Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.267
Filter
1.
BMC Med ; 22(1): 304, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39358745

ABSTRACT

BACKGROUND: S100ß is a biomarker of astroglial damage, the level of which is significantly increased following brain injury. However, the characteristics of S100ß and its association with prognosis in patients with acute ischemic stroke following intravenous thrombolysis (IVT) remain unclear. METHODS: Patients in this multicenter prospective cohort study were prospectively and consecutively recruited from 16 centers. Serum S100ß levels were measured 24 h after IVT. National Institutes of Health Stroke Scale (NIHSS) and hemorrhagic transformation (HT) were measured simultaneously. NIHSS at 7 days after stroke, final infarct volume, and modified Rankin Scale (mRS) scores at 90 days were also collected. An mRS score ≥ 2 at 90 days was defined as an unfavorable outcome. RESULTS: A total of 1072 patients were included in the analysis. The highest S100ß levels (> 0.20 ng/mL) correlated independently with HT and higher NIHSS at 24 h, higher NIHSS at 7 days, larger final infarct volume, and unfavorable outcome at 3 months. The patients were divided into two groups based on dominant and non-dominant stroke hemispheres. The highest S100ß level was similarly associated with the infarct volume in patients with stroke in either hemisphere (dominant: ß 36.853, 95% confidence interval (CI) 22.659-51.048, P < 0.001; non-dominant: ß 23.645, 95% CI 10.774-36.516, P = 0.007). However, serum S100ß levels at 24 h were more strongly associated with NIHSS scores at 24 h and 3-month unfavorable outcome in patients with dominant hemisphere stroke (NIHSS: ß 3.470, 95% CI 2.392-4.548, P < 0.001; 3-month outcome: odds ratio (OR) 5.436, 95% CI 2.936-10.064, P < 0.001) than in those with non-dominant hemisphere stroke (NIHSS: ß 0.326, 95% CI  - 0.735-1.387, P = 0.547; 3-month outcome: OR 0.882, 95% CI 0.538-1.445, P = 0.619). The association of S100ß levels and HT was not significant in either stroke lateralization group. CONCLUSIONS: Serum S100ß levels 24 h after IVT were independently associated with HT, infarct volume, and prognosis in patients with IVT, which suggests the application value of serum S100ß in judging the degree of disease and predicting prognosis.


Subject(s)
S100 Calcium Binding Protein beta Subunit , Stroke , Thrombolytic Therapy , Humans , Prospective Studies , S100 Calcium Binding Protein beta Subunit/blood , Female , Male , Aged , Middle Aged , Prognosis , Thrombolytic Therapy/methods , Stroke/blood , Stroke/drug therapy , Biomarkers/blood , Aged, 80 and over , Administration, Intravenous , Treatment Outcome
2.
Soft Matter ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39263732

ABSTRACT

This study investigates the magneto-optical response of liquid crystals (LCs) with planar anchoring in the presence of γ-Fe2O3 magnetic nanoparticles (MNPs). This research demonstrates the formation of novel magnetic composite chains of LCs wrapped around γ-Fe2O3 MNP chains within the LC matrix under an applied magnetic field. These composite chains exhibit a distinct magneto-optical response, characterized by changes in birefringence and dichroism as the magnetic field direction is altered. Based on experimental findings, a two-subsystem model and an effective volume fraction of composite chains are proposed to describe the magneto-optical behavior of the γ-Fe2O3 MNP-doped LCs. The first subsystem comprises the LC matrix, which retains its inherent anisotropic optical properties and does not respond to the applied magnetic field. The second subsystem consists of the magnetic composite chains, which exhibit a distinct magneto-optical response due to their rotational alignment with the magnetic field. The difference in absorbance, 2αdd, which corresponds to dichroism, decreases with increasing magnetic field angle Θ, indicating a corresponding change in dichroism. This interplay between the two subsystems leads to the macroscopic magneto-optical response observed in the γ-Fe2O3 MNP-doped LCs. Due to the stability of the composite chains, the magneto-optical response is stable and can be reversed.

3.
Environ Sci Technol ; 58(39): 17270-17282, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39295530

ABSTRACT

Short chain chlorinated paraffins (SCCPs) are widely found in various environmental media and potentially threaten human health. However, the toxicity mechanisms of SCCPs to the male reproductive system remain unclear. In this study, male BALB/c mice and GC-1 cells were used to investigate the reproductive toxicity of SCCPs and their molecular mechanisms. SCCPs decreased the content of the tricarboxylic acid cycle intermediate α-KG in testicular cells, thus inhibiting the activity of the DNA demethylase TET enzyme and resulting in an increase in the overall methylation level of the testicular genome. Correspondingly, the promoter demethylation and expression of spermatogenesis-related genes Rbm46, Sohlh1, Kit, and Dmrt1 were significantly reduced by SCCPs, which further prevented the transformation of spermatogonia to spermatocytes and reduced sperm quality in mice. The in vitro experiments suggested that the TGFß pathway activated by oxidative stress might be an essential reason for inhibiting the tricarboxylic acid cycle and the reduction of α-KG content in testicular cells induced by SCCPs. Overall, this study reveals a novel metabolic regulatory mechanism of SCCPs-induced spermatogenesis disorders, which provides an essential theoretical basis for the prevention of reproductive toxicity of SCCPs.


Subject(s)
Spermatogenesis , Animals , Spermatogenesis/drug effects , Mice , Male , Paraffin , Mice, Inbred BALB C , Testis/drug effects , Testis/metabolism
4.
Nat Commun ; 15(1): 7791, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39242637

ABSTRACT

Multiple sclerosis (MS) is a debilitating demyelinating disease characterized by remyelination failure attributed to inadequate oligodendrocyte precursor cells (OPCs) differentiation and aberrant astrogliosis. A comprehensive cell atlas reanalysis of clinical specimens brings to light heightened clusterin (CLU) expression in a specific astrocyte subtype links to active lesions in MS patients. Our investigation reveals elevated astrocytic CLU levels in both active lesions of patient tissues and female murine MS models. CLU administration stimulates primary astrocyte proliferation while concurrently impeding astrocyte-mediated clearance of myelin debris. Intriguingly, CLU overload directly impedes OPC differentiation and induces OPCs and OLs apoptosis. Mechanistically, CLU suppresses PI3K-AKT signaling in primary OPCs via very low-density lipoprotein receptor. Pharmacological activation of AKT rescues the damage inflicted by excess CLU on OPCs and ameliorates demyelination in the corpus callosum. Furthermore, conditional knockout of CLU emerges as a promising intervention, showcasing improved remyelination processes and reduced severity in murine MS models.


Subject(s)
Astrocytes , Clusterin , Demyelinating Diseases , Disease Models, Animal , Remyelination , Animals , Female , Humans , Mice , Apoptosis/drug effects , Astrocytes/metabolism , Astrocytes/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Clusterin/metabolism , Clusterin/genetics , Corpus Callosum/metabolism , Corpus Callosum/pathology , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Mice, Inbred C57BL , Mice, Knockout , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Myelin Sheath/metabolism , Oligodendrocyte Precursor Cells/metabolism , Oligodendrocyte Precursor Cells/drug effects , Oligodendroglia/metabolism , Oligodendroglia/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Remyelination/drug effects , Signal Transduction
5.
Neurourol Urodyn ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39234771

ABSTRACT

AIM: Sacral neuromodulation (SNM) is widely recognized as the essential treatment modality for patients suffering from various lower urinary tract disorders, particularly overactive bladder (OAB). This prospective study recruited patients who underwent variable frequency SNM treatment at six Chinese medical centers, aiming to evaluate the gender-specific effects of this intervention and provide precise guidance on its application for clinical management. METHODS: This prospective study was managed by Beijing Hospital, and six Chinese medical centers participated in this prospective research. Inclusion and exclusion criteria were established to screen patients based on the indication for SNM. During the research, all patients were required to record 72-h voiding diaries, urgency scores, and visual analogue scale (VAS) scores to reflect their disease symptoms. Additionally, subjective questionnaire surveys such as OAB symptom score (OABSS) and quality-of-life (Qol) score were recorded to reflect the patients' quality of life and treatment satisfaction. RESULTS: In this study, 52 patients (male patients: 25; female patients: 27) with OAB symptoms agreed to undergo variable frequency stimulation SNM therapy and finally convert to Stage II. Regarding the baseline outcomes, no significant differences were observed between the male and female groups. In terms of postoperative indicators, male patients showed a greater improvement in Qol scores compared to their female counterparts (20.06 ± 13.12 vs. 40.83 ± 26.06, p = 0.005). The results from VAS scores indicated that pain remission was more pronounced in male patients than in female patients (0.31 ± 0.87 vs. 1.67 ± 2.16, p = 0.02). Importantly, there was a statistically significant disparity in urinary urgency between males and females (male patients: 1.19 ± 1.56; female patients: 2.17 ± 1.52, p = 0.04). CONCLUSIONS: In our study, we found that variable frequency SNM treatment yielded sex-specific differences in therapeutic effects, with male patients having a better outcome in some metrics. This suggests that a patient's sex may influence when variable frequency SNM is used, and in the patient's follow-up. TRIAL REGISTRATION: ClinicalTrials.gov identifier: ChiCTR2000036677.

6.
J Cereb Blood Flow Metab ; : 271678X241281020, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235536

ABSTRACT

Whether the dynamic development of peripheral inflammation aggravates brain injury and leads to poor outcome in stroke patients receiving intravenous thrombolysis (IVT), remains unclear and warrants further study. In this study, total of 1034 patients with acute ischemic stroke who underwent IVT were enrolled. Serum leukocyte variation (whether increase from baseline to 24 h after IVT), National Institutes of Health Stroke Scale (NIHSS), infarct volume, early neurologic deterioration (END), the unfavorable outcome at 3-month (modified Rankin Scale [mRS] score ≥3) and mortality were recorded. Serum brain injury biomarkers, including Glial fibrillary acidic protein (GFAP), ubiquitin c-terminal hydrolase L1 (UCH-L1), S100ß, neuron-specific enolase (NSE), were measured to reflect the extent of brain injury. We found that patients with increased serum leukocytes had elevated brain injury biomarkers (GFAP, UCH-L1, and S100ß), larger infarct volume, higher 24 h NIHSS, higher proportion of END, unfavorable outcome and mortality. Furthermore, an increase in serum leukocytes was independently associated with infarct volume, 24 h NIHSS, END, and unfavorable outcome at 3 months, and serum UCH-L1, S100ß, and NSE levels. These results suggest that an increase in serum leukocytes indicates severe brain injury and may be used to predict the outcome of patients with ischemic stroke who undergo IVT.

7.
bioRxiv ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39282347

ABSTRACT

Spinal motor neuron (MN) dysfunction is the cause of a number of clinically significant movement disorders. Despite the recent approval of gene therapeutics targeting these MN-related disorders, there are no viral delivery mechanisms that achieve MN-restricted transgene expression. In this study, chromatin accessibility profiling of genetically defined mouse MNs was used to identify candidate cis-regulatory elements (CREs) capable of driving MN-selective gene expression. Subsequent testing of these candidates identified two CREs that confer MN-selective gene expression in the spinal cord as well as reduced off-target expression in dorsal root ganglia. Within one of these candidate elements, we identified a compact core transcription factor (TF)-binding region that drives MN-selective gene expression. Finally, we demonstrate that selective spinal cord expression of this mouse CRE is preserved in non-human primates. These findings suggest that the generation of cell-type-selective viral reagents, in which cell-type-selective CREs drive restricted gene expression, will be valuable research tools in mice and other mammalian species, with potentially significant therapeutic value in humans.

8.
Environ Res ; 262(Pt 2): 119971, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39260716

ABSTRACT

Microplastics (MPs) are a global concern as an emerging pollutant, and the investigation on MPs in Antarctic aids in informing their global pollution assessments. Therefore, there are urgent scientific concerns regarding the environmental behavior, origins, influencing factors, and potential hazards of MPs in Antarctica. This study presents the characteristics of MPs from one ornithogenic sediment profile (coded CC) and two ornithogenic soil profiles (coded MR1 and MR2) from ice-free areas on Ross Island, Antarctica. We explored the potential sources of MPs and the main influencing factors for deposition based on their distribution with depth in the profiles. Through laser-infrared imaging spectroscopy (LDIR), a total of 30 polymer types were identified in all samples, with polyethylene terephthalate (PET) and polyvinyl chloride (PVC) as the dominant types, accounting for more than 70% of the total. The abundance of MPs in the CC sediment profile ranged from 2.83 to 394.18 items/g, while in MR1 and MR2 soil profiles, the abundance ranged from 2.25 to 1690.11 and 8.24 to 168.27 items/g, respectively. The size of MPs was mainly concentrated in the range of 20-50 µm, and possible downward movement of certain polymer types was revealed. From the perspective of temporal variation, we suggest that MPs were heavily influenced by local human activities including scientific research, fishing, and tourism, balanced by protective regulations, while no solid evidence was obtained to support strong influence from biological transport through penguins. This research enhances our understanding on the environmental behavior of MPs in the terrestrial systems of remote polar regions.

9.
Oncol Rep ; 52(5)2024 Nov.
Article in English | MEDLINE | ID: mdl-39219256

ABSTRACT

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the western blotting data shown in Fig. 2D, the cell migration and invasion assay data in Fig. 3C, the mouse imaging pictures in Fig. 4C and D, and the H&E­stained images in Fig. 4E and F were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes that had already been submitted or published elsewhere prior to the submission of this paper to Oncology Reports. Given that the abovementioned data had already apparently been submitted or published prior to the receipt of this paper at Oncology Reports, the Editor has decided that this paper should be retracted from the Journal. After having been in contact with the authors, they accepted the decision to retract the paper. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 45: 706­716, 2021; DOI: 10.3892/or.2020.7880].

10.
Drug Metab Dispos ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251368

ABSTRACT

Exercise significantly alters human physiological functions, such as increasing cardiac output and muscle blood flow, decreasing glomerular filtration rate (GFR) and liver blood flow, thereby, altering absorption, distribution, metabolism and excretion of drugs. In this study, we aimed to establish a database of human physiological parameters during exercise and to construct equations for the relationship between changes in each physiological parameter and exercise intensity, including cardiac output, organ blood flow (e.g. muscle blood flow and kidney blood flow), oxygen uptake, plasma pH and GFR, etc. The polynomial equation was used for illustrating the relationship between the physiological parameters (P) and heart rate (HR), which served as an index of exercise intensity. Pharmacokinetics of midazolam, quinidine, digoxin and lidocaine during exercise were predicted by a whole body physiologically based pharmacokinetic (WB-PBPK) model and the developed database of physiological parameters following administration to 100 virtual subjects. The WB-PBPK model simulation results showed that most of the observed plasma drug concentrations fell within 5th-95th percentiles of the simulations, and the estimated peak concentrations and area under the curve of drugs were also within 0.5-2.0 folds of observations. Sensitivity analysis showed that exercise intensity, exercise duration, medication time and alterations in physiological parameters significantly affected drug pharmacokinetics, and the net effect depending on drug characteristics and exercise conditions. In conclusion, pharmacokinetics of drugs during exercise could be quantitatively predicted using the developed WB-PBPK model and database of physiological parameters. Significance Statement This study simulated real-time changes of human physiological parameters during exercise in the WB-PBPK model and comprehensively investigated pharmacokinetic changes during exercise following oral and intravenous administration. Furthermore, the factors affecting pharmacokinetics during exercise were also revealed.

SELECTION OF CITATIONS
SEARCH DETAIL