Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 526
Filter
1.
Curr Biol ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39094571

ABSTRACT

Seedlessness is a crucial quality trait in table grape (Vitis vinifera L.) breeding. However, the development of seeds involved intricate regulations, and the polygenic basis of seed abortion remains unclear. Here, we combine comparative genomics, population genetics, quantitative genetics, and integrative genomics to unravel the evolution and polygenic basis of seedlessness in grapes. We generated the haplotype-resolved genomes for two seedless grape cultivars, "Thompson Seedless" (TS, syn. "Sultania") and "Black Monukka" (BM). Comparative genomics identified a ∼4.25 Mb hemizygous inversion on Chr10 specific in seedless cultivars, with seedless-associated genes VvTT16 and VvSUS2 located at breakpoints. Population genomic analyses of 548 grapevine accessions revealed two distinct clusters of seedless cultivars, and the identity-by-descent (IBD) results indicated that the origin of the seedlessness trait could be traced back to "Sultania." Introgression, rather than convergent selection, shaped the evolutionary history of seedlessness in grape improvement. Genome-wide association study (GWAS) analysis identified 110 quantitative trait loci (QTLs) associated with 634 candidate genes, including previously unidentified candidate genes, such as three 11S GLOBULIN SEED STORAGE PROTEIN and two CYTOCHROME P450 genes, and well-known genes like VviAGL11. Integrative genomic analyses resulted in 339 core candidate genes categorized into 13 functional categories related to seed development. Machine learning-based genomic selection achieved a remarkable prediction accuracy of 97% for seedlessness in grapevines. Our findings highlight the polygenic nature of seedlessness and provide candidate genes for molecular genetics and an effective prediction for seedlessness in grape genomic breeding.

2.
Biochem Biophys Res Commun ; 732: 150431, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39047401

ABSTRACT

Brain metastasis (BM) is one of the main causes of death in patients with non-small cell lung carcinoma. The specific pathological processes of BM, which are inextricably linked to the brain tumor microenvironment, such as the abundance of astrocytes, lead to limited treatment options and poor prognosis. Reactive astrocytes are acquired in the BM; however, the underlying mechanisms remain unclear. This study aimed to explore the mechanisms by which astrocytes promote BM development. We determined the crucial role of reactive astrocytes in promoting the proliferation and migration of brain metastatic lung tumor cells by upregulating protocadherin 1 (PCDH1) expression in an in vitro co-culture model. The overexpression of PCDH1 was confirmed in clinical BM samples using immunohistochemical staining. Survival analysis indicated that high-PCDH1 expression was associated with poor survival in patients with lung adenocarcinoma. In vivo assays further showed that silence of PCDH1 effectively inhibited the tumor progression of brain metastases and prolonged the survival of animals. RNA sequencing has revealed that PCDH1 plays an important role in cell proliferation and adhesion. In conclusion, the present study revealed the promoting role of astrocytes in enhancing the aggressive phenotype of brain metastatic tumor cells by regulating the expression of PCDH1, which might be a biomarker for BM diagnosis and prognosis, suggesting the potential efficacy of targeting important astrocyte-tumor interactions in the treatment of patients with non-small cell lung carcinoma with BM.

3.
Biomed Opt Express ; 15(7): 4081-4100, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39022556

ABSTRACT

Ultraviolet radiation is the primary determinant for vitamin D synthesis. Sunlight is inefficient and poses a risk, particularly for long-term exposure. In this study, we screened the most favorable wavelength for vitamin D synthesis among four types of narrowband light-emitting diodes (LEDs) and then irradiated osteoporosis rats with the optimal wavelength for 3-12 months. The 297 nm narrowband LED was the most efficient. Long-term radiation increased vitamin D levels in all osteoporotic rats and improved bone health. No skin damage was observed during irradiation. Our findings provide an efficient and safe method of vitamin D supplementation.

4.
Adv Sci (Weinh) ; : e2401862, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073681

ABSTRACT

The pursuit of pharmacological interventions in aging aims focuses on maximizing safety and efficacy, prompting an exploration of natural products endowed with inherent medicinal properties. Subsequently, this work establishes a unique library of plant extracts sourced from Yunnan Province, China. Screening of this herbal library herein revealed that Salsola collina (JM10001) notably enhances both lifespan and healthspan in C. elegans. Further analysis via network pharmacology indicates that the p53 signaling pathway plays a crucial role in mediating the anti-aging effects of JM10001. Additionally, this work identifies that a composition, designated as JM10101 and comprising three chemical constituents of JM10001, preserves the original lifespan-extending activity in C. elegans. Both JM10001 and JM10101 mitigate aging symptoms in senescence-accelerated mice treated with doxorubicin and in naturally aged mice. Notably, JM10101 exhibits a more sophisticated senomorphlytic role encompassing both senomorphic and senolytic functions than JM10001 in the modulation of senescent cells, offering a promising strategy for the discovery of combination drugs in the rational development of anti-aging therapies.

5.
Ecol Evol ; 14(6): e11549, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38855313

ABSTRACT

Plant's life history can evolve in response to variation in climate spatio-temporally, but numerous multiple-species studies overlook species-specific (especially a foundation species) ecological effects and genetic underpinnings. For a species to successfully invade a region, likely to become a foundation species, life-history variation of invasive plants exerts considerable ecological and evolutionary impacts on invaded ecosystems. We examined how an invasive foundation plant, Spartina alterniflora, varied in its life history along latitudinal gradient using a common gardens experiment. Two common gardens were located at range boundary in tropical zone and main distribution area of S. alterniflora in temperate zone in China. Within each population/garden, we measured the onset time of three successive phenological stages constituting the reproductive phase and a fitness trait. In the low-latitude garden with higher temperature, we found that reproductive phase was advanced and its length prolonged compared to the high-latitude garden. This could possibly due to lower plasticity of maturity time. Additionally, plasticity in the length of the reproductive phase positively related with fitness in the low-latitude garden. Marginal population from tropic had the lowest plasticity and fitness, and the poor capacity to cope with changing environment may result in reduction of this population. These results reflected genetic divergence in life history of S. alterniflora in China. Our study provided a novel view to test the center-periphery hypothesis by integration across a plant's life history and highlighted the significance in considering evolution. Such insights can help us to understand long-term ecological consequences of life-history variation, with implications for plant fitness, species interaction, and ecosystem functions under climate change.

6.
Int J Soc Psychiatry ; : 207640241255587, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847406

ABSTRACT

BACKGROUND: Chinese family structure has undergone tremendous changes over the past few decades. Moreover, the association of the intergenerational structure with depression remains controversial. AIMS: This study aimed to find out the association of the intergenerational structure and the onset of depressive symptoms among Chinese middle-aged and older adults. METHODS: This study included 4,868 participants of the China Health and Retirement Longitudinal Study (CHARLS), who were enrolled in 2011 without depressive symptoms and followed up at least once later in 2013, 2015, 2018, and 2020. Taking the time-varying confounding effect into account, the time-dependent Cox regression models were used to estimate the association of the intergenerational structure and the onset of depressive symptoms. RESULTS: Among the studied middle-aged and older adults, compared to one-generation households, higher hazard ratios (HR) of developing depressive symptoms were found in three-generation households in the study population (HR = 1.21, 95% CI [1.08, 1.36]). Further, for female participants, skipping-generation households (HR = 1.38, 95% CI [1.05, 1.83]) and three-generation lineal households (HR = 1.21, 95% CI [1.02, 1.43]) were found to be significantly associated with new-onset depressive symptoms compared to empty-nest couples. For male participants, living alone (HR = 1.65, 95% CI [1.30, 2.11]), living in standardized nuclear households (HR = 1.27, 95% CI [1.06, 1.54]), impaired nuclear households (HR = 1.80, 95% CI [1.18, 2.76]), or three-generation lineal households (HR = 1.34, 95% CI [1.12, 1.60]) were found to have a significant association with the onset of depressive symptoms. CONCLUSIONS: This study found that males living alone, with unmarried children, or in three-generation lineal households, and females living with grandchildren were more likely to suffer from depressive symptoms. Therefore, special attention should be paid to people in these intergenerational structure subtypes.

7.
J Org Chem ; 89(14): 9750-9754, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38940722

ABSTRACT

Herein, a photocatalytic umpolung strategy for reductive carboxylation of imines for the synthesis of α-amino acids was disclosed. Carbon dioxide radical anion (CO2•-) generated from formate is the key single electron reductant in the reactions. An unprecedentedly broad substrate scope of imines with excellent reaction yields was obtained with carbon dioxide (CO2) and formate salt as carbon sources.

8.
Proc Natl Acad Sci U S A ; 121(26): e2320572121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38885380

ABSTRACT

Although most known viruses infecting fungi pathogenic to higher eukaryotes are asymptomatic or reduce the virulence of their host fungi, those that confer hypervirulence to entomopathogenic fungus still need to be explored. Here, we identified and studied a novel mycovirus in Metarhizium flavoviride, isolated from small brown planthopper (Laodelphax striatellus). Based on molecular analysis, we tentatively designated the mycovirus as Metarhizium flavoviride partitivirus 1 (MfPV1), a species in genus Gammapartitivirus, family Partitiviridae. MfPV1 has two double-stranded RNAs as its genome, 1,775 and 1,575 bp in size respectively, encapsidated in isometric particles. When we transfected commercial strains of Metarhizium anisopliae and Metarhizium pingshaense with MfPV1, conidiation was significantly enhanced (t test; P-value < 0. 01), and the significantly higher mortality rates of the larvae of diamondback moth (Plutella xylostella) and fall armyworm (Spodoptera frugiperda), two important lepidopteran pests were found in virus-transfected strains (ANOVA; P-value < 0.05). Transcriptomic analysis showed that transcript levels of pathogenesis-related genes in MfPV1-infected M. anisopliae were obviously altered, suggesting increased production of metarhizium adhesin-like protein, hydrolyzed protein, and destruxin synthetase. Further studies are required to elucidate the mechanism whereby MfPV1 enhances the expression of pathogenesis-related genes and virulence of Metarhizium to lepidopteran pests. This study presents experimental evidence that the transfection of other entomopathogenic fungal species with a mycovirus can confer significant hypervirulence and provides a good example that mycoviruses could be used as a synergistic agent to enhance the biocontrol activity of entomopathogenic fungi.


Subject(s)
Fungal Viruses , Metarhizium , Metarhizium/pathogenicity , Metarhizium/genetics , Animals , Virulence/genetics , Fungal Viruses/genetics , Pest Control, Biological/methods , Moths/microbiology , Moths/virology , Genome, Viral , Phylogeny
9.
Crit Rev Microbiol ; : 1-31, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38794781

ABSTRACT

Human Ureaplasma species are being increasingly recognized as opportunistic pathogens in human genitourinary tract infections, infertility, adverse pregnancy, neonatal morbidities, and other adult invasive infections. Although some general reviews have focused on the detection and clinical manifestations of Ureaplasma spp., the molecular epidemiology, antimicrobial resistance, and pathogenesis of Ureaplasma spp. have not been adequately explained. The purpose of this review is to offer valuable insights into the current understanding and future research perspectives of the molecular epidemiology, antimicrobial resistance, and pathogenesis of human Ureaplasma infections. This review summarizes the conventional culture and detection methods and the latest molecular identification technologies for Ureaplasma spp. We also reviewed the global prevalence and mechanisms of antibiotic resistance for Ureaplasma spp. Aside from regular antibiotics, novel antibiotics with outstanding in vitro antimicrobial activity against Ureaplasma spp. are described. Furthermore, we discussed the pathogenic mechanisms of Ureaplasma spp., including adhesion, proinflammatory effects, cytotoxicity, and immune escape effects, from the perspectives of pathology, related molecules, and genetics.

10.
Comput Struct Biotechnol J ; 24: 404-411, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38813092

ABSTRACT

Lung cancer is the main cause of cancer-related deaths worldwide. Due to lack of obvious clinical symptoms in the early stage of the lung cancer, it is hard to distinguish between malignancy and pulmonary nodules. Understanding the immune responses in the early stage of malignant lung cancer patients may provide new insights for diagnosis. Here, using high-through-put sequencing, we obtained the TCRß repertoires in the peripheral blood of 100 patients with Stage I lung cancer and 99 patients with benign pulmonary nodules. Our analysis revealed that the usage frequencies of TRBV, TRBJ genes, and V-J pairs and TCR diversities indicated by D50s, Shannon indexes, Simpson indexes, and the frequencies of the largest TCR clone in the malignant samples were significantly different from those in the benign samples. Furthermore, reduced TCR diversities were correlated with the size of pulmonary nodules. Moreover, we built a backpropagation neural network model with no clinical information to identify lung cancer cases from patients with pulmonary nodules using 15 characteristic TCR clones. Based on the model, we have created a web server named "Lung Cancer Prediction" (LCP), which can be accessed at http://i.uestc.edu.cn/LCP/index.html.

11.
Respir Res ; 25(1): 215, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764025

ABSTRACT

BACKGROUND: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of lung cancer patients with mutated EGFR. However, the efficacy of EGFR-TKIs in wild-type EGFR tumors has been shown to be marginal. Methods that can sensitize EGFR-TKIs to EGFR wild-type NSCLC remain rare. Hence, we determined whether combination treatment can maximize the therapeutic efficacy of EGFR-TKIs. METHODS: We established a focused drug screening system to investigate candidates for overcoming the intrinsic resistance of wild-type EGFR NSCLC to EGFR-TKIs. Molecular docking assays and western blotting were used to identify the binding mode and blocking effect of the candidate compounds. Proliferation assays, analyses of drug interactions, colony formation assays, flow cytometry and nude mice xenograft models were used to determine the effects and investigate the molecular mechanism of the combination treatment. RESULTS: Betulinic acid (BA) is effective at targeting EGFR and synergizes with EGFR-TKIs (gefitinib and osimertinib) preferentially against wild-type EGFR. BA showed inhibitory activity due to its interaction with the ATP-binding pocket of EGFR and dramatically enhanced the suppressive effects of EGFR-TKIs by blocking EGFR and modulating the EGFR-ATK-mTOR axis. Mechanistic studies revealed that the combination strategy activated EGFR-induced autophagic cell death and that the EGFR-AKT-mTOR signaling pathway was essential for completing autophagy and cell cycle arrest. Activation of the mTOR pathway or blockade of autophagy by specific chemical agents markedly attenuated the effect of cell cycle arrest. In vivo administration of the combination treatment caused marked tumor regression in the A549 xenografts. CONCLUSIONS: BA is a potential wild-type EGFR inhibitor that plays a critical role in sensitizing EGFR-TKI activity. BA combined with an EGFR-TKI effectively suppressed the proliferation and survival of intrinsically resistant lung cancer cells via the inhibition of EGFR as well as the induction of autophagy-related cell death, indicating that BA combined with an EGFR-TKI may be a potential therapeutic strategy for overcoming the primary resistance of wild-type EGFR-positive lung cancers.


Subject(s)
Autophagy , Betulinic Acid , Carcinoma, Non-Small-Cell Lung , Drug Synergism , ErbB Receptors , Lung Neoplasms , Pentacyclic Triterpenes , Protein Kinase Inhibitors , Animals , Humans , Mice , A549 Cells , Acrylamides/pharmacology , Aniline Compounds/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Autophagy/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Gefitinib/pharmacology , Indoles , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Mice, Inbred BALB C , Mice, Nude , Molecular Docking Simulation , Protein Kinase Inhibitors/pharmacology , Pyrimidines , Signal Transduction/drug effects , Triterpenes/pharmacology , Xenograft Model Antitumor Assays/methods
12.
ACS Appl Mater Interfaces ; 16(21): 27668-27683, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38748922

ABSTRACT

Micro/nanomotors (MNMs) are miniature devices that can generate energy through chemical reactions or physical processes, utilizing this energy for movement. By virtue of their small size, self-propulsion, precise positioning within a small range, and ability to access microenvironments, MNMs have been applied in various fields including sensing, biomedical applications, and pollutant adsorption. However, the development of food-grade MNMs and their application in food delivery systems have been scarcely reported. Currently, there are various issues with the decomposition, oxidation, or inability to maintain the activity of some nutrients or bioactive substances, such as the limited application of curcumin (Cur) in food. Compared to traditional delivery systems, MNMs can adjust the transport speed and direction as needed, effectively protecting bioactive substances during delivery and achieving efficient transportation. Therefore, this study utilizes polysaccharides as the substrate, employing a simple, rapid, and pollution-free template method to prepare polysaccharide-based microtubes (PMTs) and polysaccharide-based micro/nanomotors (PMNMs). PMNMs can achieve multifunctional propulsion by modifying ferrosoferric oxide (Fe3O4), platinum (Pt), and glucose oxidase (GOx). Fe-PMNMs and Pt-PMNMs exhibit excellent photothermal conversion performance, showing promise for applications in photothermal therapy. Moreover, PMNMs can effectively deliver curcumin, achieving the effective delivery of nutrients and exerting the anti-inflammatory performance of the system.


Subject(s)
Curcumin , Polysaccharides , Curcumin/chemistry , Polysaccharides/chemistry , Animals , Mice , Platinum/chemistry , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Ferrosoferric Oxide/chemistry , Humans , Food Ingredients/analysis
13.
Adv Sci (Weinh) ; 11(26): e2306348, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38696655

ABSTRACT

Patients who have non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations are more prone to brain metastasis (BM) and poor prognosis. Previous studies showed that the tumor microenvironment of BM in these patients is immunosuppressed, as indicated by reduced T-cell abundance and activity, although the mechanism of this immunosuppression requires further study. This study shows that reactive astrocytes play a critical role in promoting the immune escape of BM from EGFR-mutated NSCLC by increasing the apoptosis of CD8+ T lymphocytes. The increased secretion of interleukin 11(IL11) by astrocytes promotes the expression of PDL1 in BM, and this is responsible for the increased apoptosis of T lymphocytes. IL11 functions as a ligand of EGFR, and this binding activates EGFR and downstream signaling to increase the expression of PDL1, culminating in the immune escape of tumor cells. IL11 also promotes immune escape by binding to its intrinsic receptor (IL11Rα/glycoprotein 130 [gp130]). Additional in vivo studies show that the targeted inhibition of gp130 and EGFR suppresses the growth of BM and prolongs the survival time of mice. These results suggest a novel therapeutic strategy for treatment of NSCLC patients with EGFR mutations.


Subject(s)
Astrocytes , B7-H1 Antigen , Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Interleukin-11 , Lung Neoplasms , Up-Regulation , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Mice , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/immunology , ErbB Receptors/metabolism , ErbB Receptors/genetics , Brain Neoplasms/genetics , Brain Neoplasms/secondary , Brain Neoplasms/immunology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Humans , Astrocytes/metabolism , Interleukin-11/genetics , Interleukin-11/metabolism , Up-Regulation/genetics , Tumor Escape/genetics , Disease Models, Animal , Mutation/genetics , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Cell Line, Tumor
14.
Int Immunopharmacol ; 135: 112322, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38788452

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive respiratory disorder characterized by poor prognosis, often presenting with acute exacerbation. The primary cause of death associated with IPF is acute exacerbation of IPF (AE-IPF). However, the pathophysiology of acute exacerbation has not been clearly elucidated yet. This study aims to investigate the underlying pathophysiological molecular mechanism in a mouse AE-PF model. C57BL/6J mice were intratracheally administered bleomycin (BLM, 5 mg/kg) to induce pulmonary fibrosis. After 14 days, lipopolysaccharide (LPS, 2 mg/kg) was injected via the trachea route. Histological assessments, including H&E and Masson staining, as well as inflammatory indicators, were included to evaluate the induction of AE-PF by BLM and LPS in mice. Transcriptomic profiling of pulmonary tissues identified CSF3 as one of the top 10 upregulated DEGs in AE-PF mice. Indeed, administration of exogenous CSF3 protein exacerbated AE-PF in mice. Mechanistically, CSF3 disrupted alveolar epithelial barrier integrity and permeability by regulating specialized cell adhesion complexes such as tight junctions (TJs) and adherens junctions (AJs) via PI3K/p-Akt/Snail pathway, contributing to the aggravation of AE-PF in mice. Moreover, the discovery of elevated sera CSF3 indicated a notable increase in IPF patients during the exacerbation of the disease. Pearson correlation analysis in IPF patients revealed significant positive associations between CSF3 levels and KL-6 levels, LDH levels, CRP levels, respectively. These results provide mechanistic insights into the role of CSF3 in exacerbating of lung fibrotic disease and indicate monitoring CSF3 levels may aid in early clinical decisions for alternative therapy in the management of rapidly progressing IPF.


Subject(s)
Bleomycin , Idiopathic Pulmonary Fibrosis , Mice, Inbred C57BL , Animals , Humans , Mice , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Male , Disease Models, Animal , Disease Progression , Female , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Signal Transduction , Middle Aged , Tight Junctions/metabolism , Tight Junctions/drug effects , Tight Junctions/pathology , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Proto-Oncogene Proteins c-akt/metabolism
15.
J Transl Med ; 22(1): 451, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741136

ABSTRACT

BACKGROUND: Facioscapulohumeral muscular dystrophy (FSHD) is a high-prevalence autosomal dominant neuromuscular disease characterized by significant clinical and genetic heterogeneity. Genetic diagnosis of FSHD remains a challenge because it cannot be detected by standard sequencing methods and requires a complex diagnosis workflow. METHODS: We developed a comprehensive genetic FSHD detection method based on Oxford Nanopore Technologies (ONT) whole-genome sequencing. Using a case-control design, we applied this procedure to 29 samples and compared the results with those from optical genome mapping (OGM), bisulfite sequencing (BSS), and whole-exome sequencing (WES). RESULTS: Using our ONT-based method, we identified 59 haplotypes (35 4qA and 24 4qB) among the 29 samples (including a mosaic sample), as well as the number of D4Z4 repeat units (RUs). The pathogenetic D4Z4 RU contraction identified by our ONT-based method showed 100% concordance with OGM results. The methylation levels of the most distal D4Z4 RU and the double homeobox 4 gene (DUX4) detected by ONT sequencing are highly consistent with the BSS results and showed excellent diagnostic efficiency. Additionally, our ONT-based method provided an independent methylation profile analysis of two permissive 4qA alleles, reflecting a more accurate scenario than traditional BSS. The ONT-based method detected 17 variations in three FSHD2-related genes from nine samples, showing 100% concordance with WES. CONCLUSIONS: Our ONT-based FSHD detection method is a comprehensive method for identifying pathogenetic D4Z4 RU contractions, methylation level alterations, allele-specific methylation of two 4qA haplotypes, and variations in FSHD2-related genes, which will all greatly improve genetic testing for FSHD.


Subject(s)
DNA Methylation , Muscular Dystrophy, Facioscapulohumeral , Whole Genome Sequencing , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/diagnosis , Humans , DNA Methylation/genetics , Haplotypes/genetics , Male , Case-Control Studies , Homeodomain Proteins/genetics , Female , Nanopore Sequencing/methods , Adult
16.
Bioact Mater ; 38: 399-410, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38774457

ABSTRACT

Mesenchymal stem cell (MSC) migration determines the healing capacity of bone and is crucial in promoting bone regeneration. Migration of MSCs is highly dependent on degradation of extracellular matrix by proteolytic enzymes. However, the underlying mechanisms of how enzymolysis paves the way for MSCs to migrate from their niche to the defect area is still not fully understood. Here, this study shows that high-temperature requirement A3 (HtrA3) overcomes the physical barrier and provides anchor points through collagen IV degradation, paving the way for MSC migration. HtrA3 is upregulated in MSCs at the leading edge of bone defect during the early stage of healing. HtrA3 degrades the surrounding collagen IV, which increases the collagen network porosity and increases integrin ß1 expression. Subsequently, integrin ß1 enhances the mechanotransduction of MSCs, thus remodeling the cytoskeleton, increasing cellular stiffness and nuclear translocation of YAP, eventually promoting the migration and subsequent osteogenic differentiation of MSCs. Local administration of recombinant HtrA3 in rat cranial bone defects significantly increases new bone formation and further validates the enhancement of MSC migration. This study helps to reveal the novel roles of HtrA3, explore potential targets for regenerative medicine, and offer new insights for the development of bioactive materials.

17.
Fish Shellfish Immunol ; 149: 109593, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697374

ABSTRACT

A type of fermented bile acids (FBAs) has been produced through a biological method, and its effects on growth performance, metabolism, and intestinal microbiota in largemouth bass were investigated. The results demonstrated that incorporating 0.03 %-0.05 % FBAs diet could improve the final weight, weight gain and specific growth rate, and decrease the feed conversion ratio. Dietary FBAs did not significantly affect the levels of high-density lipoprotein, low-density lipoprotein, and triglycerides, but decreased the activities of α-amylase in most groups. Adding FBAs to the diet significantly increased the integrity of the microscopic structure of the intestine, thickened the muscular layer of the intestine, and notably enhanced its intestinal barrier function. The addition of FBAs to the diet increased the diversity of the gut microbiota in largemouth bass. At the phylum level, there was an increase in the abundance of Proteobacteria, Firmicutes, Tenericutes and Cyanobacteria and a significant decrease in Actinobacteria and Bacteroidetes. At the genus level, the relative abundance of beneficial bacteria Mycoplasma in the GN6 group and Coprococcus in the GN4 group significantly increased, while the pathogenic Enhydrobacter was inhibited. Meanwhile, the highest levels of AKP and ACP were observed in the groups treated with 0.03 % FBAs, while the highest levels of TNF-α and IL-10 were detected in the group treated with 0.04 % FBAs. Additionally, the highest levels of IL-1ß, IL-8T, GF-ß, IGF-1, and IFN-γ were noted in the group treated with 0.06 % FBAs. These results suggested that dietary FBAs improved growth performance and intestinal wall health by altering lipid metabolic profiles and intestinal microbiota in largemouth bass.


Subject(s)
Animal Feed , Bass , Bile Acids and Salts , Diet , Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/drug effects , Bile Acids and Salts/metabolism , Animal Feed/analysis , Bass/growth & development , Bass/immunology , Diet/veterinary , Intestines/microbiology , Fermentation , Metabolome , Dietary Supplements/analysis , Random Allocation
18.
PLoS One ; 19(4): e0302267, 2024.
Article in English | MEDLINE | ID: mdl-38626172

ABSTRACT

BACKGROUND: Preterm infants have imperfect neurological development, uncoordinated sucking-swallowing-breathing, which makes it difficult to realize effective oral feeding after birth. How to help preterm infants achieve complete oral feeding as soon as possible has become an important issue in the management of preterm infants. Non-nutritive sucking (NNS), as a useful oral stimulation, can improve the effect of oral feeding in preterm infants. This review aimed to explore the effect of NNS on oral feeding progression through a meta-analysis. METHODS: We systematically searched PubMed, CINHAL, Web of Science, Embase, Cochrane databases, China's National Knowledge Infrastructure (CNKI), Wanfang and VIP database from inception to January 20, 2024. Search terms included 'non-nutritive sucking' 'oral feeding' and 'premature.' Eligibility criteria involved randomized controlled studies in English or Chinese. Studies were excluded if they were reviews, case reports, or observational studies from which valid data could not be extracted or outcome indicators were poorly defined. The meta-analysis will utilize Review Manager 5.3 software, employing either random-effects or fixed-effects models based on observed heterogeneity. We calculated the mean difference (MD) and 95% confidence interval (CI) for continuous data, and estimated pooled odds ratios (ORs) for dichotomous data. Sensitivity and publication bias analyses were conducted to ensure robust and reliable findings. We evaluated the methodological quality of randomized controlled trials (RCTs) utilizing the assessment tool provided by the Cochrane Collaboration. RESULTS: A total of 23 randomized controlled trials with 1461 preterm infants were included. The results of the meta-analysis showed that NNS significantly shortened time taken to achieve exclusive oral feeding (MD = -5.37,95%CI = -7.48 to-3.26, p<0.001), length of hospital stay(MD = -4.92, 95% CI = -6.76 to -3.09, p<0.001), time to start oral feeding(MD = -1.41, 95% CI = -2.36 to -0.45, p = 0.004), time to return to birth weight(MD = -1.72, 95% CI = -2.54 to -0.91, p<0.001). Compared to the NNS group, the control group had significant weight gain in preterm infants, including weight of discharge (MD = -61.10, 95% CI = -94.97 to -27.23, p = 0.0004), weight at full oral feeding (MD = -86.21, 95% CI = -134.37 to -38.05, p = 0.0005). In addition, NNS reduced the incidence of feeding intolerance (OR = 0.22, 95% CI = 0.14 to 0.35, p<0.001) in preterm infants. CONCLUSION: NNS improves oral feeding outcomes in preterm infants and reduces the time to reach full oral feeding and hospitalization length. However, this study was limited by the relatively small sample size of included studies and did not account for potential confounding factors. There was some heterogeneity and bias between studies. More studies are needed in the future to validate the effects on weight gain and growth in preterm infants. Nevertheless, our meta-analysis provides valuable insights, updating existing evidence on NNS for improving oral feeding in preterm infants and promoting evidence-based feeding practices in this population.

19.
J Exp Clin Cancer Res ; 43(1): 103, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570866

ABSTRACT

BACKGROUND: Brain metastasis (BM) is common among cases of advanced non-small cell lung cancer (NSCLC) and is the leading cause of death for these patients. Mesothelin (MSLN), a tumor-associated antigen expressed in many solid tumors, has been reported to be involved in the progression of multiple tumors. However, its potential involvement in BM of NSCLC and the underlying mechanism remain unknown. METHODS: The expression of MSLN was validated in clinical tissue and serum samples using immunohistochemistry and enzyme-linked immunosorbent assay. The ability of NSCLC cells to penetrate the blood-brain barrier (BBB) was examined using an in vitro Transwell model and an ex vivo multi-organ microfluidic bionic chip. Immunofluorescence staining and western blotting were used to detect the disruption of tight junctions. In vivo BBB leakiness assay was performed to assess the barrier integrity. MET expression and activation was detected by western blotting. The therapeutic efficacy of drugs targeting MSLN (anetumab) and MET (crizotinib/capmatinib) on BM was evaluated in animal studies. RESULTS: MSLN expression was significantly elevated in both serum and tumor tissue samples from NSCLC patients with BM and correlated with a poor clinical prognosis. MSLN significantly enhanced the brain metastatic abilities of NSCLC cells, especially BBB extravasation. Mechanistically, MSLN facilitated the expression and activation of MET through the c-Jun N-terminal kinase (JNK) signaling pathway, which allowed tumor cells to disrupt tight junctions and the integrity of the BBB and thereby penetrate the barrier. Drugs targeting MSLN (anetumab) and MET (crizotinib/capmatinib) effectively blocked the development of BM and prolonged the survival of mice. CONCLUSIONS: Our results demonstrate that MSLN plays a critical role in BM of NSCLC by modulating the JNK/MET signaling network and thus, provides a potential novel therapeutic target for preventing BM in NSCLC patients.


Subject(s)
Benzamides , Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Imidazoles , Lung Neoplasms , Triazines , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Mesothelin , Lung Neoplasms/pathology , GPI-Linked Proteins/metabolism , Crizotinib , Cell Line, Tumor , Brain Neoplasms/pathology
20.
Research (Wash D C) ; 7: 0330, 2024.
Article in English | MEDLINE | ID: mdl-38562525

ABSTRACT

In the evolving landscape of robotics and visual navigation, event cameras have gained important traction, notably for their exceptional dynamic range, efficient power consumption, and low latency. Despite these advantages, conventional processing methods oversimplify the data into 2 dimensions, neglecting critical temporal information. To overcome this limitation, we propose a novel method that treats events as 3D time-discrete signals. Drawing inspiration from the intricate biological filtering systems inherent to the human visual apparatus, we have developed a 3D spatiotemporal filter based on unsupervised machine learning algorithm. This filter effectively reduces noise levels and performs data size reduction, with its parameters being dynamically adjusted based on population activity. This ensures adaptability and precision under various conditions, like changes in motion velocity and ambient lighting. In our novel validation approach, we first identify the noise type and determine its power spectral density in the event stream. We then apply a one-dimensional discrete fast Fourier transform to assess the filtered event data within the frequency domain, ensuring that the targeted noise frequencies are adequately reduced. Our research also delved into the impact of indoor lighting on event stream noise. Remarkably, our method led to a 37% decrease in the data point cloud, improving data quality in diverse outdoor settings.

SELECTION OF CITATIONS
SEARCH DETAIL