Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 246
Filter
1.
Sci Rep ; 14(1): 18106, 2024 08 05.
Article in English | MEDLINE | ID: mdl-39103427

ABSTRACT

Hypothalamus is a crucial deep brain area that is responsible for the integration and coordination of various brain functions. The altered perfusion of hypothalamus during headache caused by medication-overuse headache (MOH) was previously unknown. In the current study, the altered perfusion of hypothalamic subregions in MOH patients was investigated using state-of-the-art 3D pseudo-continuous arterial spin labeling (PCASL) MR imaging. In this study, 29 normal controls subjects (NCs) and 29 MOH patients underwent 3D PCASL and brain structural MR imaging. The hypothalamus was automatically segmented into 10 subunits and the volume of each subunit was automatically determined using Freesurfer software (v7.4.1). All segmented hypothalamic subunits were converted to individual hypothalamic subunit masks. The cerebral blood flow (CBF) images were coregistered with the raw brain structural images and resliced. The CBF value of each hypothalamic subunit was extracted from the warped CBF images. The volume and CBF value of each hypothalamic subunit were analyzed using the independent sample T test and Mann-Whitney U test, receiver operating characteristic (ROC) curve analysis, and Pearson and Spearman correlation analysis. Hypothalamic subunits with significantly decreased perfusion were located in the left posterior, left tubular superior, right anterior-inferior, right tubular inferior, right tubular superior, right posterior subunit and the entire right hypothalamus [CBF value for MOH vs NC (mL/100 g·min): 48.41 ± 6.75 vs 54.08 ± 11.47, 44.44 ± 4.79 vs 48.11 ± 7.73, 41.49 (32.90, 61.46) vs 49.38 ± 10.47, 46.62 ± 7.04 vs 53.90 ± 11.75, 42.12 ± 5.74 vs 47.02 ± 9.99, 42.79 ± 5.15 vs 47.93 ± 10.48 and 43.58 ± 5.06 vs 48.65 ± 9.33, respectively] in MOH compared to NC (P < 0.05). ROC analysis for these positive subunits revealed that area under the curve was 0.658-0.693, and ROC curve for left posterior subunit had the highest specificity of 93.10% while the entire right hypothalamus had the highest sensitivity of 72.41%. Further correlation analysis showed that the CBF value of the left posterior, right anterior-inferior, right tubular superior, whole right hypothalamus presented significantly negative correlation with Hamilton Depression Scale (HAMD) score (P < 0.05). Hypoperfusion of hypothalamic subunits may contribute to the understanding of MOH pathogenesis, and the 3D PCASL could be considered as a potential diagnostic and assessment tool for MOH.


Subject(s)
Cerebrovascular Circulation , Hypothalamus , Magnetic Resonance Imaging , Humans , Hypothalamus/diagnostic imaging , Hypothalamus/metabolism , Male , Female , Magnetic Resonance Imaging/methods , Adult , Middle Aged , Headache Disorders, Secondary/diagnostic imaging , Headache Disorders, Secondary/physiopathology , Imaging, Three-Dimensional , Spin Labels , Case-Control Studies , ROC Curve
2.
Front Microbiol ; 15: 1434987, 2024.
Article in English | MEDLINE | ID: mdl-39091297

ABSTRACT

Mycotoxins are secondary metabolites produced during the growth, storage, and transportation of crops contaminated by fungi and are physiologically toxic to humans and animals. Aflatoxin, zearalenone, deoxynivalenol, ochratoxin, patulin, and fumonisin are the most common mycotoxins and can cause liver and nervous system damage, immune system suppression, and produce carcinogenic effects in humans and animals that have consumed contaminated food. Physical, chemical, and biological methods are generally used to detoxify mycotoxins. Although physical methods, such as heat treatment, irradiation, and adsorption, are fast and simple, they have associated problems including incomplete detoxification, limited applicability, and cause changes in food characteristics (e.g., nutritive value, organoleptic properties, and palatability). Chemical detoxification methods, such as ammonification, ozonation, and peroxidation, pollute the environment and produce food safety risks. In contrast, bioenzymatic methods are advantageous as they achieve selective detoxification and are environmentally friendly and reusable; thus, these methods are the most promising options for the detoxification of mycotoxins. This paper reviews recent research progress on common mycotoxins and the enzymatic principles and mechanisms for their detoxification, analyzes the toxicity of the degradation products and describes the challenges faced by researchers in carrying out enzymatic detoxification. In addition, the application of enzymatic detoxification in food and feed is discussed and future directions for the development of enzymatic detoxification methods are proposed for future in-depth study of enzymatic detoxification methods.

3.
Nature ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39142338

ABSTRACT

Females exhibit complex, dynamic behaviors during mating with variable sexual receptivity depending on hormonal status1-4. However, how their brains encode the dynamics of mating and receptivity remains largely unknown. The ventromedial hypothalamus, ventro-lateral subdivision contains estrogen receptor type 1-positive neurons that control mating receptivity in female mice5,6. Unsupervised dynamical systems analysis of calcium imaging data from these neurons during mating uncovered a dimension with slow ramping activity, generating a line attractor in neural state space. Neural perturbations in behaving females demonstrated relaxation of population activity back into the attractor. During mating population activity integrated male cues to ramp up along this attractor, peaking just before ejaculation. Activity in the attractor dimension was positively correlated with the degree of receptivity. Longitudinal imaging revealed that attractor dynamics appear and disappear across the estrus cycle and are hormone-dependent. These observations suggest that a hypothalamic line attractor encodes a persistent, escalating state of female sexual arousal or drive during mating. They also demonstrate that attractors can be reversibly modulated by hormonal status, on a timescale of days.

4.
J Am Chem Soc ; 146(32): 22675-22688, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39088029

ABSTRACT

Redox-responsive homodimer prodrug nanoassemblies (RHPNs) have emerged as a significant technology for overcoming chemotherapeutical limitations due to their high drug-loading capacity, low excipient-associated toxicity, and straightforward preparation method. Previous studies indicated that α-position disulfide bond bridged RHPNs exhibited rapid drug release rates but unsatisfactory assembly stability. In contrast, γ-disulfide bond bridged RHPNs showed better assembly stability but low drug release rates. Therefore, designing chemical linkages that ensure both stable assembly and rapid drug release remains challenging. To address this paradox of stable assembly and rapid drug release in RHPNs, we developed carbon-spaced double-disulfide bond (CSDD)-bridged RHPNs (CSDD-RHPNs) with two carbon-spaces. Pilot studies showed that CSDD-RHPNs with two carbon-spaces exhibited enhanced assembly stability, reduction-responsive drug release, and improved selective toxicity compared to α-/γ-position single disulfide bond bridged RHPNs. Based on these findings, CSDD-RHPNs with four and six carbon-spaces were designed to further investigate the properties of CSDD-RHPNs. These CSDD-RHPNs exhibited excellent assembly ability, safety, and prolonged circulation. Particularly, CSDD-RHPNs with two carbon-spaces displayed the best antitumor efficacy on 4T1 and B16-F10 tumor-bearing mice. CSDD chemical linkages offer novel perspectives on the rational design of RHPNs, potentially overcoming the design limitations regarding contradictory assembly ability and drug release rate.


Subject(s)
Carbon , Disulfides , Prodrugs , Disulfides/chemistry , Prodrugs/chemistry , Animals , Mice , Carbon/chemistry , Humans , Drug Liberation , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Design , Cell Line, Tumor , Nanostructures/chemistry , Dimerization , Doxorubicin/chemistry , Doxorubicin/pharmacology
5.
ACS Biomater Sci Eng ; 10(8): 4970-4984, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39022808

ABSTRACT

Acute kidney injury (AKI) is a critical medical condition characterized by high morbidity and mortality rates. The pathogenesis of AKI potentially involves bursts of reactive oxygen species (ROS) bursts and elevated levels of inflammatory mediators. Developing nanoparticles (NPs) that downregulate ROS and inflammatory mediators is a promising approach to treat AKI. However, such NPs would be affected by the glomerular filtration barrier (GFB). Typically, NPs are too large to penetrate the glomerular system and reach the renal tubules─the primary site of AKI injury. Herein, we report the development of ultrasmall carbon dots-gallic acid (CDs-GA) NPs (∼5 nm). These NPs exhibited outstanding biocompatibility and were shown not only to efficiently eliminate ROS and alleviate oxidative stress but also to suppress the activation of the NF-κB signaling pathway, leading to a reduction in the release of inflammatory factors. Importantly, CDs-GA NPs were shown to be able to rapidly accumulate rapidly in the renal tissues without the need for intricate targeting strategies. In vivo studies demonstrated that CDs-GA NPs significantly reduced the incidence of cisplatin (CDDP)-induced AKI in mice, surpassing the efficacy of the small molecular drug, N-acetylcysteine. This research provides an innovative strategy for the treatment of AKI.


Subject(s)
Acute Kidney Injury , Carbon , Cisplatin , Reactive Oxygen Species , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Animals , Carbon/chemistry , Carbon/therapeutic use , Mice , Reactive Oxygen Species/metabolism , Cisplatin/therapeutic use , Cisplatin/pharmacology , Gallic Acid/pharmacology , Gallic Acid/chemistry , Gallic Acid/therapeutic use , Oxidative Stress/drug effects , Nanoparticles/chemistry , Nanoparticles/therapeutic use , NF-kappa B/metabolism , Male , Quantum Dots/chemistry , Quantum Dots/therapeutic use , Quantum Dots/toxicity , Humans , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Signal Transduction/drug effects
6.
Adv Mater ; 36(35): e2408287, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38967293

ABSTRACT

Manipulating the crystallographic orientation of zinc (Zn) metal to expose more (002) planes is promising to stabilize Zn anodes in aqueous electrolytes. However, there remain challenges involving the non-epitaxial electrodeposition of highly (002) textured Zn metal and the maintenance of (002) texture under deep cycling conditions. Herein, a novel organic imidazolium cations-assisted non-epitaxial electrodeposition strategy to texture electrodeposited Zn metals is developed. Taking the 1-butyl-3-methylimidazolium cation (Bmim+) as a paradigm additive, the as-prepared Zn film ((002)-Zn) manifests a compact structure and a highly (002) texture without containing (100) signal. Mechanistic studies reveal that Bmim+ featuring oriented adsorption on the Zn-(002) plane can reduce the growth rate of (002) plane to render the final exposure of (002) texture, and homogenize Zn nucleation and suppress H2 evolution to enable the compact electrodeposition. In addition, the formulated Bmim+-containing ZnSO4 electrolyte effectively sustains the (002) texture even under deep cycling conditions. Consequently, the combination of (002) texture and Bmim+-containing electrolyte endows the (002)-Zn electrode with superior cycling stability over 350 h under 20 mAh cm-2 with 72.6% depth-of-discharge, and assures the stable operation of full Zn batteries with both coin-type and pouch-type configurations, significantly outperforming the (002)-Zn and commercial Zn-based batteries in Bmim+-free electrolytes.

7.
Mol Biotechnol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951482

ABSTRACT

Circular RNAs (circRNAs) perform important functions in the regulation of diverse physiological and pathological processes. CircABHD2 exhibits down-regulation in both endometrial cancer (EC) cells and tissues, but the biological roles and mechanisms of action in EC are still unclear. This study aims to provide a theoretical basis for the role of circABHD2 in EC and potential targets for individualized precision therapy. Dysregulated circRNAs were identified using RNA sequencing (RNA-Seq) from EC tissues and validated using RT-qPCR. CCK-8, colony formation assay, wound healing assay, transwell assay, cell cycle, and apoptosis assay were used to evaluate the effects of circABHD2 on EC cells. Metabolomics assay and western blot analyses were used to investigate the potential mechanisms of circABHD2. From sequencing of RNA (RNA-Seq) analysis of EC tissues, we obtained 19 dysregulated circRNAs, including 8 upregulated ones and 11 downregulated ones. Using RT-qPCR on 32 EC tissues and 19 normal endometrial tissues, we confirmed that circABHD2 was downregulated in EC tissues. The expression levels of circABHD2 were closely relevant to the International Federation of Gynecology and Obstetrics (FIGO) stage and differentiation degree of EC. Functional experiments demonstrated that overexpression of circABHD2 decreased proliferation, migration, invasion, and promoted cell apoptosis. Un-targeted metabolomic assay revealed 31 differential metabolites in EC cells overexpressing circABHD2. KEGG analysis of differential metabolites indicated that NAD+ is the core metabolite regulated by circABHD2. NAMPT is one key enzyme involved in the synthetic pathway responsible for NAD+. Subsequent experiments confirmed that by inhibiting NAMPT protein expression in EC cells, cirABHD2 can inhibit NAD+ level, suggesting that circABHD2 may inhibit EC by regulating the metabolic axis of NAD+/NAMPT. CircABHD2, a downregulated circRNA in EC cells and tissues, inhibits the malignant progression of EC via the NAD+/NAMPT metabolic axis. This discovery presents a promising diagnostic biomarker and potential therapeutic target for EC.

8.
Heliyon ; 10(13): e33611, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39027598

ABSTRACT

Background: Severe fever with thrombocytopenia syndrome (SFTS) is spreading rapidly in Asia. The pathway of SFTS virus shedding from patient and specific use of personal protective equipments (PPEs) against viral transmission have rarely been reported. The study was to determine SFTS virus (SFTSV) shedding pattern from the respiratory, digestive and urinary tract to outside in patients. Methods: Patients were divided into mild and severe groups in three sentinel hospitals for SFTS in Anhui province from April 2020 to October 2022. SFTSV level from blood, throat swabs, fecal/anal swabs, urine and bedside environment swabs of SFTS patients were detected by qRT-PCR. Specific PPEs were applied in healthcare workers contacting with the patients who had oropharyngeal virus shedding and hemorrhagic signs. Results: A total of 189 SFTSV-confirmed patients were included in the study, 54 patients died (case fatality rate, 28.57 %). Positive SFTSV in throat swabs (T-SFTSV), fecal/anal swabs (F-SFTSV) and urine (U-SFTSV) were detected in 121 (64.02 %), 91 (48.15 %) and 65 (34.4 %) severely ill patients, respectively. The levels of T-SFTSV, F-SFTSV and U-SFTSV were positively correlated with the load of SFTSV in blood. We firstly revealed that SFTSV positive rate of throat swabs were correlated with occurrence of pneumonia and case fatality rate of patients (P < 0.0001). Specific precaution measures were applied by healthcare workers in participating cardiopulmonary resuscitation and orotracheal intubation for severely ill patients with positive T-SFTSV, no event of SFTSV human-to-human transmission occurred after application of effective PPEs. Conclusions: Our research demonstrated SFTSV could shed out from blood, oropharynx, feces and urine in severely ill patients. The excretion of SFTSV from these parts was positively correlated with viral load in the blood. Effective prevention measures against SFTSV human-to-human transmission are needed.

9.
Reprod Domest Anim ; 59(7): e14689, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39044628

ABSTRACT

Sheep are important herbivorous domestic animal globally, and the Chinese indigenous sheep breed has a multitude of economically significant variations due to the diverse geographical and ecological conditions. In particular, certain native breeds exhibit a visible high litter size phenotype due to the selection pressure of natural and artificial for thousands of years, offering an ideal animal model for investigating sheep's fecundity. In this study, selective signal analysis was performed on public whole-genome sequencing data from 60 sheep across eight breeds to identify candidate genes related to litter size. Results revealed that a total of 34,065,017 single-nucleotide polymorphisms (SNPs) were identified from all sheep, and 65 candidate genes (CDGs) were pinpointed from the top 1% of interacted windows and SNPs between the pairwise fixation index (FST, >0.149543) and cross-population extended haplotype homozygosity (XP-EHH, >0.701551). A total of 41 CDGs (e.g. VRTN, EYA2 and MCPH1) were annotated to 576 GO terms, of which seven terms were directly linked to follicular and embryonic development (e.g. TBXT, BMPR1B, and BMP2). In addition, 73 KEGG pathways were enriched by 21 CDGs (e.g. ENTPD5, ABCD4 and RXFP2), mainly related to Hippo (TCF4, BMPR1B and BMP2), TGF-ß (BMPR1B and BMP2), PI3K-Akt (ITGB4, IL4R and PPP2R5A) and Jak-STAT signalling pathways (IL20RA and IL4R). Notably, a series of CDGs was under strong selection in sheep with high litter size traits. These findings result could improve the comprehension of the genetic underpinnings of sheep litter size. Furthermore, it provides valuable CDGS for future molecular breeding.


Subject(s)
Litter Size , Polymorphism, Single Nucleotide , Sheep, Domestic , Animals , Litter Size/genetics , Sheep, Domestic/genetics , Female , Breeding , Genome-Wide Association Study , Heredity , Selection, Genetic , Whole Genome Sequencing/veterinary , Sheep/genetics
10.
Cell Death Discov ; 10(1): 314, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972937

ABSTRACT

Kidney fibrosis is considered to be the ultimate aggregation pathway of chronic kidney disease (CKD), but its underlying mechanism remains elusive. Protein kinase C-delta (PKC-δ) plays critical roles in the control of growth, differentiation, and apoptosis. In this study, we found that PKC-δ was highly upregulated in human biopsy samples and mouse kidneys with fibrosis. Rottlerin, a PKC-δ inhibitor, alleviated unilateral ureteral ligation (UUO)-induced kidney fibrosis, inflammation, VDAC1 expression, and cGAS-STING signaling pathway activation. Adeno-associated virus 9 (AAV9)-mediated VDAC1 silencing or VBIT-12, a VDAC1 inhibitor, attenuated renal injury, inflammation, and activation of cGAS-STING signaling pathway in UUO mouse model. Genetic and pharmacologic inhibition of STING relieved renal fibrosis and inflammation in UUO mice. In vitro, hypoxia resulted in PKC-δ phosphorylation, VDAC1 oligomerization, and activation of cGAS-STING signaling pathway in HK-2 cells. Inhibition of PKC-δ, VDAC1 or STING alleviated hypoxia-induced fibrotic and inflammatory responses in HK-2 cells, respectively. Mechanistically, PKC-δ activation induced mitochondrial membrane VDAC1 oligomerization via direct binding VDAC1, followed by the mitochondrial DNA (mtDNA) release into the cytoplasm, and subsequent activated cGAS-STING signaling pathway, which contributed to the inflammation leading to fibrosis. In conclusion, this study has indicated for the first time that PKC-δ is an important regulator in kidney fibrosis by promoting cGAS-STING signaling pathway which mediated by VDAC1. PKC-δ may be useful for treating renal fibrosis and subsequent CKD.

11.
Adv Sci (Weinh) ; 11(31): e2304687, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38889331

ABSTRACT

The microenvironment mediated by the microglia (MG) M1/M2 phenotypic switch plays a decisive role in the neuronal fate and cognitive function of Alzheimer's disease (AD). However, the impact of metabolic reprogramming on microglial polarization and its underlying mechanism remains elusive. This study reveals that cordycepin improved cognitive function and memory in APP/PS1 mice, as well as attenuated neuronal damage by triggering MG-M2 polarization and metabolic reprogramming characterized by increased OXPHOS and glycolysis, rather than directly protecting neurons. Simultaneously, cordycepin partially alleviates mitochondrial damage in microglia induced by inhibitors of OXPHOS and glycolysis, further promoting MG-M2 transformation and increasing neuronal survival. Through confirmation of cordycepin distribution in the microglial mitochondria via mitochondrial isolation followed by HPLC-MS/MS techniques, HKII and PDK2 are further identified as potential targets of cordycepin. By investigating the effects of HKII and PDK2 inhibitors, the mechanism through which cordycepin targeted HKII to elevate ECAR levels in the glycolysis pathway while targeting PDK2 to enhance OCR levels in PDH-mediated OXPHOS pathway, thereby inducing MG-M2 polarization, promoting neuronal survival and exerting an anti-AD role is elucidated.


Subject(s)
Deoxyadenosines , Disease Models, Animal , Microglia , Mitochondria , Animals , Microglia/metabolism , Microglia/drug effects , Deoxyadenosines/pharmacology , Deoxyadenosines/metabolism , Mice , Mitochondria/metabolism , Mitochondria/drug effects , Hexokinase/metabolism , Hexokinase/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Glycolysis/drug effects , Metabolic Reprogramming
12.
Adv Healthc Mater ; : e2401616, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38895987

ABSTRACT

Noninflammatory apoptosis is transformed into inflammatory pyroptosis by activating caspase-3 to lyse gasdermin E (GSDME), and this process can be used as an effective therapeutic strategy. Thus, a selective and powerful inducer of activated caspase-3 plays a vital role in pyroptosis-based cancer therapy. Herein, a human cell membrane vesicle-based nanoplatform (HCNP) is designed for photodynamic therapy (PDT). HCNP is modified with vesicular stomatitis virus G-protein (VSVG) to anchor nano-photosensitizers on the tumor cell membrane. Photosensitizers are bonded to HCNP by clicking chemical reaction as pyroptosis inducers. The results show that HCNP effectively disrupts the mitochondrial function of cells by generating reactive oxygen species (ROS) upon laser irradiation; concomitantly, GSDME is cleaved by activated caspase-3 and promotes pyroptosis of lung cancer cells. Here an effective intervention strategy is proposed to induce pyroptosis based on light-activated PDT.

13.
Front Vet Sci ; 11: 1406576, 2024.
Article in English | MEDLINE | ID: mdl-38840635

ABSTRACT

Introduction: Dehorning calves is necessary to minimize injury because intensive raising circumstances make horned cows more aggressive. However, acute pain is commonly perceived by farm animals when undergoing painful practices such as dehorning, affecting their health status and quality of life. By quantifying the magnitude of pain and discomfort associated with dehorning, we aim to contribute to a more humane and sustainable cattle farming industry. Methods: The objective of this study was to evaluate the behavioral, physiological, and emotional effects of acute dehorning pain in calves using two methods: dehorning cream and dehorning hot-iron.30 Holstein calves aged 4 days were selected for the study. These calves were randomly assigned to two experimental groups based on the method of disbudding: dehorning cream (n = 15) and hot-iron dehorning (n = 15). Before and after dehorning, we evaluated their physiological indicators of infrared eye temperature, concentrations of substance P, IL-6, cortisol, haptoglobin, as well as emotional state, and pain-related behavioral reactions. Results: Post-dehorning, the duration of lying down decreased significantly in both groups (DI and DC: 0-4 h) after dehorning (p < 0.05). Both groups exhibited increased frequencies of pain-related behaviors such as head shaking (DI: 1-7 h, DC: 1-6 h), ear flicking (DI: 2-7 h, DC: 2-7 h), head scratching (DI: 2-3 h, DC: 1-7 h), and top scuffing (DI: 2 h, DC: 2-7 h) compared to pre-dehorning (p < 0.05). The DC group demonstrated a higher frequency of head-shaking, ear-flicking, head-scratching, and top-rubbing behaviors, along with a longer duration of lying down (0-4 h), compared to the DI group (p < 0.05). Post-dehorning, play behavior reduced significantly in both groups (6-8 h) (p < 0.05), whereas judgment bias and fear levels showed no significant change (p > 0.05). Physiological measures including eye temperature, and blood levels of substance P and IL-6, did not differ significantly between the groups before and after dehorning (p > 0.05). However, 48 h after dehorning, calves in the DC group had significantly higher haptoglobin levels compared to the DI group (p = 0.015). Additionally, salivary cortisol levels in the DC group increased significantly at 3.5 h and 7 h post-dehorning (p = 0.018, p = 0.043). Discussion: Both hot-iron and cream dehorning induced pain in calves, as evidenced by increased pain-related behaviors, elevated salivary cortisol, and higher haptoglobin levels, alongside reduced positive behaviors. Notably, these effects were more pronounced in the DC group than in the DI group, suggesting that dehorning hot-iron may be a comparatively less stressful dehorning method for young calves. Moreover, the brief duration of pain response and weaker response to dehorning observed in 13-day-age calves in this study suggests that dehorning at younger ages may be more advisable and warrants further research.

14.
Small ; : e2402725, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837316

ABSTRACT

Unveiling the inherent link between polysulfide adsorption and catalytic activity is key to achieving optimal performance in Lithium-sulfur (Li-S) batteries. Current research on the sulfur reaction process mainly relies on the strong adsorption of catalysts to confine lithium polysulfides (LiPSs) to the cathode side, effectively suppressing the shuttle effect of polysulfides. However, is strong adsorption always correlated with high catalysis? The inherent relationship between adsorption and catalytic activity remains unclear, limiting the in-depth exploration and rational design of catalysts. Herein, the correlation between "d-band center-adsorption strength-catalytic activity" in porous carbon nanofiber catalysts embedded with different transition metals (M-PCNF-3, M = Fe, Co, Ni, Cu) is systematically investigated, combining the d-band center theory and the Sabatier principle. Theoretical calculations and experimental analysis results indicate that Co-PCNF-3 electrocatalyst with appropriate d-band center positions exhibits moderate adsorption capability and the highest catalytic conversion activity for LiPSs, validating the Sabatier relationship in Li-S battery electrocatalysts. These findings provide indispensable guidelines for the rational design of more durable cathode catalysts for Li-S batteries.

16.
Nanomedicine ; 61: 102764, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885751

ABSTRACT

Glucose oxidase (GOx) is often used to starvation therapy. However, only consuming glucose cannot completely block the energy metabolism of tumor cells. Lactate can support tumor cell survival in the absence of glucose. Here, we constructed a nanoplatform (Met@HMnO2-GOx/HA) that can deplete glucose while inhibiting the compensatory use of lactate by cells to enhance the effect of tumor starvation therapy. GOx can catalyze glucose into gluconic acid and H2O2, and then HMnO2 catalyzes H2O2 into O2 to compensate for the oxygen consumed by GOx, allowing the reaction to proceed sustainably. Furthermore, metformin (Met) can inhibit the conversion of lactate to pyruvate in a redox-dependent manner and reduce the utilization of lactate by tumor cells. Met@HMnO2-GOx/HA nanoparticles maximize the efficacy of tumor starvation therapy by simultaneously inhibiting cellular utilization of two carbon sources. Therefore, this platform is expected to provide new strategies for tumor treatment.

17.
Dement Geriatr Cogn Disord ; 53(4): 169-179, 2024.
Article in English | MEDLINE | ID: mdl-38776891

ABSTRACT

INTRODUCTION: The prevalence of cognitive impairment and dementia in the older population is increasing, and thereby, early detection of cognitive decline is essential for effective intervention. METHODS: This study included 2,288 participants with normal cognitive function from the Ma'anshan Healthy Aging Cohort Study. Forty-two potential predictors, including demographic characteristics, chronic diseases, lifestyle factors, anthropometric indices, physical function, and baseline cognitive function, were selected based on clinical importance and previous research. The dataset was partitioned into training, validation, and test sets in a proportion of 60% for training, 20% for validation, and 20% for testing, respectively. Recursive feature elimination was used for feature selection, followed by six machine learning algorithms that were employed for model development. The performance of the models was evaluated using area under the curve (AUC), specificity, sensitivity, and accuracy. Moreover, SHapley Additive exPlanations (SHAP) was conducted to access the interpretability of the final selected model and to gain insights into the impact of features on the prediction outcomes. SHAP force plots were established to vividly show the application of the prediction model at the individual level. RESULTS: The final predictive model based on the Naive Bayes algorithm achieved an AUC of 0.820 (95% CI, 0.773-0.887) on the test set, outperforming other algorithms. The top ten influential features in the model included baseline Mini-Mental State Examination (MMSE), education, self-reported economic status, collective or social activities, Pittsburgh sleep quality index (PSQI), body mass index, systolic blood pressure, diastolic blood pressure, instrumental activities of daily living, and age. The model demonstrated the potential to identify individuals at a higher risk of cognitive impairment within 3 years from older adults. CONCLUSION: The predictive model developed in this study contributes to the early detection of cognitive impairment in older adults by primary healthcare staff in community settings.


Subject(s)
Cognitive Dysfunction , Machine Learning , Humans , Male , Female , Aged , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/epidemiology , Cohort Studies , Risk Factors , Aged, 80 and over , Algorithms , Bayes Theorem , Middle Aged , Neuropsychological Tests
18.
Discov Oncol ; 15(1): 189, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801504

ABSTRACT

BACKGROUND: Cervical cancer is a prevalent malignancy of the female reproductive system. Cervical intraepithelial neoplasia (CIN) is a precursor lesion for CC. Various studies have examined circulating microRNAs (miRNAs) as potential early diagnostic markers for CC and CIN. However, the findings have been inconclusive. Therefore, it is necessary to evaluate the diagnostic accuracy and identify potential sources of variability among these studies. METHODS: The PubMed, Cochrane Library, Embase, and Web of Science databases were searched to identify relevant literature. Then, Stata 14.0 was utilized to calculate summary estimates for diagnostic parameters, including sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the summary receiver operating characteristic (ROC). To scrutinize the heterogeneity, the Cochran-Q test and I2 statistic were utilized. As significant heterogeneity was observed, the random effects model was chosen. To explore potential sources of the heterogeneity, subgroup and regression analyses were conducted. RESULTS: We analysed 12 articles reporting on 24 studies involving 1817 patients and 1731 healthy controls. The pooled sensitivity was 0.77 (95% CI 0.73-0.81), the specificity was 0.81 (95% CI 0.73-0.86), the PLR was 3.99 (95% CI 2.81-5.65), the NLR was 0.28 (95% CI 0.23-0.35), the DOR was 14.18 (95% CI 8.47-23.73), and the area under the curve (AUC) was 0.85 (95% CI 0.81-0.87). Subgroup analysis revealed that multiple miRNAs can improve diagnostic performance; the pooled sensitivity of multiple miRNAs was 0.78 (95% CI 0.68-0.86), the specificity was 0.85 (95% CI 0.78-0.90), and the AUC was 0.89 (95% CI 0.86-0.91). CONCLUSION: This study suggested that circulating microRNAs may be biomarkers for early CC diagnosis.

19.
Biomed Pharmacother ; 175: 116646, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692058

ABSTRACT

The Golgi apparatus plays a crucial role in mediating the modification, transport, and sorting of intracellular proteins and lipids. The morphological changes occurring in the Golgi apparatus are exceptionally important for maintaining its function. When exposed to external pressure or environmental stimulation, the Golgi apparatus undergoes adaptive changes in both structure and function, which are known as Golgi stress. Although certain signal pathway responses or post-translational modifications have been observed following Golgi stress, further research is needed to comprehensively summarize and understand the related mechanisms. Currently, there is evidence linking Golgi stress to neurodegenerative diseases; however, the role of Golgi stress in the progression of neurodegenerative diseases such as Alzheimer's disease remains largely unexplored. This review focuses on the structural and functional alterations of the Golgi apparatus during stress, elucidating potential mechanisms underlying the involvement of Golgi stress in regulating immunity, autophagy, and metabolic processes. Additionally, it highlights the pivotal role of Golgi stress as an early signaling event implicated in the pathogenesis and progression of neurodegenerative diseases. Furthermore, this study summarizes prospective targets that can be therapeutically exploited to mitigate neurodegenerative diseases by targeting Golgi stress. These findings provide a theoretical foundation for identifying novel breakthroughs in preventing and treating neurodegenerative diseases.


Subject(s)
Golgi Apparatus , Neurodegenerative Diseases , Humans , Golgi Apparatus/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Animals , Signal Transduction , Autophagy/physiology , Stress, Physiological/physiology
20.
Plant Cell ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801741

ABSTRACT

The phytohormone jasmonate (JA) plays a central role in plant defenses against biotic stressors. However, our knowledge of the JA signaling pathway in rice (Oryza sativa) remains incomplete. Here, we integrated multi-omic data from three tissues to characterize the functional modules involved in organizing JA-responsive genes. In the core regulatory sector, MYC2 transcription factor transcriptional cascades are conserved. in different species but with distinct regulators (e.g. bHLH6 in rice)., in which genes are early expressed across all tissues. In the feedback sector, MYC2 also regulates the expression of JA repressor and catabolic genes, providing negative feedback that truncates the duration of JA responses. For example, the MYC2-regulated NAC (NAM, ATAF1/2 and CUC2) transcription factor genes NAC1, NAC3, and NAC4 encode proteins that repress JA signaling and herbivore resistance. In the tissue-specific sector, many late-expressed genes are associated with the biosynthesis of specialized metabolites that mediate particular defensive functions. For example, the terpene synthase gene TPS35 is specifically induced in the leaf sheath and TPS35 functions in defense against oviposition by brown planthoppers and the attraction of this herbivore's natural enemies. Thus, by characterizing core, tissue-specific, and feedback sectors of JA-elicited defense responses, this work provides a valuable resource for future discoveries of key JA components in this important crop.

SELECTION OF CITATIONS
SEARCH DETAIL