Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 574
Filter
1.
Sci Rep ; 14(1): 15056, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38956075

ABSTRACT

Celiac Disease (CD) is a primary malabsorption syndrome resulting from the interplay of genetic, immune, and dietary factors. CD negatively impacts daily activities and may lead to conditions such as osteoporosis, malignancies in the small intestine, ulcerative jejunitis, and enteritis, ultimately causing severe malnutrition. Therefore, an effective and rapid differentiation between healthy individuals and those with celiac disease is crucial for early diagnosis and treatment. This study utilizes Raman spectroscopy combined with deep learning models to achieve a non-invasive, rapid, and accurate diagnostic method for celiac disease and healthy controls. A total of 59 plasma samples, comprising 29 celiac disease cases and 30 healthy controls, were collected for experimental purposes. Convolutional Neural Network (CNN), Multi-Scale Convolutional Neural Network (MCNN), Residual Network (ResNet), and Deep Residual Shrinkage Network (DRSN) classification models were employed. The accuracy rates for these models were found to be 86.67%, 90.76%, 86.67% and 95.00%, respectively. Comparative validation results revealed that the DRSN model exhibited the best performance, with an AUC value and accuracy of 97.60% and 95%, respectively. This confirms the superiority of Raman spectroscopy combined with deep learning in the diagnosis of celiac disease.


Subject(s)
Celiac Disease , Deep Learning , Spectrum Analysis, Raman , Celiac Disease/diagnosis , Celiac Disease/blood , Humans , Spectrum Analysis, Raman/methods , Female , Male , Adult , Neural Networks, Computer , Case-Control Studies , Middle Aged
2.
BMC Pediatr ; 24(1): 407, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38918783

ABSTRACT

BACKGROUND: Early-onset sepsis (EOS) is a serious illness that affects preterm newborns, and delayed antibiotic initiation may increase the risk of adverse outcomes. PURPOSE: The objective of this study was to examine the present time of antibiotic administration in preterm infants with suspected EOS and the factors that contribute to delayed antibiotic initiation. METHODS: In this retrospective study in China, a total of 82 early preterm infants with suspected EOS between December 2021 and March 2023 were included. The study utilized a linear regression analytical approach to identify independent factors that contribute to delayed antibiotic administration. RESULTS: The mean gestational age and birth weight of the study population were 29.1 ± 1.4 weeks and 1265.7 ± 176.8 g, respectively. The median time of initial antibiotic administration was 3.8 (3.1-5.0) hours. Linear regression revealed that severe respiratory distress syndrome (RDS) (ß = 0.07, P = 0.013), penicillin skin test (PST) timing (ß = 0.06, P < 0.001) and medical order timing (ß = 0.04, P = 0.017) were significantly associated with the initial timing of antibiotic administration. CONCLUSIONS: There is an evident delay in antibiotic administration in preterm infants with suspected EOS in our unit. Severe RDS, PST postponement and delayed medical orders were found to be associated with the delayed use of antibiotics, which will be helpful for quality improvement efforts in the neonatal intensive care unit (NICU).


Subject(s)
Anti-Bacterial Agents , Infant, Premature , Neonatal Sepsis , Quality Improvement , Time-to-Treatment , Humans , Infant, Newborn , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage , Retrospective Studies , Female , Male , Neonatal Sepsis/drug therapy , Neonatal Sepsis/diagnosis , China , Linear Models
3.
J Agric Food Chem ; 72(25): 14255-14263, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38867497

ABSTRACT

The addition of the O-linked N-acetylglucosamine (O-GlcNAc) is a significant modification for active molecules, such as proteins, carbohydrates, and natural products. However, the synthesis of terpenoid glycoside derivatives decorated with GlcNAc remains a challenging task due to the absence of glycosyltransferases, key enzymes for catalyzing the transfer of GlcNAc to terpenoids. In this study, we demonstrated that the enzyme mutant UGT74AC1T79Y/L48M/R28H/L109I/S15A/M76L/H47R efficiently transferred GlcNAc from uridine diphosphate (UDP)-GlcNAc to a variety of terpenoids. This powerful enzyme was employed to synthesize GlcNAc-decorated derivatives of terpenoids, including mogrol, steviol, andrographolide, protopanaxadiol, glycyrrhetinic acid, ursolic acid, and betulinic acid for the first time. To unravel the mechanism of UDP-GlcNAc recognition, we determined the X-ray crystal structure of the inactivated mutant UGT74AC1His18A/Asp111A in complex with UDP-GlcNAc at a resolution of 1.66 Å. Through molecular dynamic simulation and activity analysis, we revealed the molecular mechanism and catalytically important amino acids directly involved in the recognition of UDP-GlcNAc. Overall, this study not only provided a potent biocatalyst capable of glycodiversifying natural products but also elucidated the structural basis for UDP-GlcNAc recognition by glycosyltransferases.


Subject(s)
Acetylglucosamine , Glycosides , Glycosyltransferases , Terpenes , Acetylglucosamine/chemistry , Acetylglucosamine/metabolism , Glycosides/chemistry , Glycosides/metabolism , Glycosyltransferases/metabolism , Glycosyltransferases/chemistry , Glycosyltransferases/genetics , Terpenes/chemistry , Terpenes/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Plant Proteins/genetics , Biocatalysis
4.
Article in English | MEDLINE | ID: mdl-38913865

ABSTRACT

Hematopoietic homeostasis is maintained by hematopoietic stem cells (HSCs), and it is tightly controlled at multiple levels to sustain the self-renewal capacity and differentiation potential of HSCs. Dysregulation of self-renewal and differentiation of HSCs leads to the development of hematologic diseases, including acute myeloid leukemia (AML). Thus, understanding the underlying mechanisms of HSC maintenance and the development of hematologic malignancies is one of the fundamental scientific endeavors in stem cell biology. N  6-methyladenosine (m6A) is a common modification in mammalian messenger RNAs (mRNAs) and plays important roles in various biological processes. In this study, we performed a comparative analysis of the dynamics of the RNA m6A methylome of hematopoietic stem and progenitor cells (HSPCs) and leukemia-initiating cells (LICs) in AML. We found that RNA m6A modification regulates the transformation of long-term HSCs into short-term HSCs and determines the lineage commitment of HSCs. Interestingly, m6A modification leads to reprogramming that promotes cellular transformation during AML development, and LIC-specific m6A targets are recognized by different m6A readers. Moreover, the very long chain fatty acid transporter ATP-binding cassette subfamily D member 2 (ABCD2) is a key factor that promotes AML development, and deletion of ABCD2 damages clonogenic ability, inhibits proliferation, and promotes apoptosis of human leukemia cells. This study provides a comprehensive understanding of the role of m6A in regulating cell state transition in normal hematopoiesis and leukemogenesis, and identifies ABCD2 as a key factor in AML development.

5.
Polymers (Basel) ; 16(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891451

ABSTRACT

This work aimed to investigate the effects of aging on the microstructures and rheological properties of modified asphalt with a GO/SBS composite, since the styrene-butadiene-styrene block copolymer is potentially compatible with graphene oxide (GO). The GO/SBS composites, which were used as a kind of modifier, were prepared via the solution-blending method. GO/SBS composites with varying GO contents were employed to prepare the GO/SBS-compound-modified asphalt (GO/SBS-MA). Then, the GO/SBS-MA underwent PAV (pressure aging vessel) or UV (ultraviolet) aging tests to simulate different aging circumstances. The microstructures of the asphalt binders were studied using FTIR (Fourier-transform infrared spectroscopy) and AFM (atomic force microscope) tests. Moreover, DSR (dynamic shear rheometer) and BBR (bending beam rheometer) experiments were carried out to investigate the rheological properties of the GO/SBS-MA. The results showed that the addition of GO improved the high-temperature stability of the asphalt binder while slightly impairing its performance at low temperatures. GO restrained the formation of carbonyl and sulfoxide groups as well as the breakdown of C=C bonds in the polybutadiene (PB) segment, promoting the anti-aging performance of GO/SBS-MA. Furthermore, the interactions between the GO/SBS and the asphalt binder resulted in the formation of needle-like aggregates, enhancing the stability of the asphalt binder. The asphalt binders with a higher content of graphene oxide (GO) exhibited not only a better high-temperature performance, but also a better aging resistance. It was concluded that the macroscopic properties and microstructures were significantly affected by GO, and a moderate increase in the amount of GO could contribute to a better aging resistance for GO/SBS-MA.

6.
ACS Omega ; 9(22): 23903-23916, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38854575

ABSTRACT

Microemulsions are one of the most promising directions in enhanced oil recovery, but conventional screening methods are time-consuming and labor-intensive and lack the means to analyze them at the microscopic level. In this paper, we used the Clint model to predict the changes in the synergistic effect of the mixed system of anionic surfactant sodium dodecyl benzenesulfonate and nonionic surfactant polyethoxylated fatty alcohols (C12E6), generated microemulsions using surfactant systems with different mole fractions, and used particle size to analyze the performance and stability of microemulsions, analyze the properties and stability of microemulsions using particle size, and analyze the interfacial behaviors and changes of microemulsions when different systems constitute microemulsions from the point of view of mesoscopic microemulsion self-assembly behaviors by combining with dissipative particle dynamics. It has been shown that microemulsion systems generated from anionic and nonanionic surfactants with a synergistic effect, based on the Clint model, exhibit excellent performance and stability at the microscopic level. The method proposed in this paper can dramatically improve the screening efficiency of microemulsions of anionic and nonanionic surfactants and accurately analyze the properties of microemulsions, so as to provide a theoretical basis for the subsequent research on microemulsions.

7.
Nanotoxicology ; : 1-9, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907601

ABSTRACT

To determine the effects of polymeric nanoparticle for doxorubicin (Dox) delivery and treatment of drug-resistant Osteosarcoma (OS) cells. Methoxy-polyethylene glycol amino (mPEG-NH2) and platinum bio-mimetic polycaprolactone-cysteine (PtBMLC) were crosslinked to obtain glutathione (GSH)-responsive mPEG-NH2-PtBMLC polymer to encapsulate Dox (named as Nano-Dox). The particle size and zeta potential of the nanoparticles were measured, and internalization of Dox by OS cells was observed. After treatment with Nano-Dox, cell proliferation was determined by cell counting kit 8 (CCK-8) and colony formation assay. Cell migration and invasion were determined by Transwell assay. Cell cycle arrest was assessed by flow cytometry. The induction of ferroptosis was analyzed by abnormal accumulation of total iron, Fe2+. Nano-Dox exhibited a stronger localization in OS cells (p < 0.01). Nano-Dox induced more significant suppression of drug-resistant OS cell growth (p < 0.01), migration (p < 0.01), and invasion (p < 0.01), compared with the single Dox treatment group, along with decreased expression of N-cadherin, Snail, and Vimentin, suggesting impaired cancer migration and invasion. The treatment with Nano-Dox induced notable cell cycle arrest at G0/G1 phase (p < 0.01) and accumulation of iron, Fe2+, and MDA (p < 0.01), as well as suppressed the protein levels of glutathione peroxidase 4 (GPX4) and SLC7A11. Administration of ferroptosis inhibitor (Fer-1) reversed the anti-proliferation effects of Nano-Dox (p < 0.01). The Dox delivered by the polymeric nanoparticle system notably enhanced its effects on suppressing the growth, migration, and invasion of drug-resistant OS cells via inducing ferroptosis. The application of environment response polymer enhanced the delivery of Dox and the therapeutic effects on OS.

8.
BMC Anesthesiol ; 24(1): 197, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834948

ABSTRACT

BACKGROUND: Ciprofol is a promising sedative. This study aims to explore the median effective dose (ED50) of ciprofol in inhibiting responses to fiberoptic bronchoscopy in patients with pulmonary tuberculosis (PTB) of different genders and ages when combined with 0.15 µg/kg sufentanil, and to evaluate its efficacy and safety, providing a reference for the rational use of ciprofol in clinical practice. METHODS: PTB patients who underwent bronchoscopy examination and treatment at The Third People's Hospital of Changzhou between May 2023 and June 2023 were selected and divided into four groups using a stratified random method. All patients received intravenous injection of 0.15 µg/kg sufentanil followed by injection of the test dose of ciprofol according to Dixon's up-and-down method. The initial dose of ciprofol in all four groups was 0.4 mg/kg, with an adjacent ratio of 1:1.1. The next patient received a 10% increase in the dose of ciprofol if the previous patient in the same group experienced positive reactions such as choking cough, frowning, and body movements during the endoscopy. Otherwise, it was judged as a negative reaction, and the next patient received a 10% decrease in the dose of ciprofol. The transition from a positive reaction to a negative reaction was defined as a turning point, and the study of the group was terminated when seven turning points occurred. Hemodynamic parameters, oxygen saturation and adverse reactions were recorded at different time points in all groups. The Probit regression analysis method was used to calculate the ED50 of ciprofol in the four groups and compare between the groups. RESULTS: The ED50 of ciprofol combined with 0.15 µg/kg sufentanil for bronchoscopy in the four groups were 0.465 mg/kg, 0.433 mg/kg, 0.420 mg/kg and 0.396 mg/kg, respectively. CONCLUSION: The ED50 of ciprofol used for fiberoptic bronchoscopy varied among PTB patients of different genders and ages. TRIAL REGISTRATION: The Chinese Clinical Trial Registry, ChiCTR2300071508, Registered on 17 May 2023.


Subject(s)
Bronchoscopy , Fiber Optic Technology , Sufentanil , Tuberculosis, Pulmonary , Humans , Male , Bronchoscopy/methods , Female , Middle Aged , Sufentanil/administration & dosage , Adult , Tuberculosis, Pulmonary/drug therapy , Dose-Response Relationship, Drug , Aged , Hypnotics and Sedatives/administration & dosage , Young Adult , Drug Therapy, Combination
9.
Nat Commun ; 15(1): 5080, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871724

ABSTRACT

The reconstruction of Cu catalysts during electrochemical reduction of CO2 is a widely known but poorly understood phenomenon. Herein, we examine the structural evolution of Cu nanocubes under CO2 reduction reaction and its relevant reaction conditions using identical location transmission electron microscopy, cyclic voltammetry, in situ X-ray absorption fine structure spectroscopy and ab initio molecular dynamics simulation. Our results suggest that Cu catalysts reconstruct via a hitherto unexplored yet critical pathway - alkali cation-induced cathodic corrosion, when the electrode potential is more negative than an onset value (e.g., -0.4 VRHE when using 0.1 M KHCO3). Having alkali cations in the electrolyte is critical for such a process. Consequently, Cu catalysts will inevitably undergo surface reconstructions during a typical process of CO2 reduction reaction, resulting in dynamic catalyst morphologies. While having these reconstructions does not necessarily preclude stable electrocatalytic reactions, they will indeed prohibit long-term selectivity and activity enhancement by controlling the morphology of Cu pre-catalysts. Alternatively, by operating Cu catalysts at less negative potentials in the CO electrochemical reduction, we show that Cu nanocubes can provide a much more stable selectivity advantage over spherical Cu nanoparticles.

10.
Nanomaterials (Basel) ; 14(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38921880

ABSTRACT

With the ongoing advancement in oil exploration, microemulsion, as an innovative oil displacement method, has garnered considerable attention owing to its exceptional physicochemical properties in enhancing crude oil recovery. As such, this study initially delineates the fundamental concepts, classifications, formation mechanisms, advantages, and preparation methodologies of microemulsions. Subsequently, it introduces the selection criteria for microemulsion components, followed by an elucidation of the characterization methods for microemulsions based on these criteria. Furthermore, it examines the factors influencing the efficacy of microemulsions in enhancing oil recovery through two distinct methods, along with the effects of various formulation microemulsions under laboratory and oilfield conditions. Additionally, it outlines prospects, challenges, and future development trends pertaining to microemulsions.

11.
Molecules ; 29(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38930964

ABSTRACT

Microemulsions are thermodynamically stable, optically isotropic, transparent, or semi-transparent mixed solutions composed of two immiscible solvents stabilized by amphiphilic solutes. This comprehensive review explores state-of-the-art techniques for characterizing microemulsions, which are versatile solutions essential across various industries, such as pharmaceuticals, food, and petroleum. This article delves into spectroscopic methods, nuclear magnetic resonance, small-angle scattering, dynamic light scattering, conductometry, zeta potential analysis, cryo-electron microscopy, refractive index measurement, and differential scanning calorimetry, examining each technique's strengths, limitations, and potential applications. Emphasizing the necessity of a multi-technique approach for a thorough understanding, it underscores the importance of integrating diverse analytical methods to unravel microemulsion structures from molecular to macroscopic scales. This synthesis provides a roadmap for researchers and practitioners, fostering advancements in microemulsion science and its wide-ranging industrial applications.

12.
JAMA Netw Open ; 7(5): e2413708, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38809553

ABSTRACT

Importance: Helicobacter pylori treatment and nutrition supplementation may protect against gastric cancer (GC), but whether the beneficial effects only apply to potential genetic subgroups and whether high genetic risk may be counteracted by these chemoprevention strategies remains unknown. Objective: To examine genetic variants associated with the progression of gastric lesions and GC risk and to assess the benefits of H pylori treatment and nutrition supplementation by levels of genetic risk. Design, Setting, and Participants: This cohort study used follow-up data of the Shandong Intervention Trial (SIT, 1989-2022) and China Kadoorie Biobank (CKB, 2004-2018) in China. Based on the SIT, a longitudinal genome-wide association study was conducted to identify genetic variants for gastric lesion progression. Significant variants were examined for incident GC in a randomly sampled set of CKB participants (set 1). Polygenic risk scores (PRSs) combining independent variants were assessed for GC risk in the remaining CKB participants (set 2) and in an independent case-control study in Linqu. Exposures: H pylori treatment and nutrition supplementation. Main Outcomes and Measures: Primary outcomes were the progression of gastric lesions (in SIT only) and the risk of GC. The associations of H pylori treatment and nutrition supplementation with GC were evaluated among SIT participants with different levels of genetic risk. Results: Our analyses included 2816 participants (mean [SD] age, 46.95 [9.12] years; 1429 [50.75%] women) in SIT and 100 228 participants (mean [SD] age, 53.69 [11.00] years; 57 357 [57.23%] women) in CKB, with 147 GC cases in SIT and 825 GC cases in CKB identified during follow-up. A PRS integrating 12 genomic loci associated with gastric lesion progression and incident GC risk was derived, which was associated with GC risk in CKB (highest vs lowest decile of PRS: hazard ratio [HR], 2.54; 95% CI, 1.80-3.57) and further validated in the analysis of 702 case participants and 692 control participants (mean [SD] age, 54.54 [7.66] years; 527 [37.80%] women; odds ratio, 1.83; 95% CI, 1.11-3.05). H pylori treatment was associated with reduced GC risk only for individuals with high genetic risk (top 25% of PRS: HR, 0.45; 95% CI, 0.25-0.82) but not for those with low genetic risk (HR, 0.81; 95% CI, 0.50-1.34; P for interaction = .03). Such effect modification was not found for vitamin (P for interaction = .93) or garlic (P for interaction = .41) supplementation. Conclusions and Relevance: The findings of this cohort study indicate that a high genetic risk of GC may be counteracted by H pylori treatment, suggesting primary prevention could be tailored to genetic risk for more effective prevention.


Subject(s)
Genetic Predisposition to Disease , Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/epidemiology , Female , Male , Middle Aged , Helicobacter Infections/drug therapy , Helicobacter Infections/complications , China/epidemiology , Genome-Wide Association Study , Case-Control Studies , Adult , Risk Factors , Dietary Supplements , Cohort Studies , Aged , Anti-Bacterial Agents/therapeutic use
13.
Inflammation ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760646

ABSTRACT

Resatorvid (TAK-242), a specific inhibitor of Toll-like receptor-4 (TLR4), has attracted attention for its anti-inflammatory properties. Despite this, few studies have evaluated its effects on ulcerative colitis (UC). This study aimed to investigate the effects of TAK-242 on macrophage polarization and T helper cell balance and the mechanism by which it alleviates UC. Our findings indicated that TLR4 expression was elevated in patients with UC, a mouse model of UC, and HT29 cells undergoing an inflammatory response. TAK­242 treatment reduced apoptosis in TNF-α and LPS-stimulated HT29 cells and alleviated symptoms of dextran sulfate sodium (DSS)­induced colitis in vivo. TAK­242 downregulated TLR4 expression and decreased the secretion of pro-inflammatory cytokines TNF-α, IL-6, and IL-1ß while enhancing IL-10 production. TAK-242 also reduced M1 macrophage polarization and diminished Th1 and Th17 cell infiltration while increasing Th2 cell infiltration and M2 macrophage polarization both in vitro and in vivo. Mechanistically, TAK-242 inhibited the JAK2/STAT3 signaling pathway, an important regulator of macrophage polarization and T helper cell balance. Furthermore, the in vivo and in vitro effects of TAK-242 were partially negated by the administration of the JAK2/STAT3 antagonist AG490, suggesting that TAK-242 inhibits the JAK2/STAT3 pathway to exert its biological activities. Taken together, this study underscores TAK-242 as a promising anti-UC agent, functioning by modulating macrophage polarization and T helper cell balance via the TLR4/JAK2/STAT3 signaling pathway.

14.
Open Med (Wars) ; 19(1): 20230885, 2024.
Article in English | MEDLINE | ID: mdl-38770177

ABSTRACT

The pathogenesis of ulcerative colitis (UC) involves chronic inflammation of the submucosal layer and disruption of epithelial barrier function within the gastrointestinal tract. Connexin 43 (Cx43) has been implicated in the pathogenesis of intestinal inflammation and its associated carcinogenic effects. However, a comprehensive analysis of Cx43's role in mucosal and peripheral immunity in patients with UC is lacking. In this study, the colon tissues of patients with UC exhibited severe damage to the intestinal mucosal barrier, resulting in a significant impairment of junctional communication as observed by transmission electron microscopy. The mRNA expression of Cx43 was found to be significantly elevated in the UC group compared to the control group, as determined using the Affymetrix expression profile chip and subsequently validated using qRT-PCR. The immunofluorescence analysis revealed a significantly higher mean fluorescence intensity of Cx43 in the UC group compared to the control group. Additionally, Cx43 was observed in both the cell membrane and nucleus, providing clear evidence of nuclear translocation. The proportion of Cx43 in the UC group for CD4+ and CD8+ T lymphocytes was increased in the control group, but only the proportion of Cx43 for CD8+ T lymphocytes showed significant difference by flow cytometry. The involvement of Cx43 in the pathogenesis of UC and its potential role in mucosal immunity warrants further investigation, as it holds promise as a prospective biomarker and therapeutic target for this condition. The proportion of Cx43 in the UC group for CD4+ and CD8+ T lymphocytes was increased in the control group, but only the proportion of Cx43 for CD8+ T lymphocytes showed a significant difference.

15.
Heliyon ; 10(10): e30828, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38770333

ABSTRACT

Modified Jiawei Juanbi decoction (MJD) is used for the treatment of early-stage knee osteoarthritis (KOA). Here, modified Jiawei Juanbi decoction (MJD) was employed for the treatment of early-stage knee osteoarthritis (KOA) and its mechanisms were assessed via metabonomics and network pharmacology. A total of 24 male Sprague-Dawley rats were randomly allocated into a normal control group, a model group, and an MJD group (n = 8 rats per group). Each rat group was further equally divided into two subgroups for investigation for either 14 or 28 days. A rat model of early-stage KOA was constructed and rats were treated with MJD. Effects were evaluated based on changes in knee circumference, mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL). We also analyzed histopathological changes in articular cartilage. High-resolution mass spectrometry was used to analyze the chemical profile of MJD, identifying 228 components. Using an LC-Q-TOF-MS metabonomics approach, 33 differential metabolites were identified. The relevant pathways significantly associated with MJD include arginine and proline metabolism, vitamin B6 metabolism, as well as the biosynthesis of phenylalanine, tyrosine and tryptophan. The system pharmacology paradigm revealed that MJD contains 1027 components and associates with 1637 genes, of which 862 disease genes are related to osteoarthritis. The construction of the MJD composition-target-KOA network revealed a total of 140 intersection genes. A total of 39 hub genes were identified via integration of betweenness centrality values greater than 100 using CytoHubba. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed several significantly affected signaling pathways including the HIF-1, AGE-RAGE (in diabetic complications), IL-17, rheumatoid arthritis and TNF pathways. Integrated-omics and network pharmacology approaches revealed a necessity for further detailed investigation focusing on two major targets, namely NOS2 and NOS3, along with their essential metabolite (arginine) and associated pathways (HIF-1 signaling and arginine and proline metabolism). Real-time PCR validated significantly greater downregulation of NOS2 and HIF-1ɑ in the MJD as compared to the model group. Molecular docking analysis further confirmed the binding of active MJD with key active components. Our findings elucidate the impact of MJD on relevant pathophysiological and metabolic networks relevant to KOA and assess the drug efficacy of MJD and its underlying mechanisms of action.

16.
Microbiol Spectr ; 12(5): e0355423, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38619276

ABSTRACT

There has been a suggestion of a potential protective effect of Helicobacter pylori (H. pylori) in the development of ulcerative colitis (UC). Virulence factor is an important factor in H. pylori, but little is known about the clinical characteristics of ulcerative colitis. In this retrospective study, a total of 322 patients with UC were analyzed. They were divided into three groups based on H. pylori antibody typing classification: type I H. pylori infection group, type II H. pylori infection group, and H. pylori-negative group. The study aimed to analyze the clinical characteristics of different types of H. pylori infection groups. The proportions of disease course, nationality, clinical type, and disease severity among UC patients in different types of H. pylori infection groups exhibited statistically significant differences (P < 0.05). However, no significant differences were observed in terms of sex, age, smoking status, alcohol consumption, body mass index (BMI), or lesion range (P > 0.05). Among the extraintestinal manifestations, the incidence of joint lesions in the type I H. pylori infection group was significantly lower compared with H. pylori-negative group (P < 0.05). The levels of red blood cell, hemoglobin, packed cell volume, albumin, A/G, and alanine aminotransferase were significantly higher in the type I H. pylori infection group compared with both the type II H. pylori infection group and H. pylori-negative group in the hematology index. Conversely, the levels of D-Dimer, C-reactive protein, and erythrocyte sedimentation rate were significantly lower in the type II H. pylori infection group (P < 0.05). In patients with UC, infections with the highly virulent type I H. pylori exhibit a negative correlation with both the severity of the disease and extraintestinal manifestations. While infections with the less virulent type II H. pylori are negatively correlated only with the disease severity. Therefore, the virulence factors of H. pylori play an important role in the regulation of UC. IMPORTANCE: The number of patients with ulcerative colitis (UC) has increased dramatically worldwide, posing a global public health challenge, There has been a suggestion of a potential protective effect of Helicobacter pylori in the development of UC. Virulence factor is an important factor in H. pylori, but high-quality clinical evidence is lacking. This study comprehensively analyzed the clinical characteristics of UC patients with different types of H. pylori infection. Infections with the highly virulent type I H. pylori are found to be negatively correlated with the severity of the disease as well as extraintestinal manifestations, whereas infections with the less virulent type II H. pylori demonstrate a negative correlation solely with disease severity. These results suggest that the virulence factors of H. pylori play a pivotal role in UC. Consequently, virulence factors should be taken into consideration when targeting H. pylori eradication in clinical practice, particularly in UC patients. It is crucial to evaluate the individual benefits to optimize personalized eradication therapies.


Subject(s)
Colitis, Ulcerative , Helicobacter Infections , Helicobacter pylori , Humans , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/pathology , Helicobacter Infections/microbiology , Helicobacter Infections/complications , Helicobacter Infections/pathology , Male , Helicobacter pylori/genetics , Helicobacter pylori/pathogenicity , Female , Retrospective Studies , Middle Aged , Adult , Aged , Young Adult , Adolescent
17.
iScience ; 27(3): 109034, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38433920

ABSTRACT

Azasugars, such as 1-deoxynojirimycin (1-DNJ), exhibit unique physiological functions and hold promising applications in medicine and health fields. However, the biosynthesis of 1-DNJ is hindered by the low activity and thermostability of the transaminase. In this study, the transaminase from Mycobacterium vanbaalenii (MvTA) with activity toward d-fructose was engineered through semi-rational design and high-throughput screening method. The final mutant M9-1 demonstrated a remarkable 31.2-fold increase in specific activity and an impressive 200-fold improvement in thermostability compared to the wild-type enzyme. Molecular dynamics (MD) simulations revealed that the mutation sites of H69R and K145R in M9-1 played crucial roles in the binding of the amino acceptor and donor, leading to the stable conformation of substrates within the active pocket. An enzyme cascade reaction was developed using M9-1 and the dehydrogenase from Paenibacillus polymyxa (GutB1) for the production of mannojirimycin (MJ), which provided a new idea for the in vitro biosynthesis of 1-DNJ.

18.
Mol Neurobiol ; 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38519735

ABSTRACT

Spinal cord injury (SCI) is a serious disease without effective therapeutic strategies. To identify the potential treatments for SCI, it is extremely important to explore the underlying mechanism. Current studies demonstrate that anoikis might play an important role in SCI. In this study, we aimed to identify the key anoikis-related genes (ARGs) providing therapeutic targets for SCI. The mRNA expression matrix of GSE45006 was downloaded from the Gene Expression Omnibus (GEO) database, and the ARGs were downloaded from the Molecular Signatures Database (MSigDB database). Then, the potential differentially expressed ARGs were identified. Next, correlation analysis, gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and protein-protein interaction (PPI) analysis were employed for the differentially expressed ARGs. Moreover, miRNA-gene networks were constructed by the hub ARGs. Finally, RNA expression of the top ten hub ARGs was validated in the SCI cell model and rat SCI model. A total of 27 common differentially expressed ARGs were identified at different time points (1, 3, 7, and 14 days) following SCI. The GO and KEGG enrichment analysis of these ARGs indicated several enriched terms related to proliferation, cell cycle, and apoptotic process. The PPI results revealed that most of the ARGs interacted with each other. Ten hub ARGs were further screened, and all the 10 genes were validated in the SCI cell model. In the rat model, only seven genes were validated eventually. We identified 27 differentially expressed ARGs of the SCI through bioinformatic analysis. Seven real hub ARGs (CCND1, FN1, IGF1, MYC, STAT3, TGFB1, and TP53) were identified eventually. These results may expand our understanding of SCI and contribute to the exploration of potential SCI targets.

19.
Sci Rep ; 14(1): 7022, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528042

ABSTRACT

In the evolving landscape of smart libraries, this research pioneers an IoT-based low-cost architecture utilizing Software-Defined Networking (SDN). The increasing demand for more efficient and economical solutions in library management, particularly in the realm of RFID-based processes such as authentication, property circulation, and book loans, underscores the significance of this study. Leveraging the collaborative potential of IoT and SDN technologies, our proposed system introduces a fresh perspective to tackle these challenges and advance intelligent library management. In response to the evolving landscape of smart libraries, our research presents an Internet of Things (IoT)-based low-cost architecture utilizing SDN. The exploration of this architectural paradigm arises from a recognized gap in the existing literature, pointing towards the necessity for more efficient and cost-effective solutions in managing library processes. Our proposed algorithm integrates IoT and SDN technologies to intelligently oversee various library activities, specifically targeting RFID-based processes such as authentication, property circulation management, and book loan management. The system's architecture, encompasses components like the data center, SDN controllers, RFID tags, tag readers, and other network sensors. By leveraging the synergy between RFID and SDN, our innovative approach reduces the need for constant operator supervision in libraries. The scalability and software-oriented nature of the architecture cater to extensive library environments. Our study includes a two-phase investigation, combining practical implementation in a small-scale library with a simulation environment using MATLAB 2021. This research not only fills a crucial gap in current knowledge but also lays the foundation for future advancements in the integration of IoT and SDN technologies for intelligent library management.

20.
Heliyon ; 10(5): e26976, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38463788

ABSTRACT

Background: Glioma, a highly resistant and recurrent type of central nervous system tumor, poses a significant challenge in terms of effective drug treatments and its associated mortality rates. Despite the discovery of Ferredoxin 1 (FDX1) as a crucial participant in cuproptosis, an innovative mechanism of cellular demise, its precise implications for glioma prognosis and tumor immune infiltration remain inadequately elucidated. Methods: To analyze pan-cancer data, we employed multiple public databases. Gene expression evaluation was performed using tissue microarray (TMA) and single-cell sequencing data. Furthermore, four different approaches were employed to assess the prognostic importance of FDX1 in glioma. We conducted the analysis of differential expression genes (DEGs) and Gene Set Enrichment Analysis (GSEA) to identify immune-related predictive signaling pathways. Somatic mutations were assessed using Tumor Mutation Burden (TMB) and waterfall plots. Immune cell infiltration was evaluated with five different algorithms. Furthermore, we performed in vitro investigations to evaluate the biological roles of FDX1 in glioma. Results: Glioma samples exhibited upregulation of FDX1, which in turn predicted poor prognosis and was positively associated with unfavorable clinicopathological characteristics. Notably, the top four enriched signaling pathways were immune-related, and the discovery revealed a connection between the expression of FDX1 and the frequency of mutations or the TMB. The FDX1_high group exhibited heightened infiltration of immune cells, and there existed a direct association between the expression of FDX1 and the regulation of immune checkpoint. In vitro experiments demonstrated that FDX1 knockdown reduced proliferation, migration, invasion and transition from G2 to M phase in glioma cells. Conclusion: In glioma, FDX1 demonstrated a positive association with the advancement of malignancy and changes in the infiltration of immune cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...