. The incorporation of HFIP, with its strong electrophilic property and the electron-withdrawing effect of the fluorine atoms, significantly increases the acidity of the photoresist after exposure, enabling imaging without conventional photoacid generators (PAGs). The HFIP-containing photoresist has been evaluated by electron beam lithography to achieve a trench of ~40 nm at an extremely low dose of 3 µC/cm2, which shows a sensitivity enhancement of ~10 times compared to the commercial system involving PAGs, revealing its high sensitivity and high-resolution features. Our results demonstrate a new type of PAGs and a novel approach to higher-performance imaging beyond conventional photoresist performance tuning.

16.
Anal Chem ; 96(13): 5258-5264, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38501986

A rapid photoacoustic (PA) exhaust gas analyzer is presented for simultaneous measurements of nitrogen dioxide (NO2) and sulfur dioxide (SO2). A laser diode (LD) emitting at 450 nm and a light-emitting diode (LED) with a peak wavelength of 275 nm operated simultaneously, producing PA signals of NO2 and SO2, respectively. The LD and LED were modulated at different frequencies of 2568 and 2570 Hz, and their emission light beams were transmitted through two resonant tubes in a differential PA cell (DPAC), respectively. A self-made dual-channel digital lock-in amplifier was used to realize the simultaneous detection of dual-frequency PA signals. Cross interference between the PA signals at the two different frequencies was reduced to 0.02% by using a lock-in amplifier. In order to achieve a rapid dynamic measurement, gas sampling was accelerated by an air pump. The use of mufflers and the differential PA detection technique significantly reduced the gas sampling noise. When the gas flow rate was 1000 sccm, the response time of the PA dual-gas analyzer was 8 and 17 s for NO2 and SO2, respectively. The minimum detection limits of NO2 and SO2 were 1.7 and 26.1 ppb when the averaging time of the system was 10 s, respectively. Due to the wide spectral bandwidth of the LED, NO2 produced an interference to the detection of SO2. The interference was reduced by the precise detection of NO2. Since the radiations of the LD and LED passed through two different PA tubes, the impact of NO2 photochemical dissociation caused by UV LED luminescence on NO2 gas detection was negligible. The sharing of the PA cell, the gas lines, and the signal processing modules significantly reduced the size and cost of the PA dual-gas analyzer.

17.
EBioMedicine ; 102: 105053, 2024 Apr.
Article En | MEDLINE | ID: mdl-38471398

BACKGROUND: To date, because of the difficulty in obtaining normal parathyroid gland samples in human or in animal models, our understanding of this last-discovered organ remains limited. METHODS: In the present study, we performed a single-cell transcriptome analysis of six normal parathyroid and eight parathyroid adenoma samples using 10 × Genomics platform. FINDINGS: We have provided a detailed expression atlas of parathyroid endocrine cells. Interestingly, we found an exceptional high expression levels of CD4 and CD226 in parathyroid endocrine cells, which were even higher than those in lymphocytes. This unusual expression of lymphocyte markers in parathyroid endocrine cells was associated with the depletion of CD4 T cells in normal parathyroid glands. Moreover, CD4 and CD226 expression in endocrine cells was significantly decreased in parathyroid adenomas, which was associated with a significant increase in Treg counts. Finally, along the developmental trajectory, we discovered the loss of POMC, ART5, and CES1 expression as the earliest signature of parathyroid hyperplasia. INTERPRETATION: We propose that the loss of CD4 and CD226 expression in parathyroid endocrine cells, coupled with an elevated number of Treg cells, could be linked to the pathogenesis of parathyroid adenoma. Our data also offer valuable information for understanding the noncanonical function of CD4 molecule. FUNDING: This work was supported by the National Key R&D Program of China (2022YFA0806100), National Natural Science Foundation of China (82130025, 82270922, 31970636, 32211530422), Shandong Provincial Natural Science Foundation of China (ZR2020ZD14), Innovation Team of Jinan (2021GXRC048) and the Outstanding University Driven by Talents Program and Academic Promotion Program of Shandong First Medical University (2019LJ007).


Parathyroid Glands , Parathyroid Neoplasms , Humans , Parathyroid Glands/metabolism , Parathyroid Glands/pathology , Parathyroid Neoplasms/genetics , Parathyroid Neoplasms/complications , Parathyroid Neoplasms/pathology , Down-Regulation , Carcinogenesis/pathology , Cell Transformation, Neoplastic/metabolism , Hyperplasia/pathology , Lymphocytes/metabolism
18.
Org Lett ; 26(8): 1734-1738, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38364796

TlnA produces a distinct cyclohexane-fused 5-8-6 ring system, different from the prevalent 5-8-5 scaffold synthesized by well-established enzymes. This study identifies two conformations of a carbocation intermediate, revealing how the enzyme environment prohibits one conformation due to steric hindrance, thereby directing the formation of the 5-8-6 system over the 5-8-5 scaffold. This investigation enhances our understanding of diterpene biosynthesis and the impact of enzyme environments on chemical reactions, providing valuable insights into the formation of complex cyclic structures.


Diterpenes , Skeleton , Molecular Conformation , Radiopharmaceuticals
19.
World J Surg Oncol ; 22(1): 41, 2024 Feb 02.
Article En | MEDLINE | ID: mdl-38303008

BACKGROUND: Invasive mucinous adenocarcinoma of the lung (IMA) is a unique and rare subtype of lung adenocarcinoma with poorly defined prognostic factors and highly controversial studies. Hence, this study aimed to comprehensively identify and summarize the prognostic factors associated with IMA. METHODS: A comprehensive search of relevant literature was conducted in the PubMed, Embase, Cochrane, and Web of Science databases from their inception until June 2023. The pooled hazard ratio (HR) and corresponding 95% confidence intervals (CI) of overall survival (OS) and/or disease-free survival (DFS) were obtained to evaluate potential prognostic factors. RESULTS: A total of 1062 patients from 11 studies were included. In univariate analysis, we found that gender, age, TNM stage, smoking history, lymph node metastasis, pleural metastasis, spread through air spaces (STAS), tumor size, pathological grade, computed tomography (CT) findings of consolidative-type morphology, pneumonia type, and well-defined heterogeneous ground-glass opacity (GGO) were risk factors for IMA, and spiculated margin sign was a protective factor. In multivariate analysis, smoking history, lymph node metastasis, pathological grade, STAS, tumor size, and pneumonia type sign were found to be risk factors. There was not enough evidence that epidermal growth factor receptor (EGFR) mutations, anaplastic lymphoma kinase (ALK) mutations, CT signs of lobulated margin, and air bronchogram were related to the prognosis for IMA. CONCLUSION: In this study, we comprehensively analyzed prognostic factors for invasive mucinous adenocarcinoma of the lung in univariate and multivariate analyses of OS and/or DFS. Finally, 12 risk factors and 1 protective factor were identified. These findings may help guide the clinical management of patients with invasive mucinous adenocarcinoma of the lung.


Adenocarcinoma of Lung , Adenocarcinoma, Mucinous , Lung Neoplasms , Pneumonia , Humans , Adenocarcinoma of Lung/pathology , Adenocarcinoma, Mucinous/surgery , Adenocarcinoma, Mucinous/pathology , Lung/pathology , Lung Neoplasms/pathology , Lymphatic Metastasis , Neoplasm Staging , Pneumonia/pathology , Prognosis , Retrospective Studies , Male , Female
20.
Angew Chem Int Ed Engl ; 63(17): e202401477, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38419469

Voltage-gated ion channels prevalent in neurons play important roles in generating action potential and information transmission by responding to transmembrane potential. Fabricating bio-inspired ionic transistors with ions as charge carriers will be crucial for realizing neuro-inspired devices and brain-liking computing. Here, we reported a two-dimensional nanofluidic ionic transistor based on a MXene membrane with sub-1 nm interlayer channels. By applying a gating voltage on the MXene nanofluidic, a transmembrane potential will be generated to active the ionic transistor, which is similar to the transmembrane potential of neuron cells and can be effectively regulated by changing membrane parameters, e.g., thickness, composition, and interlayer spacing. For the symmetric MXene nanofluidic, a high on/off ratio of ~2000 can be achieved by forming an ionic depletion or accumulation zone, contingent on the sign of the gating potential. An asymmetric PET/MXene-composited nanofluidic transitioned the ionic transistor from ambipolar to unipolar, resulting in a more sensitive gate voltage characteristic with a low subthreshold swing of 560 mV/decade. Furthermore, ionic logic gate circuits, including the "NOT", "NAND", and "NOR" gate, were implemented for neuromorphic signal processing successfully, which provides a promising pathway towards highly parallel, low energy consumption, and ion-based brain-like computing.


Brain , Nitrites , Transition Elements , Action Potentials , Ions , Membrane Potentials
...