Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Reprod Sci ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977641

ABSTRACT

There is a chronic inflammation in PCOS patients, which is correlated with the pathogenesis of PCOS. IL-18 and IL-18BP are related with some inflammatory diseases, while less explored in PCOS. Whether IL-18BP could be a potential drug of PCOS remains unknown.IL-18 and testosterone levels were evaluated in serum of 10 non-PCOS control patients and 20 PCOS patients. Female C57/BL6 mice were gavaged with letrozole to induce PCOS mouse model and IL-18 level was evaluated in the serum of PCOS mouse model, and IL-18 is intraperitoneally injected in female mice, IL-18BP is intraperitoneally injected in the PCOS mice models. Then the body weights, estrous cycles, reproductive hormones and morphology of ovaries were analyzed. The level of ovarian chronic inflammation, fibrosis and endoplasmic reticulum (ER) stress are evaluated.IL-18 levels are increased in the serum of PCOS patients and PCOS mice models respectively. The serum DHEAS, iWAT weight and adipocyte size were increased in IL-18 group compared to the control group (P < 0.05). In the PCOS mouse model treated with IL-18BP, the body weight and serum LH/FSH ratio was decreased compared to the PCOS group (P < 0.05). The expression levels of inflammatory factors and fibrosis-related genes, the expression level of endoplasmic reticulum stress-related genes, and the ROS positive area of ovarian tissue was decreased (P < 0.05).IL-18 is involved in inducing PCOS phenotypes, while IL-18BP relieves PCOS phenotypes by alleviating ovarian chronic inflammation, fibrosis and ER stress in PCOS mice.

2.
J Hazard Mater ; 474: 134746, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38850952

ABSTRACT

Subsurface injection of colloidal activated carbon (CAC) is an in situ remediation strategy for perfluoroalkyl acids (PFAA), but the influence of groundwater solutes on longevity is uncertain, particularly for short-chain PFAA. We quantify the impact of inorganic anions, dissolved organic matter (DOM), and stabilizing polymer on PFAA adsorption to a commercial CAC. Surface characterization supported PFAA chain-length dependent adsorption results and mechanisms are provided. Inorganic anions decreased adsorption for short-chain PFAA (<7 perfluorinated carbons) due to competitive effects, while long-chain PFAA (≥ 7 perfluorinated carbons) were less impacted. DOM decreased adsorption of all PFAA in a chain-length dependent manner. High DOM concentrations (10 mg/L, ∼5 mg OC/L) decreased PFOA adsorption by a factor of 2, PFPeA by one order of magnitude, and completely hindered PFBA adsorption. High MW DOM has less impact on short-chain PFAA than low MW DOM, possibly due to differences in the ability to access CAC micropores. Low DOM concentrations (1 mg/L, ∼0.5 mg OC/L) did not impact adsorption. CMC (90 kDa average MW) had negligible impact on PFAA adsorption likely due to minimal CAC surface coverage. Longevity modeling demonstrated that groundwater solutes limit the capacity for PFAA in a CAC barrier, particularly for short-chain PFAA.

4.
J Phys Chem B ; 128(25): 6167-6177, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38877610

ABSTRACT

High-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) are gaining more and more attention due to their higher efficiency than low-temperature ones. Polybenzimidazole (PBI) membranes are the most popular membranes used in HT-PEMFCs. However, their chemical stability and chemical degradation mechanisms, which directly affect the lifetime of fuel cells, have been hardly reported. We applied the density functional theory and used ABPBI as an example membrane to investigate the chemical degradation mechanisms of PBI membranes. The possible degradation mechanisms that occurred on eight sites have been proposed, where sites 2 and 3 located on the phenyl ring are determined as two weak sites toward OH radical and oxygen molecule attack. When the terminal is the H atom at site 7, it is also weak under OH radical attack. Regarding these, the substituent effect on the chemical stability of polymers has been studied. By introducing four -C2F5 or -CN groups, the barrier heights of the corresponding degradation reactions are increased; thus, the chemical stabilities of related membranes are improved. The selection of terminal atoms was also explored for alleviating the chemical degradation of the membrane. The investigated proton transfer properties of nine model compounds revealed that introducing four -C2F5 or -CN groups improves the proton dissociation properties occurring at the cathode. The increase of phosphoric acid concentration is helpful for the proton transfer at both the membrane and the cathode. This work may hopefully help the design and synthesis of HT-PEMFCs with good stability and high efficiency.

5.
Environ Sci Technol ; 58(19): 8531-8541, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38690765

ABSTRACT

Colloidal activated carbon (CAC) is an emerging technology for the in situ remediation of groundwater impacted by per- and polyfluoroalkyl substances (PFAS). In assessing the long-term effectiveness of a CAC barrier, it is crucial to evaluate the potential of emplaced CAC particles to be remobilized and migrate away from the sorptive barrier. We examine the effect of two polymer stabilizers, carboxymethyl cellulose (CMC) and polydiallyldimethylammonium chloride (PolyDM), on CAC deposition and remobilization in saturated sand columns. CMC-modified CAC showed high mobility in a wide ionic strength (IS) range from 0.1 to 100 mM, which is favorable for CAC delivery at a sufficient scale. Interestingly, the mobility of PolyDM-modified CAC was high at low IS (0.1 mM) but greatly reduced at high IS (100 mM). Notably, significant remobilization (release) of deposited CMC-CAC particles occurred upon the introduction of solution with low IS following deposition at high IS. In contrast, PolyDM-CAC did not undergo any remobilization following deposition due to its favorable interactions with the quartz sand. We further elucidated the CAC deposition and remobilization behaviors by analyzing colloid-collector interactions through the application of Derjaguin-Landau-Verwey-Overbeek theory, and the inclusion of a discrete representation of charge heterogeneity on the quartz sand surface. The classical colloid filtration theory was also employed to estimate the travel distance of CAC in saturated columns. Our results underscore the roles of polymer coatings and solution chemistry in CAC transport, providing valuable guidelines for the design of in situ CAC remediation with maximized delivery efficiency and barrier longevity.


Subject(s)
Colloids , Environmental Restoration and Remediation , Groundwater , Groundwater/chemistry , Colloids/chemistry , Environmental Restoration and Remediation/methods , Polymers/chemistry , Charcoal/chemistry , Sand/chemistry , Water Pollutants, Chemical/chemistry , Carbon/chemistry
6.
Reprod Biol Endocrinol ; 22(1): 53, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715065

ABSTRACT

BACKGROUND: Growth hormone (GH) has been proposed as an adjunct in in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) cycles, especially in women with poor ovarian response. However, it is unclear whether GH supplementation is effective in women with poor embryonic development in the previous IVF cycle. The aim of this study was to evaluate the effectiveness of GH supplementation in IVF/ICSI cycles in women with poor embryonic development in the previous cycle. METHODS: This is a retrospective cohort study from a public fertility center in China, in which we performed propensity score-matching (PSM) for female age and AFC in a ratio of 1:1. We compared the cumulative live birth rate per started cycle, as well as a series of secondary outcomes. We included 3,043 women with poor embryonic development in the previous IVF/ICSI cycle, of which 1,326 had GH as adjuvant therapy and 1,717 had not. After PSM, there were 694 women in each group. RESULTS: After PSM, multivariate analyses showed the cumulative live birth rate to be significantly higher in the GH group than the control group [N = 694, 34.7% vs. N = 694, 27.5%, risk ratio (RR): 1.4 (95%CI: 1.1-1.8)]. Endometrial thickness, number of oocytes retrieved, number of embryos available, and number of good-quality embryos were significantly higher in the GH group compared to controls. Pregnancy outcomes in terms of birth weight, gestational age, fetal sex, preterm birth rate, and type of delivery were comparable. When we evaluated the impact of GH on different categories of female age, the observed benefit in the GH group did not appear to be significant. When we assessed the effect of GH in different AFC categories, the effect of GH was strongest in women with an AFC5-6 (32.2% versus 19.5%; RR 2.0; 95% CI 1.2-3.3). CONCLUSIONS: Women with poor embryonic quality in the previous IVF/ICSI cycles have higher rates of cumulative live birth with GH supplementation.


Subject(s)
Birth Rate , Fertilization in Vitro , Live Birth , Sperm Injections, Intracytoplasmic , Humans , Female , Sperm Injections, Intracytoplasmic/methods , Adult , Pregnancy , Retrospective Studies , Fertilization in Vitro/methods , Live Birth/epidemiology , Embryonic Development/drug effects , Pregnancy Rate , China/epidemiology , Growth Hormone/administration & dosage , Human Growth Hormone/administration & dosage , Cohort Studies
7.
Genes (Basel) ; 15(3)2024 02 22.
Article in English | MEDLINE | ID: mdl-38540333

ABSTRACT

The soil-borne pathogen Plasmodiophora brassicae is the causal agent of clubroot, a major disease in Chinese cabbage (Brassica rapa ssp. pekinensis). The host's resistance genes often confer immunity to only specific pathotypes and may be rapidly overcome. Identification of novel clubroot resistance (CR) from germplasm sources is necessary. In this study, Bap246 was tested by being crossed with different highly susceptible B. rapa materials and showed recessive resistance to clubroot. An F2 population derived from Bap246 × Bac1344 was used to locate the resistance Quantitative Trait Loci (QTL) by Bulk Segregant Analysis Sequencing (BSA-Seq) and QTL mapping methods. Two QTL on chromosomes A01 (4.67-6.06 Mb) and A08 (10.42-11.43 Mb) were found and named Cr4Ba1.1 and Cr4Ba8.1, respectively. Fifteen and eleven SNP/InDel markers were used to narrow the target regions in the larger F2 population to 4.67-5.17 Mb (A01) and 10.70-10.84 Mb (A08), with 85 and 19 candidate genes, respectively. The phenotypic variation explained (PVE) of the two QTL were 30.97% and 8.65%, respectively. Combined with gene annotation, mutation site analysis, and real-time quantitative polymerase chain reaction (qRT-PCR) analysis, one candidate gene in A08 was identified, namely Bra020861. And an insertion and deletion (InDel) marker (co-segregated) named Crr1-196 was developed based on the gene sequence. Bra013275, Bra013299, Bra013336, Bra013339, Bra013341, and Bra013357 in A01 were the candidate genes that may confer clubroot resistance in Chinese cabbage. The resistance resource and the developed marker will be helpful in Brassica breeding programs.


Subject(s)
Brassica rapa , Brassica , Plasmodiophorida , Brassica rapa/genetics , Plasmodiophorida/genetics , Plant Breeding , Brassica/genetics , Quantitative Trait Loci
8.
Gynecol Endocrinol ; 40(1): 2324995, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38439198

ABSTRACT

INTRODUCTION: Obesity has been associated with an increased risk of reproductive failure, especially preterm birth. As preimplantation genetic testing for aneuploidies (PGT-A) is increasingly used worldwide, however, it is still unclear whether body mass index (BMI) has an effect on the preterm birth rate in patients undergoing in vitro fertilization (IVF) with PGT-A when transferring a single euploid blastocyst. MATERIALS AND METHODS: This retrospective, single-center cohort study included 851 women who underwent the first cycle of frozen-thawed single euploid blastocyst transfer with PGT-A between 2015 and 2020. The primary outcome was the preterm birth rate. Secondary outcomes were clinical pregnancy, miscarriage, ectopic pregnancy, pregnancy complications, and live birth. RESULTS: Patients were grouped by World Health Organization (WHO) BMI class: underweight (<18.5, n = 81), normal weight (18.5-24.9, n = 637), overweight (25-30, n = 108), and obese (≥30, n = 25). There was no difference in the clinical pregnancy, miscarriage, ectopic pregnancy, pregnancy complication, and live birth by BMI category. In multivariate logistic regression analysis, preterm birth rates were significantly higher in women with overweight (adjusted odds ratio [aOR] 3.18; 95% confidence interval [CI], 1.29-7.80, p = .012) and obese (aOR 1.49; 95% CI, 1.03-12.78, p = .027) compared with the normal weight reference group. CONCLUSION: Women with obesity experience a higher rate of preterm birth after euploid embryo transfer than women with a normal weight, suggesting that the negative impact of obesity on IVF and clinical outcomes may be related to other mechanisms than aneuploidy.


Subject(s)
Abortion, Spontaneous , Pregnancy, Ectopic , Premature Birth , Infant, Newborn , Pregnancy , Female , Humans , Overweight , Retrospective Studies , Abortion, Spontaneous/epidemiology , Abortion, Spontaneous/etiology , Cohort Studies , Premature Birth/epidemiology , Premature Birth/etiology , Obesity/complications , Obesity/epidemiology , Aneuploidy
9.
Clin Chim Acta ; 557: 117860, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38508572

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is a common infertility disorder which affects reproductive-aged women. However, metabolic change profiles of follicular fluid (FF) in lean and obese women diagnosed with and without PCOS remains unclear. METHODS: 95 infertile women were divided into four subgroups: LC (lean control), OC (overweight control), LP (lean PCOS), and OP (overweight PCOS). The FF samples were collected during oocyte retrieval and assayed by ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) metabolomics. RESULTS: A total of 236 metabolites were identified by metabolic analysis. The pathway enrichment analysis revealed that the glycerophospholipid metabolism (impact = 0.11182), ether lipid metabolism (impact = 0.14458), and primary bile acid biosynthesis (impact = 0.03267) were related to metabolic pathway between PCOS and control. Correlation analyses showed that epitestosterone sulfate was found positively correlated with fertilization rate in PCOS, while falcarindione, lucidone C. and notoginsenoside I was found to be negatively correlated. The combined four biomarkers including lucidone C, epitestosterone sulfate, falcarindione, and notoginsenoside I was better in predicting live birth rate, with AUC of 0.779. CONCLUSION: The follicular fluid of women with PCOS showed unique metabolic characteristics. Our study provides better identification of PCOS follicular fluid metabolic dynamics, which may serve as potential biomarkers of live birth.


Subject(s)
Cyclopentanes , Infertility, Female , Polycystic Ovary Syndrome , Pregnancy , Female , Humans , Adult , Follicular Fluid/metabolism , Live Birth , Polycystic Ovary Syndrome/diagnosis , Polycystic Ovary Syndrome/metabolism , Infertility, Female/diagnosis , Liquid Chromatography-Mass Spectrometry , Overweight , Epitestosterone/analysis , Epitestosterone/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Fertilization in Vitro , Biomarkers/analysis , Sulfates/analysis , Sulfates/metabolism
10.
Environ Pollut ; 346: 123552, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38346633

ABSTRACT

Elucidation of the aggregation behaviors of gold nanoparticles (AuNPs) in water systems is crucial to understanding their environmental fate and transport as well as human health effects. We investigated the early-stage aggregation kinetics of AuNPs coated by human serum albumin (HSA) protein corona (PC) in NaCl and CaCl2 through time-resolved dynamic light scattering. We found that the aggregation of PC-AuNPs depended on the concerted effects of electrolyte concentration, valence, and HSA concentration. At low HSA concentration (≤0.005 g/L), the aggregation kinetics of PC-AuNPs was similar to that of bare AuNPs due to insignificant HSA adsorption. At intermediate HSA concentrations of 0.025-0.050 g/L, the aggregation of PC-AuNPs was retarded in both electrolytes due to steric repulsive forces imparted by the PCs. Additionally, HSA PCs had a weaker retardation effect on PC-AuNPs aggregation in divalent than in monovalent electrolytes. Quartz crystal microbalance measurements revealed that the presence of Ca2+ promoted additional HSA adsorption on PC-AuNPs likely via -COO-Ca2+ bond, and eventually enhanced the aggregation between PC-AuNPs. High-concentration HSA (>0.5 g/L) resulted in no PC-AuNPs aggregation regardless of electrolyte valence and concentrations. Finally, desorption of HSA barely occurred after adsorption on the gold surface, suggesting that the formation of PC-AuNPs is mostly irreversible.


Subject(s)
Metal Nanoparticles , Protein Corona , Humans , Gold/chemistry , Metal Nanoparticles/chemistry , Electrolytes/chemistry , Serum Albumin, Human , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL