Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.393
Filter
1.
ACS Omega ; 9(25): 27509-27516, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38947782

ABSTRACT

Vesicle hydrogels are supramolecular structures formed by the self-assembly of surfactant molecules in solution, which have great application prospects. The phase behavior of perfluorononanoic acid (C8F17COOH) and an amphoteric hydrocarbon surfactant, tetradecyl dimethylaminoxide (C14DMAO), in an aqueous solution has been studied. By changing the mixing ratio and concentration of C8F17COOH and C14DMAO, the phase diagram of the system was drawn, and interestingly, a hydrogel composed of polyhedral and spherical vesicles was successfully constructed. The formation mechanism of the polyhedral and spherical vesicle hydrogel was studied by differential scanning calorimetry (DSC), small-angle X-ray diffraction (XRD), wide-angle X-ray scattering (WAXS), and 1H nuclear magnetic resonance (1H NMR) measurements, and the rheological properties and influencing factors of the hydrogel were systematically investigated. The formation of the vesicle hydrogels in this system was considered to be caused by the "cocrystallization" of two surfactant molecular chains.

2.
Inorg Chem ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950326

ABSTRACT

Inorganic materials doped with chromium (Cr) ions generate remarkable and adjustable broadband near-infrared (NIR) light, offering promising applications in the fields of imaging and night vision technology. However, achieving high efficiency and thermal stability in these broadband NIR phosphors poses a significant challenge for their practical application. Here, we employ crystal field engineering to modulate the NIR characteristics of Cr3+-doped Gd3Ga5O12 (GGG). The Gd3MgxGa5-2xGexO12 (GMGG):7.5% Cr3+ (x = 0, 0.05, 0.15, 0.20, and 0.40) phosphors with NIR emission are developed through the cosubstitution of Mg2+ and Ge4+ for Ga3+ sites. This cosubstitution strategy also effectively reduces the crystal field strength around Cr3+ ions, which results in a significant enhancement of the photoluminescence (PL) full width at half-maximum (fwhm) from 97 to 165 nm, alongside a red shift in the PL peak and an enhancement of the PL intensity up to 2.3 times. Notably, the thermal stability of the PL behaviors is also improved. The developed phosphors demonstrate significant potential in biological tissue penetration and night vision, as well as an exceptional scintillation performance for NIR scintillator imaging. This research paves a new perspective on the development of high-performance NIR technology in light-emitting diodes (LEDs) and X-ray imaging applications.

3.
Materials (Basel) ; 17(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38930339

ABSTRACT

The emphasis of this study is placed on the investigation into the failure mechanisms of the fabric membranes when exposed to such defective cracks. This experimental study investigates the initial crack of a flat circle and conducts a uniaxial shear test on the membrane materials. The deformation of the membrane materials is obtained through an optical non-contact scanner. Our study has been conducted to assess the crack propagation of fabric membrane materials at different angles. The relationships between crack width and stress together with stress and strain are also obtained. Based on the results, a mechanic of failure on the membrane was proposed. Moreover, new findings into the ductility and energy absorption of the fabric membrane materials have been established to inform the failure mechanisms.

4.
Food Funct ; 15(13): 7003-7016, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38855929

ABSTRACT

Food proteins are considered an ideal source for the identification of bioactive peptides with the potential to intervene in nutrition-related chronic diseases such as cardiovascular disease, obesity, and diabetes. Egg white-derived peptides (EWPs) have been shown to improve glucose tolerance in insulin-resistant rats. However, underlying mechanisms are to be elucidated. Therefore, we hypothesized that EWP exerts a hypoglycemic effect by regulating hepatic glucose homeostasis. Our results showed that 7 weeks of EWP treatment reduced the fasting blood glucose in T2DM mice and the inhibition of the liver gluconeogenic pathway was involved in the mechanisms of actions. Using the untargeted metabolomics technique, we found that EWP treatment also altered the hepatic metabolic profile in T2DM mice, in which, the role of fatty acid esters of hydroxy fatty acids in mediating the hypoglycemic effect of EWPs might be pivotal.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Diet, High-Fat , Gluconeogenesis , Liver , Peptides , Animals , Gluconeogenesis/drug effects , Mice , Liver/metabolism , Liver/drug effects , Male , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects , Peptides/pharmacology , Mice, Inbred C57BL , Signal Transduction/drug effects , Streptozocin , Diabetes Mellitus, Experimental/metabolism , Egg White/chemistry , Metabolome/drug effects
5.
ACS Nano ; 18(26): 17031-17040, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38874427

ABSTRACT

The formation of uniform, nondendritic seeds is essential to realizing dense lithium (Li) metal anodes and long-life batteries. Here, we discover that faceted Li seeds with a hexagonal shape can be uniformly grown on carbon-polymer composite films. Our investigation reveals the critical role of carbon defects in serving as the nucleation sites for their formation. Tuning the density and spatial distribution of defects enables the optimization of conditions for faceted seed growth. Raman spectral results confirm that lithium nucleation indeed starts at the defect sites. The uniformly distributed crystalline seeds facilitate low-porosity Li deposition, effectively reducing Li pulverization during cycling and unlocking the fast-charging ability of Li metal batteries. At a 1 C rate, full cells using LiNi0.8Mn0.1Co0.1O2 cathode (4.5 mA h cm-2) paired with a lithium anode grown on carbon composite films achieve a 313% improvement in cycle life compared to baseline cells. Polymer composites with carbonaceous materials rich in defects are scalable, low-cost substrates for high-rate, high-energy-density batteries.

6.
Nat Commun ; 15(1): 4838, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898012

ABSTRACT

Schistosomiasis is a neglected tropical disease caused by Schistosoma parasites. Schistosoma are obligate parasites of freshwater Biomphalaria and Bulinus snails, thus controlling snail populations is critical to reducing transmission risk. As snails are sensitive to environmental conditions, we expect their distribution is significantly impacted by global change. Here, we used machine learning, remote sensing, and 30 years of snail occurrence records to map the historical and current distribution of forward-transmitting Biomphalaria hosts throughout Brazil. We identified key features influencing the distribution of suitable habitat and determined how Biomphalaria habitat has changed with climate and urbanization over the last three decades. Our models show that climate change has driven broad shifts in snail host range, whereas expansion of urban and peri-urban areas has driven localized increases in habitat suitability. Elucidating change in Biomphalaria distribution-while accounting for non-linearities that are difficult to detect from local case studies-can help inform schistosomiasis control strategies.


Subject(s)
Biomphalaria , Climate Change , Ecosystem , Schistosoma mansoni , Schistosomiasis mansoni , Urbanization , Animals , Brazil , Schistosoma mansoni/physiology , Biomphalaria/parasitology , Schistosomiasis mansoni/transmission , Schistosomiasis mansoni/epidemiology , Schistosomiasis mansoni/parasitology , Snails/parasitology , Snails/physiology , Humans
7.
BMC Oral Health ; 24(1): 742, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937712

ABSTRACT

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide, characterized by high morbidity, high mortality, and poor prognosis. Collagen triple helix repeat containing 1 (CTHRC1) has been shown to be highly expressed in various cancers. However, its biological functions, potential role as a biomarker, and its relationship with immune infiltrates in HNSCC remain unclear. Our principal objective was to analyze CTHRC1 expression, its prognostic implications, biological functions, and its effects on the immune system in HNSCC patients using bioinformatics analysis. METHODS: The expression matrix was obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). CTHRC1 expression in HNSCC was analyzed between tumor and adjacent normal tissues, different stages were compared, and its impact on clinical prognosis was assessed using Kaplan-Meier analysis. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Variation Analysis (GSVA) were employed for enrichment analysis. The Search Tool for the Retrieval of Interacting Genes database (STRING) was used to analyze protein-protein interactions. Pearson correlation tests were used to investigate the association between CTHRC1 expression and immune checkpoints. The correlation between CTHRC1 and immune infiltration was investigated using CIBERSORT, TIMER, and ESTIMATE. RESULTS: Compared to adjacent normal tissues, CTHRC1 was found to be highly overexpressed in tumors. Increased expression of CTHRC1 was more evident in the advanced stage of HNSCC and predicted a poor prognosis. Most genes related to CTHRC1 in HNSCC were enriched in physiological functions of Extracellular matrix(ECM) and tumor. Furthermore, several immune checkpoints, such as TNFSF4 and CD276 have been shown to be associated with CTHRC1 expression. Notably, the level of CTHRC1 expression correlated significantly with immune infiltration levels, particularly activated macrophages in HNSCC. CONCLUSIONS: High expression of CTHRC1 predicts poor prognosis and is associated with immune infiltration in HNSCC, confirming its utility as a tumor marker for HNSCC. TRIAL REGISTRATION: Not applicable. All data are from public databases and do not contain any clinical trials.


Subject(s)
Biomarkers, Tumor , Extracellular Matrix Proteins , Head and Neck Neoplasms , Squamous Cell Carcinoma of Head and Neck , Humans , Biomarkers, Tumor/metabolism , Prognosis , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/genetics , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Computational Biology , Male
8.
Int J Mol Sci ; 25(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38928077

ABSTRACT

Mechanical ventilation (MV), used in patients with acute lung injury (ALI), induces diaphragmatic myofiber atrophy and contractile inactivity, termed ventilator-induced diaphragm dysfunction. Phosphoinositide 3-kinase-γ (PI3K-γ) is crucial in modulating fibrogenesis during the reparative phase of ALI; however, the mechanisms regulating the interactions among MV, myofiber fibrosis, and PI3K-γ remain unclear. We hypothesized that MV with or without bleomycin treatment would increase diaphragm muscle fibrosis through the PI3K-γ pathway. Five days after receiving a single bolus of 0.075 units of bleomycin intratracheally, C57BL/6 mice were exposed to 6 or 10 mL/kg of MV for 8 h after receiving 5 mg/kg of AS605240 intraperitoneally. In wild-type mice, bleomycin exposure followed by MV 10 mL/kg prompted significant increases in disruptions of diaphragmatic myofibrillar organization, transforming growth factor-ß1, oxidative loads, Masson's trichrome staining, extracellular collagen levels, positive staining of α-smooth muscle actin, PI3K-γ expression, and myonuclear apoptosis (p < 0.05). Decreased diaphragm contractility and peroxisome proliferator-activated receptor-γ coactivator-1α levels were also observed (p < 0.05). MV-augmented bleomycin-induced diaphragm fibrosis and myonuclear apoptosis were attenuated in PI3K-γ-deficient mice and through AS605240-induced inhibition of PI3K-γ activity (p < 0.05). MV-augmented diaphragm fibrosis after bleomycin-induced ALI is partially mediated by PI3K-γ. Therapy targeting PI3K-γ may ameliorate MV-associated diaphragm fibrosis.


Subject(s)
Acute Lung Injury , Bleomycin , Diaphragm , Disease Models, Animal , Fibrosis , Mice, Inbred C57BL , Animals , Bleomycin/adverse effects , Diaphragm/metabolism , Diaphragm/pathology , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Acute Lung Injury/metabolism , Male , Respiration, Artificial/adverse effects , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Class Ib Phosphatidylinositol 3-Kinase/genetics , Transforming Growth Factor beta1/metabolism , Apoptosis/drug effects , Quinoxalines , Thiazolidinediones
9.
PLoS Negl Trop Dis ; 18(6): e0011836, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38857289

ABSTRACT

The geographical range of schistosomiasis is affected by the ecology of schistosome parasites and their obligate host snails, including their response to temperature. Previous models predicted schistosomiasis' thermal optimum at 21.7°C, which is not compatible with the temperature in sub-Saharan Africa (SSA) regions where schistosomiasis is hyperendemic. We performed an extensive literature search for empirical data on the effect of temperature on physiological and epidemiological parameters regulating the free-living stages of S. mansoni and S. haematobium and their obligate host snails, i.e., Biomphalaria spp. and Bulinus spp., respectively. We derived nonlinear thermal responses fitted on these data to parameterize a mechanistic, process-based model of schistosomiasis. We then re-cast the basic reproduction number and the prevalence of schistosome infection as functions of temperature. We found that the thermal optima for transmission of S. mansoni and S. haematobium range between 23.1-27.3°C and 23.6-27.9°C (95% CI) respectively. We also found that the thermal optimum shifts toward higher temperatures as the human water contact rate increases with temperature. Our findings align with an extensive dataset of schistosomiasis prevalence in SSA. The refined nonlinear thermal-response model developed here suggests a more suitable current climate and a greater risk of increased transmission with future warming for more than half of the schistosomiasis suitable regions with mean annual temperature below the thermal optimum.


Subject(s)
Schistosoma haematobium , Schistosoma mansoni , Temperature , Animals , Humans , Schistosoma haematobium/physiology , Schistosoma mansoni/physiology , Africa South of the Sahara/epidemiology , Biomphalaria/parasitology , Schistosomiasis/transmission , Schistosomiasis/epidemiology , Schistosomiasis mansoni/transmission , Schistosomiasis mansoni/epidemiology , Bulinus/parasitology , Schistosomiasis haematobia/transmission , Schistosomiasis haematobia/epidemiology , Prevalence
10.
J Fungi (Basel) ; 10(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38921396

ABSTRACT

Strawberry root rot caused by Fusarium solani is one of the main diseases of strawberries and significantly impacts the yield and quality of strawberry fruit. Biological control is becoming an alternative method for the control of plant diseases to replace or decrease the application of traditional chemical fungicides. To obtain antagonistic bacteria with a high biocontrol effect on strawberry root rot, over 72 rhizosphere bacteria were isolated from the strawberry rhizosphere soil and screened for their antifungal activity against F. solani by dual culture assay. Among them, strains CMS5 and CMR12 showed the strongest inhibitory activity against F. solani (inhibition rate 57.78% and 65.93%, respectively) and exhibited broad-spectrum antifungal activity. According to the phylogenetic tree based on 16S rDNA and gyrB genes, CMS5 and CMR12 were identified as Bacillus amyloliquefaciens. Lipopeptide genes involved in surfactin, iturin, and fengycin biosynthesis were detected in the DNA genomes of CMS5 and CMR12 by PCR amplification. The genes related to the three major lipopeptide metabolites existed in the DNA genome of strains CMS5 and CMR12, and the lipopeptides could inhibit the mycelial growth of F. solani and resulted in distorted hyphae. The inhibitory rates of lipopeptides of CMS5 and CMR12 on the spore germination of F. solani were 61.00% and 42.67%, respectively. The plant-growth-promoting (PGP) traits in vitro screening showed that CMS5 and CMR12 have the ability to fix nitrogen and secreted indoleacetic acid (IAA). In the potting test, the control efficiency of CMS5, CMR12 and CMS5+CMR12 against strawberry root rot were 65.3%, 67.94% and 88.00%, respectively. Furthermore, CMS5 and CMR12 enhanced the resistance of strawberry to F. solani by increasing the activities of defense enzymes MDA, CAT and SOD. Moreover, CMS5 and CMR12 significantly promoted the growth of strawberry seedlings such as root length, seedling length and seedling fresh weight. This study revealed that B. amyloliquefaciens CMS5 and CMR12 have high potential to be used as biocontrol agents to control strawberry root rot.

11.
Adv Mater ; : e2406594, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940263

ABSTRACT

Sulfurized polyacrylonitrile (SPAN) has recently emerged as a promising cathode for high-energy Li metal batteries owing to its high capacity, extended cycle life, and liberty from costly transition metals. As the high capacities of both Li metal and SPAN lead to relatively small electrode weights, the weight and specific energy density of Li/SPAN batteries are particularly sensitive to electrolyte weight, highlighting the importance of minimizing electrolyte density. In addition, the large volume changes of Li metal anode and SPAN cathode require inorganic-rich interphases that can guarantee intactness and protectivity throughout long cycles. This work addresses these crucial aspects with an electrolyte design in which lightweight dibutyl ether (DBE) is used as diluent for concentrated LiFSI-triethyl phosphate (TEP) solution. The designed electrolyte (d = 1.04 g mL-1) is 40-50% lighter than conventional localized high-concentration electrolytes (LHCEs), leading to 12-20% extra energy density at the cell level. Besides, the use of DBE introduces substantial solvent-diluent affinity, resulting in a unique solvation structure with strengthened capability to form favorable anion-derived inorganic-rich interphases, minimize electrolyte consumption, and improve cell cyclability. Our electrolyte also exhibits lower volatility than carbonate electrolytes and offers enhanced protection to both Li metal anode and SPAN cathode under thermal abuse. This article is protected by copyright. All rights reserved.

12.
Int J Biol Macromol ; 274(Pt 1): 133284, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906344

ABSTRACT

Cell migration regulated by Thrombospondin 2 (THSB2) is important for the development of pulmonary artery remodeling, but the mechanism by which THBS2-mediated cell migration regulates the development of pulmonary artery remodeling in broiler ascites syndrome (AS) is unclear. In addition, the lack of chicken THBS2 antibodies makes it difficult to study the mechanism in depth. In our study, we used recombinant gene technology, protein purification, and other techniques to obtain mouse anti-chicken THBS2 antibody and analyze its expression in broilers, ascites broilers and other animals. The results showed that we immunized mouse with recombinant THBS2 protein and obtained an antibody titer of 1:204,800, and the addition of astragalus polysaccharide as an immunomodulator during immunization significantly increased the titer of the antibody. Western blotting (WB) and immunofluorescence results showed that the THBS2 was significantly down-regulated in the ascites broiler. The THBS2 antibody we prepared can also detect THBS2 protein in duck, mouse, goat, and rabbit tissues. These results provide a foundation for further investigation of the role of THBS2 in pulmonary artery remodeling in broiler ascites syndrome and a powerful tool for studying the role of THBS2 in AS.

13.
Sci Data ; 11(1): 662, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909031

ABSTRACT

Recent conservation efforts to protect rare and endangered aquatic species have intensified. Nevertheless, the ornate spiny lobster (Panulirus ornatus), which is prevalent in the Indo-Pacific waters, has been largely ignored. In the absence of a detailed genomic reference, the conservation and population genetics of this crustacean are poorly understood. Here, We assembled a comprehensive chromosome-level genome for P. ornatus. This genome-among the most detailed for lobsters-spans 2.65 Gb with a contig N50 of 51.05 Mb, and 99.11% of the sequences with incorporated to 73 chromosomes. The ornate spiny lobster genome comprises 65.67% repeat sequences and 22,752 protein-coding genes with 99.20% of the genes functionally annotated. The assembly of the P. ornatus genome provides valuable insights into comparative crustacean genomics and endangered species conservation, and lays the groundwork for future research on the speciation, ecology, and evolution of the ornate spiny lobster.


Subject(s)
Chromosomes , Genome , Palinuridae , Animals , Palinuridae/genetics , Endangered Species
14.
J Am Chem Soc ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38859684

ABSTRACT

Reducing iridium (Ir) catalyst loading for acidic oxygen evolution reaction (OER) is a critical strategy for large-scale hydrogen production via proton exchange membrane (PEM) water electrolysis. However, simultaneously achieving high activity, long-term stability, and reduced material cost remains challenging. To address this challenge, we develop a framework by combining density functional theory (DFT) prediction using model surfaces and proof-of-concept experimental verification using thin films and nanoparticles. DFT results predict that oxidized Ir monolayers over titanium nitride (IrOx/TiN) should display higher OER activity than IrOx while reducing Ir loading. This prediction is verified by depositing Ir monolayers over TiN thin films via physical vapor deposition. The promising thin film results are then extended to commercially viable powder IrOx/TiN catalysts, which demonstrate a lower overpotential and higher mass activity than commercial IrO2 and long-term stability of 250 h to maintain a current density of 10 mA cm-2. The superior OER performance of IrOx/TiN is further confirmed using a proton exchange membrane water electrolyzer (PEMWE), which shows a lower cell voltage than commercial IrO2 to achieve a current density of 1 A cm-2. Both DFT and in situ X-ray absorption spectroscopy reveal that the high OER performance of IrOx/TiN strongly depends on the IrOx-TiN interaction via direct Ir-Ti bonding. This study highlights the importance of close interaction between theoretical prediction based on mechanistic understanding and experimental verification based on thin film model catalysts to facilitate the development of more practical powder IrOx/TiN catalysts with high activity and stability for acidic OER.

15.
Front Immunol ; 15: 1345046, 2024.
Article in English | MEDLINE | ID: mdl-38827732

ABSTRACT

Introduction: Recently, more and more research illustrated the importance of inducing CD4+ T helper type (Th)-1 dominant immunity for the success of tumor immunotherapy. Our prior studies revealed the crucial role of CD4+ Th1 cells in orchestrating systemic and durable antitumor immunity, which contributes to the satisfactory outcomes of the novel cryo-thermal therapy in the B16F10 tumor model. However, the mechanism for maintaining the cryo-thermal therapy-mediated durable CD4+ Th1-dominant response remains uncovered. Additionally, cryo-thermal-induced early-stage CD4+ Th1-dominant T cell response showed a correlation with the favorable prognosis in patients with colorectal cancer liver metastasis (CRCLM). We hypothesized that CD4+ Th1-dominant differentiation induced during the early stage post cryo-thermal therapy would affect the balance of CD4+ subsets at the late phase. Methods: To understand the role of interferon (IFN)-γ, the major effector of Th1 subsets, in maintaining long-term CD4+ Th1-prone polarization, B16F10 melanoma model was established in this study and a monoclonal antibody was used at the early stage post cryo-thermal therapy for interferon (IFN)-γ signaling blockade, and the influence on the phenotypic and functional change of immune cells was evaluated. Results: IFNγ at the early stage after cryo-thermal therapy maintained long-lasting CD4+ Th1-prone immunity by directly controlling Th17, Tfh, and Tregs polarization, leading to the hyperactivation of Myeloid-derived suppressor cells (MDSCs) represented by abundant interleukin (IL)-1ß generation, and thereby further amplifying Th1 response. Discussion: Our finding emphasized the key role of early-phase IFNγ abundance post cryo-thermal therapy, which could be a biomarker for better prognosis after cryo-thermal therapy.


Subject(s)
Cell Differentiation , Interferon-gamma , Melanoma, Experimental , Mice, Inbred C57BL , Th1 Cells , Animals , Th1 Cells/immunology , Mice , Interferon-gamma/metabolism , Cell Differentiation/immunology , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Cryotherapy/methods , Cell Line, Tumor , Female
16.
J Mech Behav Biomed Mater ; 157: 106605, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38852242

ABSTRACT

Peri-implantitis and insufficient osseointegration are the principal challenges faced by dental implants at present. In order to fabricate dual-function dental implant materials possessing both antibacterial and osteogenic capabilities, this study incorporates the antimicrobial element Cu into the Ti40Nb alloy, developing a novel Ti40Nb-xCu alloy with antibacterial properties. Among them, Ti40Nb3Cu has the best overall performance. Compared to Ti40Nb, the tensile strength increased by 27.97%, reaching 613 MPa. Although the elongation rate has decreased from 23% to 13.5%, the antibacterial rates against S. aureus and P. gingivalis both exceed 85%. Furthermore, the surface of Ti40Nb-xCu alloy was then treated with micro-arc oxidation to enhance its bioactivity, thereby accelerating osseointegration. The results indicated that the MAO treatment retains the antibacterial properties of the Ti40Nb3Cu alloy while significantly promoting bone formation through its introduced porous coating, thus heralding it as a propitious candidate material for dental implant applications.

17.
Appl Opt ; 63(12): 3156-3161, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38856460

ABSTRACT

Lithium niobate (LN)-based metasurfaces have demonstrated remarkable potential in integrated electro-optically adjustable metadevices with the maturation of thin film LN on insulator (LNOI) technology. Here, we proposed a type of high Q factor tunable metasurface with etchless LN, which is electrically driven in the vertical direction by using transparent conductive film. A transmission amplitude modulation of over 60 dB at a voltage of 20 V is realized through guided mode resonances created at the LN layer with a Q factor of 1320. Meanwhile, phase modulation is also realized with a reflective design by adding a gold layer at the bottom of the metasurface. With a gate voltage of 80 V, about 1.75π phase modulation is achieved while keeping reflection over 92%. Our proposed device achieves effective modulation of optical amplitude and phase in the near-infrared band, which lays a good foundation for the development of high performance LN-based active nanophotonic devices.

18.
Front Neurol ; 15: 1365525, 2024.
Article in English | MEDLINE | ID: mdl-38846033

ABSTRACT

Background: The disruption of intracranial fluid dynamics due to large unruptured cerebral arteriovenous malformation (AVM) commonly triggers a domino effect within the central nervous system. This phenomenon is frequently overlooked in prior clinic and may lead to catastrophic misdiagnoses. Our team has documented the world's first case of so-called AVM Pentalogy (AVMP) induced by a AVM. Clinical presentation and result: A 30-year-old female was first seen 9 years ago with an occasional fainting, at which time a huge unruptured AVM was discovered. Subsequently, due to progressive symptoms, she sought consultations from several prestigious neurosurgical departments in China, where all consulting neurosurgeons opted for conservation treatment due to perceived surgical risks. During the follow-up period, the patient gradually presented with hydrocephalus, empty sella, secondary Chiari malformation, syringomyelia, and scoliosis (we called as AVMP). When treated in our department, she already displayed numerous symptoms, including severe intracranial hypertension. Our team deduced that the hydrocephalus was the primary driver of her AVMP symptoms, representing the most favorable risk profile for intervention. As expected, a ventriculoperitoneal shunt successfully mitigated all symptoms of AVMP at 21-months post-surgical review. Conclusion: During the monitoring of unruptured AVM, it is crucial to remain vigilant for the development or progression of AVMP. When any component of AVMP is identified, thorough etiological studies and analysis of cascade reactions are imperative to avert misdiagnosis. When direct AVM intervention is not viable, strategically addressing hydrocephalus as part of the AVMP may serve as the critical therapeutic focus.

19.
Int Immunopharmacol ; 137: 112429, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38851157

ABSTRACT

BACKGROUND: Currently, no perfect treatment for neovascularization and lymphangiogenesis exist, and each treatment method has its complications and side effects. This study aimed to investigate the anti-angiogenic and anti-inflammatory effects of cannabidiol and its mechanism of action. METHOD: An in vivo corneal neovascularization (CNV) model was established using the suture method to investigate the inhibitory effects of CBD on suture-induced corneal inflammation, pathological blood vessel formation, and lymphangiogenesis. Additionally, the impact of CBD on immune cells was studied. In vitro methodologies, including cell sorting and co-culture, were employed to elucidate its mechanism of action. RESULTS: Compared with the CNV group, CBD can inhibit CNV, lymphangiogenesis, and inflammation induced via the suture method. In addition, CBD specifically induced CD45+CD11b+Gr-1+ cell upregulation, which significantly inhibited the proliferation of CD4+ T lymphocytes in vitro and exhibited a CD31+ phenotype, proving that they were myeloid-derived suppressor cells (MDSCs). We administered anti-Gr-1 to mice to eliminate MDSCs in vivo and found that anti-Gr-1 partially reversed the anti-inflammatory and angiogenic effects of CBD. Furthermore, we found that compared with MDSCs in the normal group, CBD-induced MDSCs overexpress peroxisome proliferator-activated receptor-gamma (PPAR-γ). Administering PPAR-γ inhibitor in mice almost reversed the induction of MDSCs by CBD, demonstrating the role of PPAR-γ in the function of CBD. CONCLUSION: This study indicates that CBD may induce MDSCs upregulation by activating the nuclear receptor PPAR-γ, exerting anti-inflammatory, antiangiogenic, and lymphangiogenic effects, and revealing potential therapeutic targets for corneal neovascularization and lymphangiogenesis.

20.
Ecotoxicology ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851654

ABSTRACT

Rapid evaluation of the toxicity of metals using fish embryo acute toxicity is facilitative to ecological risk assessment of aquatic organisms. However, this approach has seldom been utilized for the comparative study on the effects of different metals to fish. In this study, acute and sub-chronic tests were used to compare the toxicity of Se(IV) and Cd in the embryos and larvae of Japanese medaka (Oryzias latipes). The embryos with different levels of dechorionation and/or pre-exposure were also exposed to Se(IV) and Cd at various concentrations. The results showed that the LC50-144 h of Cd was 1.3-5.2 folds higher than that of Se(IV) for the embryos. In contrast, LC50-96 h of Se(IV) were 200-400 folds higher than that of Cd for the larvae. Meanwhile, dechorionated embryos were more sensitive to both Se and Cd than the intact embryos. At elevated concentrations, both Se and Cd caused mortality and deformity in the embryos and larvae. In addition, pre-exposure to Cd at the embryonic stages enhanced the resistance to Cd in the larvae. However, pre-exposure to Se(IV) at the embryonic stages did not affect the toxicity of Se(IV) to the larvae. This study has distinguished the nuance differences in effects between Se(IV) and Cd after acute and sub-chronic exposures with/without chorion. The approach might have a potential in the comparative toxicology of metals (or other pollutants) and in the assessment of their risks to aquatic ecosystems.

SELECTION OF CITATIONS
SEARCH DETAIL
...