Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.988
Filter
1.
J Environ Sci (China) ; 149: 419-430, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181654

ABSTRACT

A novel system for measuring net photochemical ozone production rates in the atmosphere based on cavity ring-down spectroscopy (OPR-CRDS) was developed. The system consists of two chambers (a reaction chamber and a reference chamber) and a dual-channel Ox-CRDS detector. To minimize the wall loss of Ox in the chambers, the inner surfaces of both chambers are coated with Teflon film. The performance of the OPR-CRDS system was characterized. It was found that even though the photolysis frequency (J value) decreased by 10%, the decrease in the P(O3) caused by the ultraviolet-blocking film coating was less than 3%. The two chambers had a good consistency in the mean residence time and the measurement of NO2 and Ox under the condition of no sunlight. The detection limit of the OPR-CRDS was determined to be 0.20 ppbv/hr. To further verify the accuracy of the system, the direct measurement values of the OPR-CRDS system were compared with the calculation results based on radical (OH, HO2, and RO2) reactions, and a good correlation was obtained between the measured and calculated values. Finally, the developed instrument was applied to obtain the comprehensive field observations at an urban site in the Yangtze River Delta (China) for 40 days, the time series and change characteristics of the P(O3) were obtained directly, and the good environmental adaptability and stability of the OPR-CRDS system were demonstrated. It is expected that the new instrument will be beneficial to investigations of the relationship between P(O3) and its precursors.


Subject(s)
Air Pollutants , Environmental Monitoring , Ozone , Ozone/analysis , Environmental Monitoring/methods , Environmental Monitoring/instrumentation , Air Pollutants/analysis , Spectrum Analysis/methods , China , Atmosphere/chemistry , Photolysis
2.
Sci Rep ; 14(1): 19358, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169171

ABSTRACT

Global climate change and the collection of environmental protection taxes are accelerating the green transformation of thermal power enterprises. This study selected Chinese thermal power listed companies as samples and used a dynamic three-stage (operational, green transformation, and market performance) network DEA model to evaluate their transformation efficiency and corporate performance. This paper incorporates targeted indicators such as ESG (environment, society, governance) and stock prices into the model and conducts a comparative study on the basis of macro policies and the geographical location of the enterprise. A comparative analysis was conducted on the efficiency of enterprises before and after the adjustment of the environmental tax burden, using the environmental tax burden as an exogenous variable. Thus, the following conclusions can be drawn: there is a certain positive correlation between the collaborative efficiency of the two links of thermal power enterprises and the economic development of their respective regions. Moreover, the green transformation efficiency of most thermal power enterprises is superior to the market performance efficiency. The environmental tax burden mainly improves the overall efficiency of thermal power enterprises by improving their operational efficiency and efficiency in the green transformation stage without affecting market performance. To further improve efficiency, thermal power enterprises should actively communicate with stakeholders to strive for more financial relief.

3.
ACS Nano ; 18(33): 22233-22244, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39102625

ABSTRACT

Live imaging of primary neural cells is crucial for monitoring neuronal activity, especially multiscale and multifunctional imaging that offers excellent biocompatibility. Multiscale imaging can provide insights into cellular structure and function from the nanoscale to the millimeter scale. Multifunctional imaging can monitor different activities in the brain. However, this remains a challenge because of the lack of dyes with a high signal-to-background ratio, water solubility, and multiscale and multifunctional imaging capabilities. In this study, we present a neural dye with near-infrared (NIR) emissions (>700 nm) that enables ultrafast staining (in less than 1 min) for the imaging of primary neurons. This dye not only enables multiscale neural live-cell imaging from vesicles in neurites, neural membranes, and single neurons to the whole brain but also facilitates multifunctional imaging, such as the monitoring and quantifying of synaptic vesicles and the changes in membrane potential. We also explore the potential of this NIR neural dye for staining brain slices and live brains. The NIR neural dye exhibits superior binding with neural membranes compared to commercial dyes, thereby achieving multiscale and multifunctional brain neuroimaging. In conclusion, our findings introduce a significant breakthrough in neuroimaging dyes by developing a category of small molecular dyes.


Subject(s)
Brain , Fluorescent Dyes , Neurons , Animals , Brain/diagnostic imaging , Fluorescent Dyes/chemistry , Neurons/metabolism , Mice , Neuroimaging/methods , Spectroscopy, Near-Infrared/methods , Rats , Infrared Rays , Optical Imaging
4.
Front Nutr ; 11: 1387802, 2024.
Article in English | MEDLINE | ID: mdl-39091685

ABSTRACT

Parkinson's disease (PD) is one of the most common neurodegenerative diseases and involves various pathogenic mechanisms, including oxidative stress and neuroinflammation. Niacin, an important cofactor in mitochondrial energy metabolism, may play a key role in the pathogenesis of PD. An in-depth exploration of the relationship between niacin and mitochondrial energy metabolism may provide new targets for the treatment of PD. The present study was designed to examine the association between dietary niacin intake and the risk of PD in US adults. Data from adults aged 40 years and older collected during cycles of the United States (US) National Health and Nutrition Examination Survey (NHANES) from 2005 to 2018 were used. A multiple logistic regression model was used to analyze the relationship between dietary niacin intake and the risk of PD. Further linear tests using restricted cubic splines (RCS) were performed to explore the shape of the dose-response relationship. Subgroup stratification and interaction analyses were conducted according to years of education, marital status, smoking, and hypertension to evaluate the stability of the association between different subgroups. A total of 20,211 participants were included in this study, of which 192 were diagnosed with PD. In the fully adjusted multiple logistic regression model, dietary niacin intake was negatively associated with the risk of PD (OR: 0.77, 95%CI: 0.6-0.99; p = 0.042). In the RCS linear test, the occurrence of PD was negatively correlated with dietary niacin intake (nonlinearity: p = 0.232). In stratified analyses, dietary niacin intake was more strongly associated with PD and acted as an important protective factor in patients with fewer years of education (OR: 0.35, 95%CI: 0.13-0.93), married or cohabitating (OR: 0.71, 95%CI: 0.5-0.99), taking dietary supplements (OR: 0.6, 95%CI: 0.37 0.97), non-smokers (OR: 0.57, 95%CI: 0.39-0.85), those with hypertension (OR: 0.63, 95%CI: 0.63-0.95), coronary artery disease (OR: 0.77, 95%CI: 0.6-1), and stroke (OR: 0.75, 95%CI: 0.88-0.98), but the interaction was not statistically significant in all subgroups. Dietary niacin intake was inversely associated with PD risk in US adults, with a 23% reduction in risk for each 10 mg increase in niacin intake.

5.
Food Chem ; 460(Pt 2): 140669, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39094346

ABSTRACT

As vastly modified on secreted proteins, N-glycosylation is found on milk proteins and undergo dynamic changes during lactation, characterizing milk protein glycosylation would benefit the elucidation of glycosylation pattern differences between samples. However, their low abundance required specific enrichment. Herein, through rational design and controllable synthesis, we developed a novel multi-functional polymer for the isolation of protein glycosylation. It efficiently separated glycopeptides from complex background inferences with mutual efforts of hydrophilic interaction chromatography (HILIC), metal ion affinity and ion exchange. By fine-tuning Ca2+ as regulators of aldehyde hyaluronic acid (HA) conformation, the grafting density of HA was remarkably improved. Moreover, grafting Ti4+ further enhanced the enrichment performance. Application of this material to characterize bovine milk and colostrum proteins yields 479 and 611 intact glycopeptides, respectively. Comparative analysis unraveled the distinct glycosylation pattern as well the different distribution of glycoprotein abundances between the two samples, offering insights for functional food development.

6.
Molecules ; 29(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39125076

ABSTRACT

Various copper-related defects in the absorption layer have been a key factor impeding the enhancement of the efficiency of Cu2ZnSn(S,Se)4 (CZTSSe) solar cells. Alkali metal doping is considered to be a good strategy to ameliorate this problem. In this article, Rb-doped CZTSSe (RCZTSSe) thin films were synthesized using the sol-gel technique. The results show that the Rb atom could successfully enter into the CZTSSe lattice and replace the Cu atom. According to SEM results, a moderate amount of Rb doping aided in enhancing the growth of grains in CZTSSe thin films. It was proven that the RCZTSSe thin film had the densest surface morphology and the fewest holes when the doping content of Rb was 2%. In addition, Rb doping successfully inhibited the formation of CuZn defects and correlative defect clusters and promoted the electrical properties of RCZTSSe thin films. Finally, a remarkable power conversion efficiency of 7.32% was attained by the champion RCZTSSe device with a Rb content of 2%. Compared with that of un-doped CZTSSe, the efficiency improved by over 30%. This study offers new insights into the influence of alkali metal doping on suppressing copper-related defects and also presents a viable approach for improving the efficiency of CZTSSe devices.

7.
Br J Haematol ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169447

ABSTRACT

Recent evidence suggests that immune thrombocytopenia (ITP), a common bleeding disorder, is linked to an imbalance in macrophage polarization and impaired bone marrow mesenchymal stem cells (BMSCs). However, the relationship between macrophage polarization imbalance and functional defects in BMSCs, as well as the involvement of associated molecules in BMSCs' defects, is not well understood. This study aimed to investigate the regulatory effects of high mobility group protein 1 (HMGB1) on the physiological functions of BMSCs, specifically in relation to macrophage polarization imbalance. Patients with ITP showed dysregulation in monocyte/macrophage polarization and impaired BMSCs function. HMGB1 was found to have a negative impact on the ability of BMSCs to regulate the imbalance in macrophage polarization, especially when inflammatory factors are present. The MyD88-dependent pathway downstream of BMSCs was found to be significantly enhanced with HMGB1 treatment. Furthermore, treatment with toll-like receptor 4 (TLR4) inhibitors successfully restored the regulatory capacity of BMSCs in ameliorating macrophage polarization imbalance and effectively inhibited the activation of the MyD88-dependent pathway. Meanwhile, infusion of si-TLR4-BMSCs reversed HMGB1-induced platelet dysfunction and reduced over-polarization to M1-like macrophages in the ITP mouse model. Consequently, targeting the HMGB1-TLR4 pathway could be a potential approach to restore the immunoregulatory function of BMSCs.

8.
Transl Lung Cancer Res ; 13(7): 1518-1529, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39118888

ABSTRACT

Background: Small cell lung cancer (SCLC) presents considerable challenges regarding the availability of second-line treatment options, which remain limited. The paucity of effective therapeutic choices at this setting emphasizes the urgent requirement for rigorous research and investigation into novel treatment strategies. To address this clinical gap, the current study aimed to compare the efficacy and safety of anlotinib with the standard second-line treatment, topotecan, in patients with relapsed SCLC. Methods: This retrospective collected data from SCLC patients who received either anlotinib or topotecan as second-line treatment. The primary endpoints were progression-free survival (PFS), while the secondary endpoints included the overall survival (OS), objective response rate (ORR), disease control rate (DCR), and safety assessment. Results: The study included 46 SCLC patients, with 20 receiving anlotinib and 26 receiving topotecan as second-line treatment. The anlotinib group showed a significantly longer median PFS compared to the topotecan group [5.6 vs. 2.2 months; hazard ratio (HR) =0.50; 95% confidence interval (CI): 0.27-0.92; P=0.02]. However, there was no statistically significant difference in OS between the two groups (9.1 vs. 7.7 months; HR =0.88; 95% CI: 0.46-1.70; P=0.71). The ORRs were 20.0% and 7.7% (P=0.48), and the DCRs were 70.0% and 23.1% (P=0.007) for the anlotinib and topotecan groups, respectively. Treatment-related adverse events (TRAEs) occurred in 13 patients (65.0%) in the anlotinib group and 20 (76.9%) in the topotecan group (P=0.49). Conclusions: Anlotinib shows the potential to extend PFS and manageable adverse events (AEs) compared to topotecan in the second-line setting for relapsed SCLC.

9.
Sci Total Environ ; : 175722, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39187081

ABSTRACT

The iron (Fe) biogeochemical cycle is critical for abiotic and biological many environmental processes, both abiotic and biological, that overlap spatially and may compete with each other. The development of modern molecular biology technologies has promoted an understanding of the electron transport mechanisms of Fe-cycling-related microorganisms. Recent studies have revealed a novel pathway for microaerophilic ferrous iron (Fe(II))-oxidizers in extracellular Fe(II) oxidation. In addition, OmcS, OmcZ, and OmcE nanowires on the cell surface have been shown to promote electron transfer between microorganisms and their environment. These processes directly or indirectly affect the fate of pollutants, including greenhouse gas emissions. This review discusses these advances and the environmental implications of the Fe cycle process, with a particular focus on the mechanisms of intracellular or extracellular electron transport in microorganisms.

11.
BMC Plant Biol ; 24(1): 773, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39138412

ABSTRACT

Korla pear has a unique taste and aroma and is a breeding parent of numerous pear varieties. It is susceptible to Valsa mali var. pyri, which invades bark wounded by freezing injury. Its genetic relationships have not been fully defined and could offer insight into the mechanism for freezing tolerance and disease resistance. We generated a high-quality, chromosome-level genome assembly for Korla pear via the Illumina and PacBio circular consensus sequencing (CCS) platforms and high-throughput chromosome conformation capture (Hi-C). The Korla pear genome is ~ 496.63 Mb, and 99.18% of it is assembled to 17 chromosomes. Collinearity and phylogenetic analyses indicated that Korla might be derived from Pyrus pyrifolia and that it diverged ~ 3.9-4.6 Mya. During domestication, seven late embryogenesis abundant (LEA), two dehydrin (DHN), and 54 disease resistance genes were lost from Korla pear compared with P. betulifolia. Moreover, 21 LEA and 31 disease resistance genes were common to the Korla pear and P. betulifolia genomes but were upregulated under overwintering only in P. betulifolia because key cis elements were missing in Korla pear. Gene deletion and downregulation during domestication reduced freezing tolerance and disease resistance in Korla pear. These results could facilitate the breeding of novel pear varieties with high biotic and abiotic stress resistance.


Subject(s)
Chromosomes, Plant , Genome, Plant , Pyrus , Pyrus/genetics , Pyrus/physiology , Chromosomes, Plant/genetics , Phylogeny , Seasons , Disease Resistance/genetics , Freezing
12.
Stem Cell Res Ther ; 15(1): 255, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39135135

ABSTRACT

BACKGROUND: Hemorrhagic stroke is a devastating cerebrovascular event with a high rate of early mortality and long-term disability. The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) for neurological conditions, such as intracerebral hemorrhage (ICH), has garnered considerable interest, has garnered considerable interest, though their mechanisms of action remain poorly understood. METHODS: EVs were isolated from human umbilical cord MSCs, and SPECT/CT was used to track the 99mTc-labeled EVs in a mouse model of ICH. A series of comprehensive evaluations, including magnetic resonance imaging (MRI), histological study, RNA sequencing (RNA-Seq), or miRNA microarray, were performed to investigate the therapeutic action and mechanisms of MSC-EVs in both cellular and animal models of ICH. RESULTS: Our findings show that intravenous injection of MSC-EVs exhibits a marked affinity for the ICH-affected brain regions and cortical neurons. EV infusion alleviates the pathological changes observed in MRI due to ICH and reduces damage to ipsilateral cortical neurons. RNA-Seq analysis reveals that EV treatment modulates key pathways involved in the neuronal system and metal ion transport in mice subjected to ICH. These data were supported by the attenuation of neuronal ferroptosis in neurons treated with Hemin and in ICH mice following EV therapy. Additionally, miRNA microarray analysis depicted the EV-miRNAs targeting genes associated with ferroptosis, and miR-214-3p was identified as a regulator of neuronal ferroptosis in the ICH cellular model. CONCLUSIONS: MSC-EVs offer neuroprotective effects against ICH-induced neuronal damage by modulating ferroptosis highlighting their therapeutic potential for combating neuronal ferroptosis in brain disorders.


Subject(s)
Cerebral Hemorrhage , Extracellular Vesicles , Ferroptosis , Mesenchymal Stem Cells , Neurons , Extracellular Vesicles/metabolism , Animals , Cerebral Hemorrhage/therapy , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/pathology , Mesenchymal Stem Cells/metabolism , Mice , Humans , Neurons/metabolism , Disease Models, Animal , Male , MicroRNAs/metabolism , MicroRNAs/genetics , Mice, Inbred C57BL
13.
J Glob Health ; 14: 04150, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39173170

ABSTRACT

Background: Leukaemia is a devastating disease with an incidence that progressively increases with advancing age. The World Health Organization has designated 2021-30 as the decade of healthy ageing, highlighting the need to address age-related diseases. We estimated the disease burden of leukaemia and forecasted it by 2030. Methods: Based on the Global Burden of Disease 2019 database, we systematically analysed the geographical distribution of leukaemia and its subtypes. We used Joinpoint regression and Bayesian age-period-cohort models to evaluate incidence and mortality trends from 1990 to 2019 and projections through 2030. We analysed five leukaemia subtypes and the impact of age, gender, and social development. Decomposition analysis revealed the effects of disease burden on ageing and population growth. We used frontier analysis to illustrate the potential of each country to reduce its burden based on its development levels. Results: Globally, the absolute numbers of leukaemia incidence and mortality have increased, while the age-standardised rates (ASRs) have shown a decreasing trend. The disease burden was more pronounced in men, the elderly, and regions with a high socio-demographic index (SDI), where ageing and population growth played varying roles across subtypes. From 2000 to 2006, disease burdens were most effectively controlled. Global ASRs of incidence might stabilise, while ASRs of death are expected to decrease until 2030. Frontier analysis showed that middle and high-middle SDI countries have the most improvement potential. Smoking and high body mass index were the main risk factors for leukaemia-related mortality and disability-adjusted life years. Conclusions: The absolute number of leukaemia cases has increased worldwide, but there has been a sharp decline in ASRs over the past decade, primarily driven by population growth and ageing. Countries with middle and high-middle SDI urgently need to take action to address this challenge.


Subject(s)
Global Burden of Disease , Leukemia , Humans , Leukemia/epidemiology , Leukemia/mortality , Global Burden of Disease/trends , Male , Female , Risk Factors , Middle Aged , Aged , Adult , Incidence , Adolescent , Young Adult , Child, Preschool , Global Health/statistics & numerical data , Child , Forecasting , Infant , Aged, 80 and over , Infant, Newborn
14.
J Neuroinflammation ; 21(1): 192, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095838

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2D) is associated with an increased risk of cognitive dysfunction. Angiopoietin-like protein 8 (ANGPTL8) is an important regulator in T2D, but the role of ANGPTL8 in diabetes-associated cognitive dysfunction remains unknown. Here, we explored the role of ANGPTL8 in diabetes-associated cognitive dysfunction through its interaction with paired immunoglobulin-like receptor B (PirB) in the central nervous system. METHODS: The levels of ANGPTL8 in type 2 diabetic patients with cognitive dysfunction and control individuals were measured. Mouse models of diabetes-associated cognitive dysfunction were constructed to investigate the role of ANGPTL8 in cognitive function. The cognitive function of the mice was assessed by the Barnes Maze test and the novel object recognition test, and levels of ANGPTL8, synaptic and axonal markers, and pro-inflammatory cytokines were measured. Primary neurons and microglia were treated with recombinant ANGPTL8 protein (rA8), and subsequent changes were examined. In addition, the changes induced by ANGPTL8 were validated after blocking PirB and its downstream pathways. Finally, mice with central nervous system-specific knockout of Angptl8 and PirB-/- mice were generated, and relevant in vivo experiments were performed. RESULTS: Here, we demonstrated that in the diabetic brain, ANGPTL8 was secreted by neurons into the hippocampus, resulting in neuroinflammation and impairment of synaptic plasticity. Moreover, neuron-specific Angptl8 knockout prevented diabetes-associated cognitive dysfunction and neuroinflammation. Mechanistically, ANGPTL8 acted in parallel to neurons and microglia via its receptor PirB, manifesting as downregulation of synaptic and axonal markers in neurons and upregulation of proinflammatory cytokine expression in microglia. In vivo, PirB-/- mice exhibited resistance to ANGPTL8-induced neuroinflammation and synaptic damage. CONCLUSION: Taken together, our findings reveal the role of ANGPTL8 in the pathogenesis of diabetes-associated cognitive dysfunction and identify the ANGPTL8-PirB signaling pathway as a potential target for the management of this condition.


Subject(s)
Angiopoietin-Like Protein 8 , Angiopoietin-like Proteins , Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Mice, Knockout , Receptors, Immunologic , Signal Transduction , Animals , Mice , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/etiology , Signal Transduction/physiology , Signal Transduction/drug effects , Angiopoietin-like Proteins/metabolism , Angiopoietin-like Proteins/genetics , Humans , Male , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Mice, Inbred C57BL , Synapses/metabolism , Synapses/pathology , Synapses/drug effects , Peptide Hormones/metabolism , Middle Aged , Female
15.
ChemSusChem ; : e202401552, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39135510

ABSTRACT

Fe single atoms (Fe SAs) based catalysts have received much attention in electrocatalytic oxygen reduction reaction (ORR) due to its low-cost and high activity. Yet, the facile synthesis of efficient and stable Fe SAs catalysts are still challenging. Here, we reported a Fe SAs anchored on N-doped mesoporous carbon microspheres (NC) catalyst via spraying drying and pyrolysis processes. The highly active Fe SAs are uniformly distributed on the NC matrix, which prevented the aggregation benefiting from the enhanced Fe-N bonds. Also, the mesoporous carbon structure is favorable for fast electron and mass transfer. The optimized Fe@NC-2-900 catalyst shows positive half wave potential (E1/2 = 0.86 V vs reversible hydrogen electrodes (RHE)) and starting potential (Eonset = 0.98 V vs RHE) in ORR, which is comparable to the commercial Pt/C catalyst (E1/2= 0.87 V, Eonset = 1.08 V). Outstanding stability with a current retention rate of 92.5% for 9 hours and good methanol tolerance are achieved. The assembled zinc-air batteries showed good stability up to 500 hours at a current density of 5 mA cm-2. This work shows potentials of Fe SAs based catalysts for the practical application in ORR and pave a new avenue for promoting their catalytic performances.

16.
Quant Imaging Med Surg ; 14(7): 4703-4713, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39022258

ABSTRACT

Background: It is difficult to obtain 18-fluorodeoxyglucose positron emission tomography (18FDG-PET) data from normal children, and changes in brain metabolism in children due to growth and development are poorly understood. For the first time, we established a normal control model of brain 18FDG-PET in children and evaluated its feasibility. The association of PET with age in children aged 0-14 years was analyzed. This study aimed to establish a normal control model of brain 18FDG-PET in children for the first time and to verify its feasibility, and to analyze the trend of PET with age in children aged 0-14 years. Methods: In this retrospective cohort study, the 18FDG-PET imaging data of patients with no epileptiform discharge involvement contralateral to the epileptogenic zone were consecutively collected from January 2015 to June 2022 according to strictly defined screening criteria. For the normal control data, the hemisphere contralateral to the epileptogenic zone was mirrored and spliced to form an intact brain. The cohort of children aged 0-14 years was divided into 14 groups according age by year. Subsequently, patients who underwent lesionectomy with clear hypometabolism that roughly coincided with the extent of surgical resection were examined. The PET scan was compared with the control model, and the ratio of overlapping parts (hypometabolic areas ∩ surgical resection area) to hypometabolic parts (ROH) was calculated. Multiple regression analysis was performed on the normal control model for every 3- to 4-year age interval. Results: A total of 159 normal control models were established. Five patients were randomly selected to verify the reliability of each yearly model. The average ROH was 0.968. Metabolism increasing with age in the different brain regions was observed at ages 0-2~, 3-5~, and 6-10 years. No age-related metabolic increase or decrease was found in the 10- to 14-year-old group. The metabolism in the 7- to 8-year-old group was higher than that in the 13- to 14-year-old group. Conclusions: With strict screening criteria, the method of mirroring the contralateral hemisphere of the epileptic zone and splicing it into a complete brain as a means of creating a normal control group is feasible. The method offers convenience to the studies that lack healthy pediatric controls. Children under 10 years of age (especially 0-6 years old) experience considerable metabolic changes year on year. After the age of 10 years, the changes in metabolism gradually decrease, and metabolism also slowly decreases. Our findings provide guidance the clinical interpretation of areas with hypometabolism and emphasize the importance of establishing a normal control model of the child's brain, which should not be replaced by an adult model.

17.
Integr Zool ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39030865

ABSTRACT

The intricate process of shell biomineralization in marine molluscs is governed by a complex interplay of regulatory elements, encompassing secretomes, transporters, and noncoding RNA. This review delves into recent advancements in understanding these regulatory mechanisms, emphasizing their significance in elucidating the functions and evolutionary dynamics of the molluscan shell biomineralization process. Central to this intricate orchestration are secretomes with diverse functional domains, selectively exported to the extrapallial space, which directly regulate crystal growth and morphology. Transporters are crucial for substrate transportation in the calcification and maintenance of cellular homeostasis. Beyond proteins and transporters, noncoding RNA molecules are integral components influencing shell biomineralization. This review underscores the nonnegligible roles played by these genetic elements at the molecular level. To comprehend the complexity of biomineralization in mollusc, we explore the origin and evolutionary history of regulatory elements, primarily secretomes. While some elements have recently evolved, others are ancient genes that have been co-opted into the biomineralization toolkit. These elements undergo structural and functional evolution through rapidly evolving repetitive low-complexity domains and domain gain/loss/rearrangements, ultimately shaping a distinctive set of secretomes characterized by both conserved features and evolutionary innovations. This comprehensive review enhances our understanding of molluscan biomineralization at the molecular and genetic levels.

18.
Front Public Health ; 12: 1404506, 2024.
Article in English | MEDLINE | ID: mdl-39050597

ABSTRACT

Aims: Influenza infection is a health burden in children, and the influenza vaccine is an important prevention strategy for flu illness. Parents play a crucial role in children's influenza vaccination. The study aimed to assess parental knowledge, attitudes, and practices (KAP) related to influenza illness for their children and explore factors that may impact their decisions. Methods: This cross-sectional study was conducted in a tertiary hospital in Guangzhou from November 2022 to April 2023. Answers to KAP questions regarding influenza illness and vaccination were summed, with a total KAP score of 20. Univariate and multivariate logistic regression models and linear regression models were conducted to explore the factors associated with influenza vaccination. The results were presented as odds ratios (ORs), ß, and 95% confidence intervals (CIs). Results: Overall, 530 parents were respondents, of whom 162 (30.56%) had vaccinated their children during the past year. The mean KAP score (standard deviation) was 13.40 (3.57). Compared to parents who reported non-vaccinated for their children in the past year, the parents who reported an influenza vaccination have higher knowledge scores, attitude scores, practice scores, and total scores. Child body mass index, parental education level (under college), parental work (part-time), and more than two family members over 60 years old were negatively correlated with knowledge score. Child health condition and knowledge score were positively correlated with attitude score. Parental age was negatively associated with attitude score. Conclusion: Though high awareness about influenza illness and vaccination for parents, the coverage rate of influenza vaccination in children was lower in Guangzhou. Implementing public health policies is necessary to spread knowledge about influenza illness and vaccination and to promote the practice of receiving the influenza vaccine in children. Education campaigns would help change the attitudes of parents toward vaccinating their children against the flu.


Subject(s)
Health Knowledge, Attitudes, Practice , Influenza Vaccines , Influenza, Human , Parents , Humans , Cross-Sectional Studies , China , Influenza, Human/prevention & control , Parents/psychology , Male , Female , Adult , Influenza Vaccines/administration & dosage , Child , Surveys and Questionnaires , Vaccination/statistics & numerical data , Vaccination/psychology , Middle Aged , Child, Preschool
19.
Chemistry ; : e202401442, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052252

ABSTRACT

Commercial lithium-ion batteries are gradually approaching their theoretical values (200-250 Wh kg-1), which cannot meet the fast-growing energy storage demands. Lithium-sulfur (Li-S) batteries are anticipated to supersede lithium-ion batteries as the next-generation energy storage system owing to their high theoretical specific capacity (1675 mAh g-1) and energy density (2600 Wh kg-1). Nonetheless, Li-S batteries encounter several challenges, including the inadequate conductivity of sulfur and lithium sulfide, sulfur's volume expansion, and the shuttle effect of lithium polysulfides, all of which significantly impact the practical utilization of Li-S batteries. Electrospun carbon-based nanofibers can simultaneously resolve these issues with their economical preparation, distinctive nanostructure, and exceptional flexibility. This review presents the most recent research findings on electrospun carbon-based nanofibers materials serving as sulfur hosts and interlayer components in Li-S batteries. We analyzed the impact of the material's structural design on the performance of Li-S batteries and the relative underlying mechanism. Finally, the current challenges and issues faced by carbon-based nanofibers composites in the application of Li-S batteries are summarized, and the future development trajectory are outlined.

20.
J Cancer ; 15(13): 4374-4385, 2024.
Article in English | MEDLINE | ID: mdl-38947392

ABSTRACT

Breast cancer (BC) is the most common tumor in women worldwide. TRIM28 (RNF96) plays pleiotropic biological functions, such as silencing target genes, facilitating DNA repair, stimulating cellular proliferation and differentiation, and contributing to cancer progression. TRIM28 plays an increasingly crucial role in cancer, but its impact on BC, including breast invasive carcinoma, remains poorly understood. In the current study, analyses of online databases, quantitative real-time quantitative PCR, immunohistochemistry, and western blotting were performed on patients with breast invasive carcinoma (BRCA). Cordycepin (CD) was used to monitor BC progression and TRIM28 expression in vivo. As a result, we observed that TRIM28 is highly expressed in breast invasive carcinoma tissues compared with the corresponding normal tissues and is correlated with metastatic / invasive progression. High expression of TRIM28 might serve as a prognostic marker for long-term survival in triple-negative BC, advanced BC, or breast invasive carcinoma. Although TRIM28 methylation in tumor tissues of breast invasive carcinoma is not significantly changed compared to the matched normal tissues, the expressions and methylation of TRIM28 are significantly reversely correlated. TRIM28 expression was inhibited by CD in the mouse model, indicating its role in preventing BC progression. Thus, TRIM28 might be a potentially valuable molecular target for forecasting the progression / prognosis of patients with breast invasive carcinoma. CD, which represses BC growth/metastasis, may be involved partially through suppressing TRIM28 expression.

SELECTION OF CITATIONS
SEARCH DETAIL