Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.887
Filter
1.
J Ethnopharmacol ; 336: 118735, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39182701

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Melastoma dodecandrum Lour. (MD), a traditional Chinese medicine used by the She ethnic group, has been used to treat cerebral ischemia-reperfusion (CIR) injury due to its efficacy in promoting blood circulation and removing blood stasiss; however, the therapeutic effects and mechanisms of MD in treating CIR injury remain unclear. AIM: To investigate the protective effects of MD on CIR injury, in addition to its impact on oxidative stress, endoplasmic reticulum (ER) stress, and cell apoptosis. MATERIALS AND METHODS: The research was conducted using both cell experiments and animal experiments. The CCK-8 method, immunofluorescence staining, and flow cytometry were used to analyze the effects of MD-containing serum on oxygen-glucose deprivation/reperfusion (OGD/R)-induced PC12 cell viability, reactive oxygen species (ROS) clearance, anti-inflammatory, neuroprotection and inhibition of apoptosis. Furthermore, 2,3,5-Triphenyl tetrazolium chloride staining, hematoxylin and eosin staining, Nissl staining, and immunohistochemistry were used to detect infarct size, pathological changes, Nissl corpuscula and neuronal protein expression in middle cerebral artery occlusion (MCAO) rats. Polymerase chain reaction and Western Blotting were conducted in cell and animal experiments to detect the expression levels of ER stress-related genes and proteins. RESULTS: The MD extract enhanced the viability of PC12 cells under OGD/R modeling, reduced ROS and IL-6 levels, increased MBP levels, and inhibited cell apoptosis. Furthermore, MD improved the infarct area in MCAO rats, increased the number of Nissl bodies, and regulated neuronal protein levels including Microtubule-Associated Protein 2 (MAP-2), Myelin Basic Protein (MBP), Glial Fibrillary Acidic Protein (GFAP), and Neurofilament 200 (NF200). Additionally, MD could regulate the expression levels of oxidative stress proteins malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), and catalase (CAT). Both cell and animal experiments demonstrated that MD could inhibit ER stress-related proteins (GRP78, ATF4, ATF6, CHOP) and reduce cell apoptosis. CONCLUSION: This study confirmed that the therapeutic mechanism of the MD extract on CIR injury was via the inhibition of oxidative stress and the ER stress pathway, in addition to the inhibition of apoptosis.


Subject(s)
Apoptosis , Endoplasmic Reticulum Stress , Neuroprotective Agents , Oxidative Stress , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Endoplasmic Reticulum Stress/drug effects , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Oxidative Stress/drug effects , Rats , PC12 Cells , Male , Neuroprotective Agents/pharmacology , Apoptosis/drug effects , Infarction, Middle Cerebral Artery/drug therapy , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , Brain Ischemia/drug therapy , Plant Extracts/pharmacology , Plant Extracts/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
2.
Anticancer Drugs ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39259687

ABSTRACT

Acute myeloid leukemia is the most common type of acute leukemia in adults. The epigenetic molecule BRD4 is a member of the bromodomain and extra-terminal family and plays an important role in the occurrence and development of tumors. BRD4 is essential for oncogene expression, including c-Myc. So, BRD4 inhibition is considered as an effective strategy for the treatment of hematological and solid malignancies. In recent years, several small molecule inhibitors targeting BRD4 have been developed. However, these inhibitors had excessive hematological toxicity due to the lack of specific binding to BD1 and BD2 domains of BRD4, while other inhibitors with high selectivity lose their antitumor efficacy. To balance the relationship between efficacy and safety, we developed EP-0108A, a BRD4 inhibitor with moderate selectivity for the BD2 domain over BD1 domain of BRD4. Our results show that EP-0108A has antitumor effects in MV4-11 and Kasumi-1 cell line-derived xenograft mouse models without significant effects on heart or breathing safe in rats and Beagle dogs. In repeated dose toxicity studies, EP-0108A showed reversible hematological and gastrointestinal toxicity in both rats and dogs. Our findings indicate that EP-0108A has the potential to be a new therapeutic agent for the treatment of cancer.

3.
Transplant Rev (Orlando) ; 38(4): 100878, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39260119

ABSTRACT

BACKGROUNDS: Tacrolimus is a cornerstone of posttransplantation immunosuppressive regimens. Despite routine monitoring, the efficacy of its trough concentrations in reflecting drug concentration fluctuations is limited. Intrapatient variability (IPV) emerges as a novel monitoring marker for predicting clinical outcomes. However, understanding the factors affecting IPV and assessing interventions to address it remain enigmatic, posing a conundrum in clinical management. OBJECTIVES: This systematic review aimed to investigate a spectrum of factors affecting IPV and assess the effect of strategic interventions, thereby charting a course for enhanced clinical stewardship. METHODS: We electronically searched of PubMed, Embase, and the Cochrane Library databases for studies investigating factors and interventions affecting IPV up to October 2023. Two reviewers independently screened literature, extracted data, and assessed quality, using RevMan 5.4.1 software for meta-analysis. RESULTS: A total of 15 randomized controlled trials (RCTs), 34 cohort studies, and 20 self-controlled studies were included. The results indicated that IPV was significantly higher in cytochrome P450 3A5 (CYP3A5) expressers, nonadherent patients, patients taking proton pump inhibitors or statins, and Black or African American recipients, whereas recipients consuming extended-release formulation exhibited lower IPV. Additionally, the participation of pharmacists had a positive effect on improving IPV. CONCLUSIONS: Factors affecting IPV encompassed genotype, formulation, adherence, drug combinations, and ethnicity, with each factor exerting varying degrees of effect. Identifying these factors was crucial for developing targeted intervention strategies. While the participation of pharmacists held a promise in improving IPV, further investigation of interventions such as mobile technology, educational measures to enhance adherence, and personalized dosing regimens was warranted.

4.
Biochem Biophys Res Commun ; 735: 150667, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39260334

ABSTRACT

Autophagy is an evolutionarily conserved degradation pathway for maintaining cellular homeostasis and its dysregulation leads to numerous human diseases such as cancer. As a core protein for autophagy, ATG16L1 (autophagy related 16 like 1) is heavily regulated by post-translational modifications, including phosphorylation, ubiquitination, and methylation, which is critical for autophagy regulation. In this study, we identify HDAC1 (histone deacetylase 1) as a regulator of ATG16L1 acetylation and hence autophagy. Specifically, HDAC1 colocalizes and interacts with ATG16L1, and reduces its acetylation, which is highly dependent on its enzymatic activity. By promoting ATG16L1 deacetylation, HDAC1 enhances ATG16L1 interaction with the ATG12-ATG5 conjugate, resulting in the activation of autophagic pathway. Consistently, the induction of basal autophagy by HDAC1 in colorectal cancer cells largely relies on its deacetylase activity as well as ATG16L1. Moreover, HDAC1 enhances the survival, proliferation, and transformation of colorectal cancer cells in an ATG16L-dependent manner, indicating the fundamental roles of autophagy in colorectal cancer. Together, our findings uncover a novel regulatory mechanism of autophagy and suggest both HDAC1 and ATG16L1 as therapeutic targets for colorectal cancer.

5.
ISME J ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39255373

ABSTRACT

Heterotrophic nitrification remains a mystery for decades. It has been commonly hypothesized that heterotrophic nitrifiers oxidize ammonia to hydroxylamine and then to nitrite in a way similar to autotrophic AOA and AOB. Recently, heterotrophic nitrifiers from Alcaligenes were found to oxidize ammonia to hydroxylamine and then to N2 ("dirammox", direct ammonia oxidation) by the gene cluster dnfABC with a yet-to-be-reported mechanism. The role of a potential glutamine amidotransferase DnfC clues the heterotrophic ammonia oxidation might involving in glutamine. Here, we found Alcaligenes faecalis JQ135 could oxidize amino acids besides ammonia. We discovered that glutamine is an intermediate of the dirammox pathway and the glutamine synthetase gene is essential for both A. faecalis JQ135 and the E. coli cells harboring dnfABC gene cluster to oxidize amino acids and ammonia. Our study expands understanding of heterotrophic nitrifiers and challenges the classical paradigm of heterotrophic nitrification.

6.
Environ Res ; 263(Pt 1): 120029, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39299446

ABSTRACT

The understanding of activated sludge microbial status and roles is imperative for improving and enhancing the performance of wastewater treatment plants (WWTPs). In this study, we conducted a deep analysis of activated sludge microbial communities across five compartments (inflow, effluent, and aerobic, anoxic, anaerobic tanks) over temporal scales, employing high-throughput sequencing of 16S rRNA amplicons and metagenome data. Clearly discernible seasonal patterns, exhibiting cyclic variations, were observed in microbial diversity, assembly, co-occurrence network, and metabolic functions. Notably, summer samples exhibited higher α-diversity and were distinctly separated from winter samples. Our analysis revealed that microbial community assembly is influenced by both stochastic processes (66%) and deterministic processes (34%), with winter samples demonstrating more random assembly compared to summer. Co-occurrence patterns were predominantly mutualistic, with over 96% positive correlations, and summer networks were more organized than those in winter. These variations were significantly correlated with temperature, total phosphorus and sludge volume index. However, no significant differences were found among microbial community across five compartments in terms of ß diversity. A core community of keystone taxa was identified, playing key roles in eight nitrogen and eleven phosphorus cycling pathways. Understanding the assembly mechanisms, co-occurrence patterns, and functional roles of microbial communities is essential for the design and optimization of biotechnological treatment processes in WWTPs.

7.
Heliyon ; 10(16): e35800, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39220981

ABSTRACT

Background: Aging is the primary risk factor for the onset of Alzheimer's disease (AD). Inflamma-aging is a major feature in the process of aging, and the chronic neuroinflammation caused by inflamma-aging is closely related to AD. As the main participant of neuroinflammation, the polarization of microglia (MG) could influence the development of neuroinflammation. Objective: This study aims to observe the impact of YHD on microglia (MG) polarization and neuroinflammation to delay the onset and progression of AD. Methods: In vivo experiment, four-month senescence accelerated mouse prone 8 (SAMP8) were used as the model group, the SAMR1 mice of the same age were used as the control group. In YHD group, 6.24 g/kg YHD was intragastrically administrated continuously for 12 weeks, and Ibuprofen 0.026 g/kg in positive control group. Morris Water Maze test was used to evaluate the learning and memory ability, Nissl's staining and immunofluorescence double staining for neuron damage and MG M1/M2 polarization, Enzyme-Linked Immunosorbent Assay (ELISA) for neuroinflammation biomarkers in hippocampus, Western blot for key protein expression of TREM2/NF-κB signaling pathway. In vitro experiments, 10 µM/l Aß1-42 induced BV-2 cell model was used to re-verify the effect of YHD regulating MG polarization to reduce neuroinflammation. Also, TREM2 small interfering RNA (siRNA) was used to clarify the key target of YHD. Results: YHD could improve the learning and memory ability of SAMP8 mice evaluated by the Morris Water Maze test. Like Ibuprofen, YHD could regulate the M1/M2 polarization of MG and the levels of neuroinflammatory markers TNF-α and IL-10 in hippocampus, and relieve neuroinflammation and neuron loss. In addition, YHD could also regulate the expression of PU.1, TREM2, p-NF-κB P65 in the TREM2/NF-κB signaling pathway. Further in vitro experiments, we found that YHD had a significant regulatory effect on Aß1-42-induced BV-2 cell polarization, and it could significantly increase PU.1, TREM2, decrease p-NF-κB P65, p-IKKß, TNF-α, IL-6, IL-1ß. At the same time, using siRNA to inhibit TREM2, it proved that TREM2 was a key target for YHD to promote Aß1-42-induced BV-2 cell M2 polarization to reduce neuroinflammation. Conclusions: YHD could regulate the TREM2/NF-κB signaling pathway through TREM2, thereby to adjust MG polarization and reduce AD-related neuroinflammation.

9.
Endocrine ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251468

ABSTRACT

PURPOSE: Our goal was to compare the lateralization of 68Ga-pentixafor PET/CT with adrenal vein sampling (AVS) in primary aldosteronism (PA) patients with unilateral lesions. METHODS: We retrospectively enrolled 61 patients with PA and all patients showed unilateral nodular lesions on CT and underwent 68Ga-Pentixafor PET/CT. The general clinical data, imaging and AVS results were collected. The diagnostic efficiency of 68Ga-Pentixafor PET/CT imaging in PA patients was calculated by visual and semi-quantitative analysis to compare the consistency with AVS, and the correlation between CXCR4 express and 68Ga-Pentixafor uptake was performed. RESULTS: The study included 42 unilateral PA (UPA) and 19 bilateral PA (BPA). The area under curve (AUC) of 68Ga-Pentixafor PET/CT to diagnosis UPA with 10 min maximum standardized uptake value (SUVmax) > 8.17 was 0.82 ([0.70-0.90], P < 0.001), and the sensitivity and specificity were 0.64 and 0.90, respectively. The maximal AUC of 68Ga-pentixafor PET/CT for the diagnosis UPA in patients with nodules with a diameter ≥1 cm was 0.87 ([0.73-0.95],P both <0.001,[10 min SUVmax=8.17 and 10 min mean standardized uptake value (SUVmean)=5.57]), and the sensitivity and specificity were 0.73 and 0.93, respectively. Unilateral adrenalectomy and significant CXCR4 expression were present in 32 UPA, including 27 aldosterone-producing adenoma and 5 idiopathic adrenal hyperplasia. Additionally, 68Ga-pentixafor uptake in adrenal lesions was significantly correlated with CXCR4 expression, and statistical differences in 68Ga-pentixafor uptake among IRS subgroups. CONCLUSIONS: 68Ga-Pentixafor PET/CT can be helpful for subtyping diagnosis of PA patients with unilateral adrenal nodular, showing significant potential in non-invasive PA classification.

10.
Brain Behav Immun ; 123: 123-142, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39243987

ABSTRACT

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) mediated by CD4+ T helper (Th) cells, and characterized by immune cell infiltration, demyelination and neurodegeneration, with no definitive cure available. Thus, it is pivotal and imperative to acquire more profound comprehension of the underlying mechanisms implicated in MS. Dysregulated immune responses are widely believed to play a primary role in the pathogenesis of MS. Recently, a plethora of studies have demonstrated the involvement of T follicular helper (Tfh) cells and tertiary lymphoid-like structures (TLSs) in the pathogenesis and progression of MS. Cathepsin C (CatC) is a cysteine exopeptidase which is crucial for the activation of immune-cell-associated serine proteinases in many inflammatory diseases in peripheral system, such as rheumatoid arthritis and septicemia. We have previously demonstrated that CatC is involved in neuroinflammation and exacerbates demyelination in both cuprizone-induced and experimental autoimmune encephalomyelitis (EAE) mouse models. However, the underlying immunopathological mechanism remains elusive. In the present study, we established a recombinant myelin oligodendrocyte glycoprotein 35-55 peptide-induced EAE model using conditional CatC overexpression mice to investigate the effects of CatC on the alteration of CD4+ Th subsets, including Th1, Th2, Th17, Tfh and T regulatory cells. Our findings demonstrated that CatC particularly enhanced the population of Tfh cell in the brain, resulting in the earlier onset and more severe chronic syndrome of EAE. Furthermore, CatC promoted the formation of TLSs in the brain, leading to persistent neuroinflammation and exacerbating the severity of EAE in the chronic phase. Conversely, treatment with AZD7986, a specific inhibitor of CatC, effectively attenuated the syndrome of EAE and its effects caused by CatC both in vivo and in vitro. These findings provide a novel insight into the critical role of CatC in innate and adaptive immunity in EAE, and specific inhibitor of CatC, AZD7986, may contribute to potential therapeutic strategies for MS.

11.
Eur J Pharmacol ; 983: 177000, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39278311

ABSTRACT

Postmenopausal osteoporosis (PMOP) is closely related to the pathogenesis of osteoclasts, with the Cathepsin K (CTSK) protein playing a crucial role. Our study aimed to screen small molecule compounds targeting CTSK and evaluate their impact on PMOP. Through molecular docking, we identified NVP-BHG712 as significantly inhibiting osteoclast differentiation and bone resorption. NVP-BHG712 also effectively suppressed CTSK activity and exhibited strong binding affinity to CTSK protein. Furthermore, NVP-BHG712 regulated the expression of inflammatory factors and modulated the balance between M1 and M2 macrophage polarization. In the mouse model of ovariectomy-induced osteoporosis, NVP-BHG712 rescued bone loss by inhibiting excessive osteoclast activation. These findings suggest that NVP-BHG712 may be a promising treatment for pathological osteoporosis by alleviating osteoclast function.

12.
Angew Chem Int Ed Engl ; : e202415802, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39292161

ABSTRACT

Ventricular arrhythmias (VAs) triggered by myocardial infarction (MI) are the leading cause of sudden cardiac mortality worldwide. Current therapeutic strategies for managing MI-induced VAs, such as left stellate ganglion resection and ablation, are suboptimal, highlighting the need to explore safer and more effective intervention strategies. Herein, we rationally designed two supramolecular sonosensitizers RuA and RuB, engineered through acceptor modification to generate moderate reactive oxygen species (ROS) to modulate VAs. Both RuA and RuB demonstrated high ultrasound (US)-activated ROS production efficiency, with singlet oxygen (1O2) quantum yield (ΦΔ) of 0.70 and 0.88, respectively, surpassing ligand IR1105 and the conventional sonosensitizer ICG (ΦΔ =0.40). In vitro, RuB, at a modest concentration and under US intensity notably boosts pro-survival autophagy in microglia BV2 cell. To improve in vivo stability and biocompatibility, RuB was further encapsulated into DSPE-PEG5000 to prepare RuB NPs. In vivo studies after microinjection of RuB NPs into the paraventricular nucleus and subsequent US exposure, demonstrated that RuB NPs-mediated US modulation effectively suppresses sympathetic nervous activity (SNA) and inflammatory responses, thereby preventing VAs. Importantly, no tissue injury was observed post RuB NPs-mediated US modulation. This work pioneers the design of long-wave emission supramolecular sonosensitizers, offering new insights into regulating cardiovascular diseases.

13.
J Am Chem Soc ; 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39279160

ABSTRACT

Pressure-induced emission (PIE) is a compelling phenomenon that can activate luminescence within nonemissive materials. However, PIE in nonemissive organic materials has never been achieved. Herein, we present the first observation of PIE in an organic system, specifically within nonemissive azobenzene derivatives. The emission of 1,2-bis(4-(anthracen-9-yl)phenyl)diazene was activated at 0.52 GPa, primarily driven by local excitation promotion induced by molecular conformational changes. Complete photoisomerization suppression of the molecule was observed at 1.5 GPa, concurrently accelerating the emission enhancement to 3.53 GPa. Differing from the key role of isomerization inhibition in conventional perception, our findings demonstrate that the excited-state constituent is the decisive factor for emission activation, providing a potentially universal approach for high-efficiency azobenzene emission. Additionally, PIE was replicated in the analogue 1,2-bis(4-(9H-carbazol-9-yl)phenyl)diazene, confirming the general applicability of our findings. This work marks a significant breakthrough within the PIE paradigm and paves the novel high-pressure route for crystalline-state photoisomerization investigation.

14.
Nano Lett ; 24(37): 11738-11746, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39229926

ABSTRACT

Fluoride-based lanthanide-doped nanoparticles (LDNPs) featuring second near-infrared (NIR-II, 1000-1700 nm) downconversion emission for bioimaging have attracted extensive attention. However, conventional LDNPs cannot be degraded and eliminated from organisms because of an inert lattice, which obstructs bioimaging applications. Herein, the core-shell LDNPs of Na3HfF7:Yb,Er@CaF2:Ce,Zr(Hf) [labeled as Zr(Hf)Ce-HC] with pH-selective and tunable degradability were synthesized for dual-modal bioimaging. Notably, the "softening" lattice of the Na3HfF7 matrix and different Zr4+(Hf4+) doping amounts in the shell enable Zr(Hf)Ce-HC with acidity-dependent and tunable degradability. After coating of an optimized Ce3+-doped CaF2:Zr shell, the near-infrared-IIb (NIR-IIb, 1500-1700 nm) luminescence intensity of ZrCe-HC is enhanced by 5.2 times compared with that of Na3HfF7:Yb,Er. The Hf element with high X-ray attenuation allows ZrCe-HC as the contrast agent for computed tomography (CT) bioimaging. The modification of oxidized sodium alginate endows ZrCe-HC with satisfying biocompatibility for NIR-IIb/CT dual-modal bioimaging. These findings would benefit the bioimaging applications of degradable fluoride-based LDNPs.


Subject(s)
Fluorides , Hafnium , Zirconium , Zirconium/chemistry , Humans , Hafnium/chemistry , Fluorides/chemistry , Nanoparticles/chemistry , Tomography, X-Ray Computed/methods , Animals , Contrast Media/chemistry
15.
Adv Sci (Weinh) ; : e2400381, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39119928

ABSTRACT

Histones methyltransferase NSD3 targeting H3K36 is frequently disordered and mutant in various cancers, while the function of NSD3 during cancer initiation and progression remains unclear. In this study, it is proved that downregulated level of NSD3 is linked to clinical features and poor survival in lung adenocarcinoma. In vivo, NSD3 inhibited the proliferation, immigration, and invasion ability of lung adenocarcinoma. Meanwhile, NSD3 suppressed glycolysis by inhibiting HK2 translation, transcription, glucose uptake, and lactate production in lung adenocarcinoma. Mechanistically, as an intermediary, NSD3 binds to PPP1CB and p-STAT3 in protein levels, thus forming a trimer to dephosphorylate the level of p-STAT3 by PPP1CB, leading to the suppression of HK2 transcription. Interestingly, the phosphorylation function of PPP1CB is related to the concentration of carbon dioxide and pH value in the culture environment. Together, this study revealed the critical non-epigenetic role of NSD3 in the regulation of STAT3-dependent glycolysis, providing a piece of compelling evidence for targeting the NSD3/PPP1CB/p-STAT3 in lung adenocarcinoma.

16.
Research (Wash D C) ; 7: 0396, 2024.
Article in English | MEDLINE | ID: mdl-39099804

ABSTRACT

The emergence of multi-petawatt laser facilities is expected to push forward the maximum energy gain that can be achieved in a single stage of a laser wakefield acceleration (LWFA) to tens of giga-electron volts, which begs the question-is it likely to impact particle physics by providing a truly compact particle collider? Colliders have very stringent requirements on beam energy, acceleration efficiency, and beam quality. In this article, we propose an LWFA scheme that can for the first time simultaneously achieve hitherto unrealized acceleration efficiency from the laser to the electron beam of >20% and a sub-1% energy spread using a stepwise plasma structure and a nonlinearly chirped laser pulse. Three-dimensional high-fidelity simulations show that the nonlinear chirp can effectively mitigate the laser waveform distortion and lengthen the acceleration distance. This, combined with an interstage rephasing process in the stepwise plasma, can triple the beam energy gain compared to that in a uniform plasma for a fixed laser energy, thereby dramatically increasing the efficiency. A dynamic beam loading effect can almost perfectly cancel the energy chirp that arises during the acceleration, leading to the sub-percent energy spread. This scheme is highly scalable and can be applied to petawatt LWFA scenarios. Scaling laws are obtained, which suggest that electron beams with parameters relevant for a Higgs factory could be reached with the proposed high-efficiency, low-energy-spread scheme.

17.
Clin Transl Med ; 14(8): e1791, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39113233

ABSTRACT

BACKGROUND: Mutations in several translation initiation factors are closely associated with premature ovarian insufficiency (POI), but the underlying pathogenesis remains largely unknown. METHODS AND RESULTS: We generated eukaryotic translation initiation factor 5 (Eif5) conditional knockout mice aiming to investigate the function of eIF5 during oocyte growth and follicle development. Here, we demonstrated that Eif5 deletion in mouse primordial and growing oocytes both resulted in the apoptosis of oocytes within the early-growing follicles. Further studies revealed that Eif5 deletion in oocytes downregulated the levels of mitochondrial fission-related proteins (p-DRP1, FIS1, MFF and MTFR) and upregulated the levels of the integrated stress response-related proteins (AARS1, SHMT2 and SLC7A1) and genes (Atf4, Ddit3 and Fgf21). Consistent with this, Eif5 deletion in oocytes resulted in mitochondrial dysfunction characterized by elongated form, aggregated distribution beneath the oocyte membrane, decreased adenosine triphosphate content and mtDNA copy numbers, and excessive accumulation of reactive oxygen species (ROS) and mitochondrial superoxide. Meanwhile, Eif5 deletion in oocytes led to a significant increase in the levels of DNA damage response proteins (γH2AX, p-CHK2 and p-p53) and proapoptotic proteins (PUMA and BAX), as well as a significant decrease in the levels of anti-apoptotic protein BCL-xL. CONCLUSION: These findings indicate that Eif5 deletion in mouse oocytes results in the apoptosis of oocytes within the early-growing follicles via mitochondrial fission defects, excessive ROS accumulation and DNA damage. This study provides new insights into pathogenesis, genetic diagnosis and potential therapeutic targets for POI. KEY POINTS: Eif5 deletion in oocytes leads to arrest in oocyte growth and follicle development. Eif5 deletion in oocytes impairs the translation of mitochondrial fission-related proteins, followed by mitochondrial dysfunction. Depletion of Eif5 causes oocyte apoptosis via ROS accumulation and DNA damage response pathway.


Subject(s)
Apoptosis , DNA Damage , Mice, Knockout , Oocytes , Reactive Oxygen Species , Animals , Reactive Oxygen Species/metabolism , Mice , Oocytes/metabolism , DNA Damage/genetics , Female , Apoptosis/genetics , Mitochondrial Dynamics/genetics , Peptide Initiation Factors/genetics , Peptide Initiation Factors/metabolism , Eukaryotic Translation Initiation Factor 5A , Ovarian Follicle/metabolism , Ovarian Follicle/growth & development
18.
J Nanobiotechnology ; 22(1): 484, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138477

ABSTRACT

BACKGROUND: Inflammatory bowel disease (IBD) is a progressive and debilitating inflammatory disease of the gastrointestinal tract (GIT). Despite recent advances, precise treatment and noninvasive monitoring remain challenging. METHODS: Herein, we developed orally-administered, colitis-targeting and hyaluronic acid (HA)-modified, core-shell curcumin (Cur)- and cerium oxide (CeO2)-loaded nanoprobes (Cur@PC-HA/CeO2 NPs) for computed tomography (CT) imaging-guided treatment and monitoring of IBD in living mice. RESULTS: Following oral administration, high-molecular-weight HA maintains integrity with little absorption in the upper GIT, and then actively accumulates at local colitis sites owing to its colitis-targeting ability, leading to specific CT enhancement lasting for 24 h. The retained NPs are further degraded by hyaluronidase in the colon to release Cur and CeO2, thereby exerting anti-inflammatory and antioxidant effects. Combined with the ability of NPs to regulate intestinal flora, the oral NPs result in substantial relief in symptoms. Following multiple treatments, the gradually decreasing range of the colon with high CT attenuation correlates with the change in the clinical biomarkers, indicating the feasibility of treatment response and remission. CONCLUSION: This study provides a proof-of-concept for the design of a novel theranostic integration strategy for concomitant IBD treatment and the real-time monitoring of treatment responses.


Subject(s)
Cerium , Curcumin , Hyaluronic Acid , Inflammatory Bowel Diseases , Nanoparticles , Theranostic Nanomedicine , Animals , Inflammatory Bowel Diseases/drug therapy , Mice , Cerium/chemistry , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/therapeutic use , Theranostic Nanomedicine/methods , Administration, Oral , Nanoparticles/chemistry , Hyaluronic Acid/chemistry , Hyaluronoglucosaminidase/metabolism , Tomography, X-Ray Computed , Mice, Inbred C57BL , Colon/diagnostic imaging , Colon/pathology , Colon/metabolism , Humans , Colitis/drug therapy
19.
Front Nutr ; 11: 1453424, 2024.
Article in English | MEDLINE | ID: mdl-39149549

ABSTRACT

In this study, comparative investigation on the effect of dry heating treatment (DHT) and annealing (ANN) on multi-structure, physicochemical properties and in vitro digestibility of black highland barley (BHB) starch was done. Results revealed that both DHT and ANN did not affect the "A"-type crystalline pattern and FT-IR spectroscopy of BHB starch, but changed the morphology, raised water absorption capacity and lowered viscosities. Compared to native starch, DHT- and ANN-modified samples had totally opposite alteration trends in amylose content, color characteristics, oil absorption capacity, gelatinization parameters and pasting temperature. These changes were positively related to treatment temperature and time for DHT-modified starches, while which were dependant on treatment duration for ANN-modified starches. Total in vitro hydrolysis rate and rapidly digestive starch content in starch markedly raised after DHT, whereas slowly digestive starch and RS levels decreased. Nevertheless, ANN significantly improved the hydrolyzation stability with treatment time prolonging, especially increased RS content and lowered RDS level. Therefore, this study identified both DHT and ANN were effective methods to alter the properties of BHB starch, and more importantly, they had distinguishing influence by different mechanisms, which would remind user to select appropriate means for physical starch modification based on different application purposes.

20.
Angew Chem Int Ed Engl ; : e202412144, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169221

ABSTRACT

Thiolate-protected Cu clusters with well-defined structures and stable low-coordinated Cu+ species exhibit remarkable potential for the CO2RR and are ideal model catalysts for establishing structure-electrocatalytic property relationships at the atomic level. However, extant Cu clusters employed in the CO2RR predominantly yield 2e- products. Herein, two model Cu4(MMI)4 and Cu8(MMI)4(tBuS)4 clusters (MMI = 2-mercapto-1-methylimidazole) are prepared to investigate the synergistic effect of Cu+ and adjacent S sites on the CO2RR. Cu4(MMI)4 can reduce CO2 to deep-reduced products with a 91.0% Faradaic efficiency (including 53.7% for CH4) while maintaining remarkable stability. Conversely, Cu8(MMI)4(tBuS)4 shows a remarkable preference for C2+ products, achieving a maximum FE of 58.5% with a C2+ current density of 152.1 mA∙cm-2. In situ XAS and ex situ XPS spectra reveal the preservation of Cu+ species in Cu clusters during CO2RR, extensively enhancing the adsorption capacity of *CO intermediates. Moreover, kinetic analysis and theoretical calculations confirm that S sites facilitate H2O dissociation into *H species, which directly participate in the protonation process on adjacent Cu sites for the protonation of *CO to *CHO. This study highlights the important role of Cu-S dual sites in Cu clusters and provides mechanistic insights into the CO2RR pathway at the atomic level.

SELECTION OF CITATIONS
SEARCH DETAIL