Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
DNA Cell Biol ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38923881

ABSTRACT

Coronary artery disease (CAD) is associated with a high fatality rate and a heavy global health care burden. Glucagon-like peptide-1 (GLP-1) exerts positive cardiovascular effects, although the molecular mechanisms are unclear. Therefore, this study aimed to verify whether the cardioprotective effects of GLP-1 are mediated through the regulation of micro-RNA (miRNA) expression. Follow-up assessments were conducted for 116 patients with type 2 diabetes mellitus (T2DM) alone (controls) and 123 patients with both T2DM and CAD. After matching, each group comprised 63 patients, and age, body mass index, and serum levels of total cholesterol (TC), high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), triglycerides (TG), and hemoglobin A1C (HbA1c) were compared. Subsequently, the expression profiles of four circulating miRNAs (miR-203a-3p, miR-429, miR-205-5p, and miR-203b-5p) were assessed via quantitative reverse transcription real-time polymerase chain reaction in the 63 patients with diabetes and CAD between 6 months (baseline) and 12 months after the initiation of GLP-1 receptor (GLP-1R) therapy. As expected, the metabolic factors were significantly improved after 6 months of treatment with GLP-1R compared with pre-treatment values, and the expression levels of two of the miRNAs (miR-203a-3p and miR-429) decreased from baseline levels in those with diabetes and CAD. The results suggest that the cardiovascular benefits induced by GLP-1R are mediated via suppressed expression of two miRNAs: miR-203a-3p and miR-429.

2.
Biomed Pharmacother ; 175: 116800, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788547

ABSTRACT

The limited expansion ability and functional inactivation of T cells within the solid tumor microenvironment are major problems faced during in the application of using tumor-infiltrating lymphocytes (TILs) in vivo. We sought to determine whether TILs carrying a PD-1-CD28-enhanced receptor and CD19 CAR could overcome this limitation and mediate tumor regression. First, anti-tumor effects of PD-1-CD28-enhanced receptor or CD19 CAR modified NY-ESO-1-TCR-T cells to mimic the TILs function (hereafter "PD-1-CD28-TCR-T" or "CD19 CAR-TCR-T" cells, respectively) were tested using the NY-ESO-1 over-expressed tumor cell line in vitro and in a tumor-bearing model. Furthermore, the safety and anti-tumor ability of S-TILs (TILs modified through transduction with a plasmid encoding the PD-1-CD28-T2A-CD19 CAR) were evaluated in vivo. PD-1-CD28-TCR-T cells showed a formidable anti-tumor ability that was not subject to PD-1/PD-L1 signaling in vivo. CD19 CAR-TCR-T cells stimulated with CD19+ B cells exhibited powerful expansion and anti-tumor abilities both in vitro and in vivo. Three patients with refractory solid tumors received S-TILs infusion. No treatment-related mortality was observed, and none of the patients experienced serious side effects. One patient with melanoma achieved a partial response, and two patients with colon or kidney cancer achieved long-term stable disease following S-TILs therapy. To the best of our knowledge, this is the first study describing the safety and efficacy of the adoptive transfer of autologous S-TILs to control disease in patients with advanced cancers, suggesting that S-TILs may be a promising alternative therapy for cancer.


Subject(s)
Antigens, CD19 , CD28 Antigens , Immunotherapy, Adoptive , Lymphocytes, Tumor-Infiltrating , Programmed Cell Death 1 Receptor , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Humans , Animals , Programmed Cell Death 1 Receptor/metabolism , CD28 Antigens/metabolism , CD28 Antigens/immunology , Immunotherapy, Adoptive/methods , Antigens, CD19/immunology , Cell Line, Tumor , Female , Neoplasms/immunology , Neoplasms/therapy , Male , Mice , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Middle Aged , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays , Aged
3.
Autophagy ; : 1-18, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38705724

ABSTRACT

The endoplasmic reticulum (ER) serves as a hub for various cellular processes, and maintaining ER homeostasis is essential for cell function. Reticulophagy is a selective process that removes impaired ER subdomains through autophagy-mediatedlysosomal degradation. While the involvement of ubiquitination in autophagy regulation is well-established, its role in reticulophagy remains unclear. In this study, we screened deubiquitinating enzymes (DUBs) involved in reticulophagy and identified USP20 (ubiquitin specific peptidase 20) as a key regulator of reticulophagy under starvation conditions. USP20 specifically cleaves K48- and K63-linked ubiquitin chains on the reticulophagy receptor RETREG1/FAM134B (reticulophagy regulator 1), thereby stabilizing the substrate and promoting reticulophagy. Remarkably, despite lacking a transmembrane domain, USP20 is recruited to the ER through its interaction with VAPs (VAMP associated proteins). VAPs facilitate the recruitment of early autophagy proteins, including WIPI2 (WD repeat domain, phosphoinositide interacting 2), to specific ER subdomains, where USP20 and RETREG1 are enriched. The recruitment of WIPI2 and other proteins in this process plays a crucial role in facilitating RETREG1-mediated reticulophagy in response to nutrient deprivation. These findings highlight the critical role of USP20 in maintaining ER homeostasis by deubiquitinating and stabilizing RETREG1 at distinct ER subdomains, where USP20 further recruits VAPs and promotes efficient reticulophagy.Abbreviations: ACTB actin beta; ADRB2 adrenoceptor beta 2; AMFR/gp78 autocrine motility factor receptor; ATG autophagy related; ATL3 atlastin GTPase 3; BafA1 bafilomycin A1; BECN1 beclin 1; CALCOCO1 calcium binding and coiled-coil domain 1; CCPG1 cell cycle progression 1; DAPI 4',6-diamidino-2-phenylindole; DTT dithiothreitol; DUB deubiquitinating enzyme; EBSS Earle's Balanced Salt Solution; FFAT two phenylalanines (FF) in an acidic tract; GABARAP GABA type A receptor-associated protein; GFP green fluorescent protein; HMGCR 3-hydroxy-3-methylglutaryl-CoA reductase; IL1B interleukin 1 beta; LIR LC3-interacting region; MAP1LC3/LC3 microtubule associated protein 1 light chain 3; PIK3C3/Vps34 phosphatidylinositol 3-kinase catalytic subunit type 3; RB1CC1/FIP200 RB1 inducible coiled-coil 1; RETREG1/FAM134B reticulophagy regulator 1; RFP red fluorescent protein; RHD reticulon homology domain; RIPK1 receptor interacting serine/threonine kinase 1; RTN3L reticulon 3 long isoform; SEC61B SEC61 translocon subunit beta; SEC62 SEC62 homolog, preprotein translocation factor; SIM super-resolution structured illumination microscopy; SNAI2 snail family transcriptional repressor 2; SQSTM1/p62 sequestosome 1; STING1/MITA stimulator of interferon response cGAMP interactor 1; STX17 syntaxin 17; TEX264 testis expressed 264, ER-phagy receptor; TNF tumor necrosis factor; UB ubiquitin; ULK1 unc-51 like autophagy activating kinase 1; USP20 ubiquitin specific peptidase 20; USP33 ubiquitin specific peptidase 33; VAMP8 vesicle associated membrane protein 8; VAPs VAMP associated proteins; VMP1 vacuole membrane protein 1; WIPI2 WD repeat domain, phosphoinositide interacting 2; ZFYVE1/DFCP1 zinc finger FYVE-type containing 1.

4.
Comp Biochem Physiol C Toxicol Pharmacol ; 283: 109942, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38810896

ABSTRACT

Aflatoxin B1 (AFB1) is highly toxic to the liver and can cause excessive production of mitochondrial reactive oxygen species (mtROS) in hepatocytes, leading to oxidative stress, inflammation, fibrosis, cirrhosis, and even liver cancer. The overproduction of mtROS can induce mitophagy, but whether mtROS and mitophagy are involved in the liver injury induced by AFB1 in ducks remains unclear. In this study, we first demonstrated that overproduction of mtROS and mitophagy occurred during liver injury induced by AFB1 exposure in ducks. Then, by inhibiting mtROS and mitophagy, we found that the damage caused by AFB1 in ducks was significantly alleviated, and the overproduction of mtROS induced by AFB1 exposure could mediate the occurrence of mitophagy. These results suggested that mtROS-mediated mitophagy is involved in AFB1-induced duck liver injury, and they may be the prevention and treatment targets of AFB1 hepatotoxicity.

5.
J Vet Sci ; 25(2): e21, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38568823

ABSTRACT

BACKGROUND: Peste des petits ruminants (PPR) is a contagious and fatal disease of sheep and goats. PPR virus (PPRV) infection induces endoplasmic reticulum (ER) stress-mediated unfolded protein response (UPR). The activation of UPR signaling pathways and their impact on apoptosis and virus replication remains controversial. OBJECTIVES: To investigate the role of PPRV-induced ER stress and the IRE1-XBP1 and IRE1-JNK pathways and their impact on apoptosis and virus replication. METHODS: The cell viability and virus replication were assessed by 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, immunofluorescence assay, and Western blot. The expression of ER stress biomarker GRP78, IRE1, and its downstream molecules, PPRV-N protein, and apoptosis-related proteins was detected by Western blot and quantitative reverse transcription-polymerase chain reaction, respectively. 4-Phenylbutyric acid (4-PBA) and STF-083010 were respectively used to inhibit ER stress and IRE1 signaling pathway. RESULTS: The expression of GRP78, IRE1α, p-IRE1α, XBP1s, JNK, p-JNK, caspase-3, caspase-9, Bax and PPRV-N were significantly up-regulated in PPRV-infected cells, the expression of Bcl-2 was significantly down-regulated. Due to 4-PBA treatment, the expression of GRP78, p-IRE1α, XBP1s, p-JNK, caspase-3, caspase-9, Bax, and PPRV-N were significantly down-regulated, the expression of Bcl-2 was significantly up-regulated. Moreover, in PPRV-infected cells, the expression of p-IRE1α, p-JNK, Bax, and PPRV-N was significantly decreased, and the expression of Bcl-2 was increased in the presence of STF-083010. CONCLUSIONS: PPRV infection induces ER stress and IRE1 activation, resulting in apoptosis and enhancement of virus replication through IRE1-XBP1s and IRE1-JNK pathways.


Subject(s)
Butylamines , Goat Diseases , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Sheep Diseases , Sulfonamides , Thiophenes , Sheep , Animals , MAP Kinase Signaling System , Caspase 3/metabolism , Caspase 9/metabolism , Endoplasmic Reticulum Chaperone BiP , Endoribonucleases/metabolism , bcl-2-Associated X Protein/metabolism , Protein Serine-Threonine Kinases , Goats/metabolism , Apoptosis , Endoplasmic Reticulum Stress
6.
Diabetes Metab Syndr Obes ; 17: 1481-1490, 2024.
Article in English | MEDLINE | ID: mdl-38562279

ABSTRACT

Purpose: To investigate the correlation between thyroid-related hormones and diabetic retinopathy (DR) in euthyroid patients with type 2 diabetes mellitus (T2DM). Patients and Methods: Patients with T2DM admitted to our hospital between January 2023 and June 2023 were retrospectively analyzed. The patients were divided into DR and non-diabetic retinopathy (NDR) groups according to whether DR occurred. Thyroid function-related hormones (TSH, FT3, and FT4), blood glucose indices (FBG and HbA1c), and blood lipid indices (HDL-C, LDL-C, TC, and TG) of the two groups were analyzed by univariate and multivariate logistic regression to explore the risk factors for DR. Pearson correlation analysis and multiple stepwise regression analysis were used to investigate the correlation of TSH or FT3 with FBG, HbA1c, and TG in DR patients. Results: Of the 286 patients with T2DM included in this study, 101 (35.31%) developed DR and 185 (64.69%) did not. High TG, FBG, HbA1c, and TSH and low FT3 levels were independent risk factors for DR in T2DM patients. TSH positively correlated with TG, whereas FT3 negatively correlated with TG and HbA1c in T2DM patients with DR. Conclusion: Higher TSH and lower FT3 in T2DM patients with normal thyroid function may affect glucose and lipid metabolism, thereby increasing the risk of DR.

7.
Nat Commun ; 15(1): 2735, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548738

ABSTRACT

The optimization of crystalline orientation of a Zn metal substrate to expose more Zn(0002) planes has been recognized as an effective strategy in pursuit of highly reversible Zn metal anodes. However, the lattice mismatch between substrate and overgrowth crystals has hampered the epitaxial sustainability of Zn metal. Herein, we discover that the presence of crystal grains deviating from [0001] orientation within a Zn(0002) metal anode leads to the failure of epitaxial mechanism. The electrodeposited [0001]-uniaxial oriented Zn metal anodes with a single (0002) texture fundamentally eliminate the lattice mismatch and achieve ultra-sustainable homoepitaxial growth. Using high-angle angular dark-filed scanning transmission electron microscopy, we elucidate the homoepitaxial growth of the deposited Zn following the "~ABABAB~" arrangement on the Zn(0002) metal from an atomic-level perspective. Such consistently epitaxial behavior of Zn metal retards dendrite formation and enables improved cycling, even in Zn||NH4V4O10 pouch cells, with a high capacity of 220 mAh g-1 for over 450 cycles. The insights gained from this work on the [0001]-oriented Zn metal anode and its persistently homoepitaxial mechanism pave the way for other metal electrodes with high reversibility.

8.
J Cancer ; 15(4): 939-954, 2024.
Article in English | MEDLINE | ID: mdl-38230214

ABSTRACT

The disruption of zinc (Zn) homeostasis has been implicated in cancer development and progression through various signaling pathways. Maintaining intracellular zinc balance is crucial in the context of cancer. Human cells rely on two families of transmembrane transporters, SLC30A/ZNT and SLC39A/ZIP, to coordinate zinc homeostasis. While some ZNTs and ZIPs have been linked to cancer progression, limited information is available regarding the expression patterns of zinc homeostasis-related genes and their potential roles in predicting prognosis and developing therapeutic strategies for specific cancers. In this study, a systematic analysis was conducted to examine the expression of all genes from the SLC30A and SLC39A families at both mRNA and protein levels across different cancers. As a result, three SLC39A genes (SLC39A1, SLC39A4, and SLC39A8) were found to be significantly dysregulated in specific cancers, including cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), liver hepatocellular carcinoma (LIHC), pancreatic adenocarcinoma (PAAD), and kidney renal papillary cell carcinoma (KIRP). Moreover, the dysregulation of these genes was tightly associated with the prognosis of patients with those cancers. Furthermore, we found that the gene SLC39A8 exhibited the lowest mutation frequency in KIRP, whereas mutations in SLC39A4 were found to significantly impact overall survival (OS), disease-free (DF), and progress-free survival (PFS) in cancer patients, particularly in those with PAAD. Additionally, immune infiltration analysis revealed that SLC39A1, SLC39A4, and SLC39A8 may function as immune regulators in cancers. This provides new insights into understanding the complex relationship between zinc homeostasis and cancer progression.

9.
Dalton Trans ; 53(8): 3573-3578, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38284885

ABSTRACT

Improving the fast-charging capabilities and energy storage capacity of electric vehicles presents a feasible strategy for mitigating the prevalent concern of range anxiety in the market. Nanostructure electrode materials play a crucial role in this process. However, the current method of preparation is arduous and yields restricted quantities. In view of this, we have devised an innovative approach that provides convenience and efficacy, facilitating the large-scale synthesis of CoS2 nanoparticles, which exhibited exceptional performance. When the current density was 1000 mA g-1, the discharging capacity reached 760 mAh g-1 after 400 cycles. Remarkably, even at an increased current density of 5000 mA g-1, the discharging capacity of CoS2 remained at 685.5 mAh g-1. The ultra-high performance could be attributed to the specific surface area, which minimized the diffusion distance of sodium-ions during the charging and discharging processes and mitigated the extent of structural damage. Our straightforward preparation techniques facilitate the mass production and present a novel approach for the development of cost-effective and high-performing anode materials for sodium-ion batteries.

10.
Trends Biochem Sci ; 49(1): 5-7, 2024 01.
Article in English | MEDLINE | ID: mdl-37923612

ABSTRACT

Heterobifunctional proteolysis-targeting chimeras (PROTACs) offer a promising cancer treatment avenue by efficiently degrading unwanted cellular proteins. A recent study from Zhang et al. demonstrated the successful utilization of the N-end rule in PROTAC design, allowing for a modular degradation rate tailored to the oncogenic driver BCR-ABL.


Subject(s)
Proteins , Ubiquitin-Protein Ligases , Proteolysis , Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
11.
BMC Complement Med Ther ; 23(1): 436, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38049779

ABSTRACT

BACKGROUND: Despite the critical progress of non-small cell lung cancer (NSCLC) therapeutic approaches, the clinical outcomes remain considerably poor. The requirement of developing novel therapeutic interventions is still urgent. In this study, we showed for the first time that diosbulbin C, a natural diterpene lactone component extracted from traditional Chinese medicine Dioscorea bulbifera L., possesses high anticancer activity in NSCLC. METHODS: A549 and NCI-H1299 cells were used. The inhibitory effects of the diosbulbin C on NSCLC cell proliferation were evaluated using cytotoxicity, clone formation, EdU assay, and flow cytometry. Network pharmacology methods were used to explore the targets through which the diosbulbin C inhibited NSCLC cell proliferation. Molecular docking, qRT-PCR, and western blotting were used to validate the molecular targets and regulated molecules of diosbulbin C in NSCLC. RESULTS: Diosbulbin C treatment in NSCLC cells results in a remarkable reduction in cell proliferation and induces significant G0/G1 phase cell cycle arrest. AKT1, DHFR, and TYMS were identified as the potential targets of diosbulbin C. Diosbulbin C may inhibit NSCLC cell proliferation by downregulating the expression/activation of AKT, DHFR, and TYMS. In addition, diosbulbin C was predicted to exhibit high drug-likeness properties with good water solubility and intestinal absorption, highlighting its potential value in the discovery and development of anti-lung cancer drugs. CONCLUSIONS: Diosbulbin C induces cell cycle arrest and inhibits the proliferation of NSCLC cells, possibly by downregulating the expression/activation of AKT, DHFR, and TYMS.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Dioscorea , Lung Neoplasms , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Molecular Docking Simulation , Apoptosis , Cell Line, Tumor , Cell Cycle Checkpoints , Cell Proliferation , G1 Phase
12.
Nat Commun ; 14(1): 7782, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012130

ABSTRACT

Stress granules (SGs) are dynamic, membrane-less organelles. With their formation and disassembly processes characterized, it remains elusive how compositional transitions are coordinated during prolonged stress to meet changing functional needs. Here, using time-resolved proteomic profiling of the acute to prolonged heat-shock SG life cycle, we identify dynamic SG proteins, further segregated into early and late proteins. Comparison of different groups of SG proteins suggests that their biochemical properties help coordinate SG compositional and functional transitions. In particular, early proteins, with high phase-separation-propensity, drive the rapid formation of the initial SG platform, while late proteins are subsequently recruited as discrete modules to further functionalize SGs. This model, supported by immunoblotting and immunofluorescence imaging, provides a conceptual framework for the compositional transitions throughout the acute to prolonged SG life cycle. Additionally, an early SG constituent, non-muscle myosin II, is shown to promote SG formation by increasing SG fusion, underscoring the strength of this dataset in revealing the complexity of SG regulation.


Subject(s)
Cytoplasmic Granules , Proteomics , Cytoplasmic Granules/metabolism , Stress Granules , Stress, Physiological
13.
J Cardiothorac Surg ; 18(1): 283, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37817186

ABSTRACT

OBJECTIVE: To evaluate the fiber-degradation and endothelialization of a modified poly L-lactic acid (PLLA) atrial septal defect (ASD) occluder for a long time in vivo. METHODS: A total of 57 New Zealand rabbits were selected to establish the vasculature implantation model, which would be used to characterize the mechanical properties and pathological reaction of PLLA filaments (a raw polymer of ASD occluder). In total, 27 Experimental piglets were used to create the ASD model for the catheter implantation of PLLA ASD occluders. Then, X-ray imaging, transthoracic echocardiography, histopathology, and scanning electron microscope (SEM) were performed in the experimental animals at 3, 6, 12, and 24 months after implantation. RESULTS: In the rabbit models, the fibrocystic grade was 0 and the inflammatory response was grade 2 at 6 months after vasculature implantation of the PLLA filaments. The mass loss of PLLA filaments increased appreciably with the increasing duration of implantation, but their mechanical strength was decreased without broken. In the porcine models, the cardiac gross anatomy showed that all PLLA ASD occluders were stable in the interatrial septum without any vegetation or thrombus formation. At 24 months, the occluders had been embedded into endogenous host tissue nearly. Pathological observations suggested that the occluders degraded gradually without complications at different periods. SEM showed that the occluders were endothelialized completely and essentially became an integral part of the body over time. CONCLUSION: In the animal model, the modified PLLA ASD occluders exhibited good degradability and endothelialization in this long-term follow-up study.


Subject(s)
Atrial Septum , Heart Septal Defects, Atrial , Septal Occluder Device , Animals , Swine , Rabbits , Follow-Up Studies , Heart Septal Defects, Atrial/surgery , Echocardiography , Lactic Acid , Cardiac Catheterization , Treatment Outcome
14.
Biochim Biophys Acta Gene Regul Mech ; 1866(4): 194989, 2023 12.
Article in English | MEDLINE | ID: mdl-37751804

ABSTRACT

Stress granules (SGs) arise as formations of mRNAs and proteins in response to translation initiation inhibition during stress. These dynamic compartments adopt a fluidic nature through liquid-liquid phase separation (LLPS), exhibiting a composition subject to constant change within cellular contexts. Research has unveiled an array of post-translational modifications (PTMs) occurring on SG proteins, intricately orchestrating SG dynamics. In the realm of neurodegenerative diseases, pathological mutant proteins congregate into insoluble aggregates alongside numerous SG proteins, manifesting resilience against disassembly. Specific PTMs conspicuously label these aggregates, designating them for subsequent degradation. The strategic manipulation of aberrant SGs via PTMs emerges as a promising avenue for therapeutic intervention. This review discerns recent strides in comprehending the impact of PTMs on LLPS behavior and the assembly/disassembly kinetics of SGs. By delving into the roles of PTMs in governing SG dynamics, we augment our cognizance of the molecular underpinnings of neurodegeneration. Furthermore, we offer invaluable insights into potential targets for therapeutic intervention in neurodegenerative afflictions, encompassing conditions like amyotrophic lateral sclerosis and frontotemporal dementia.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Stress Granules , Protein Processing, Post-Translational , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , RNA, Messenger/metabolism
15.
Ann Clin Microbiol Antimicrob ; 22(1): 57, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37430367

ABSTRACT

BACKGROUND: Acquired immunodeficiency syndrome (AIDS) is associated with a high rate of pulmonary infections (bacteria, fungi, and viruses). To overcome the low sensitivity and long turnaround time of traditional laboratory-based diagnostic strategies, we adopted metagenomic next-generation sequencing (mNGS) technology to identify and classify pathogens. RESULTS: This study enrolled 75 patients with AIDS and suspected pulmonary infections who were admitted to Nanning Fourth People's Hospital. Specimens were collected for traditional microbiological testing and mNGS-based diagnosis. The diagnostic yields of the two methods were compared to evaluate the diagnostic value (detection rate and turn around time) of mNGS for infections with unknown causative agent. Accordingly, 22 cases (29.3%) had a positive culture and 70 (93.3%) had positive valve mNGS results (P value < 0.0001, Chi-square test). Meanwhile, 15 patients with AIDS showed concordant results between the culture and mNGS, whereas only one 1 patient showed concordant results between Giemsa-stained smear screening and mNGS. In addition, mNGS identified multiple microbial infections (at least three pathogens) in almost 60.0% of patients with AIDS. More importantly, mNGS was able to detect a large variety of pathogens from patient tissue displaying potential infection and colonization, while culture results remained negative. There were 18 members of pathogens which were consistently detected in patients with and without AIDS. CONCLUSIONS: In conclusion, mNGS analysis provides fast and precise pathogen detection and identification, contributing substantially to the accurate diagnosis, real-time monitoring, and treatment appropriateness of pulmonary infection in patients with AIDS.


Subject(s)
Acquired Immunodeficiency Syndrome , Pneumonia , Humans , Acquired Immunodeficiency Syndrome/complications , High-Throughput Nucleotide Sequencing , Azure Stains , Hospitalization , Hospitals
16.
Appl Biochem Biotechnol ; 195(8): 5238-5251, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37140780

ABSTRACT

Non-alcoholic fatty liver disease is mostly associated with diabetes mellitus. Dulaglutide is approved in type 2 diabetes as a hypoglycemic agent. However, its effects on liver fat and pancreatic fat contents are not evaluated yet. The objectives of the study were to evaluate the effects of dulaglutide on liver fat content, pancreatic fat content, liver stiffness, and liver enzyme levels. Patients have taken 0.75 mg subcutaneous dulaglutide each week for 4 weeks, then 1.5 mg weekly for 20 weeks plus standard treatment (metformin plus sulfonylurea and/or insulin; DS group, n = 25), or patients have taken standard treatment (metformin plus sulfonylurea and/or insulin) alone (ST group, n = 46) for type 2 diabetes management. Both groups reported a decrease in liver fat content, pancreatic fat content, and liver stiffness after interventions (p < 0.001 for all). After interventions, the DS group reported a higher decrease in liver fat content, pancreatic fat content, and liver stiffness than that of the ST group (p < 0.001 for all). After interventions, the DS group reported a higher decrease in body mass index than that of the ST group (p < 0.05). There were significant improvements in liver function tests, kidney function tests, lipid profiles, and blood counts after interventions (p < 0.05 for all). Both groups reported a decrease in body mass index after interventions (p < 0.001 for both). The DS group significantly decrease body mass index after interventions (p < 0.05) than the ST group.


Subject(s)
Diabetes Mellitus, Type 2 , Fatty Liver , Metformin , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Glucagon-Like Peptide-1 Receptor/genetics , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Lipid Metabolism , Hypoglycemic Agents/therapeutic use , Metformin/pharmacology , Insulin/metabolism , Blood Glucose/metabolism
17.
Comput Struct Biotechnol J ; 21: 1670-1677, 2023.
Article in English | MEDLINE | ID: mdl-36860342

ABSTRACT

The endoplasmic reticulum (ER) and microtubule (MT) network form extensive contact with each other and their interconnection plays a pivotal role in ER maintenance and distribution as well as MT stability. The ER participates in a variety of biological processes including protein folding and processing, lipid biosynthesis, and Ca2+ storage. MTs specifically regulate cellular architecture, provide routes for transport of molecules or organelles, and mediate signaling events. The ER morphology and dynamics are regulated by a class of ER shaping proteins, which also provide the physical contact structure for linking of ER and MT. In addition to these ER-localized and MT-binding proteins, specific motor proteins and adaptor-linking proteins also mediate bidirectional communication between the two structures. In this review, we summarize the current understanding of the structure and function of ER-MT interconnection. We further highlight the morphologic factors which coordinate the ER-MT network and maintain the normal physiological function of neurons, with their defect causing neurodegenerative diseases such as Hereditary Spastic Paraplegia (HSP). These findings promote our understanding of the pathogenesis of HSP and provide important therapeutic targets for treatment of these diseases.

18.
Autophagy ; 19(7): 1934-1951, 2023 07.
Article in English | MEDLINE | ID: mdl-36692217

ABSTRACT

Eukaryotic stress granules (SGs) are highly dynamic assemblies of untranslated mRNAs and proteins that form through liquid-liquid phase separation (LLPS) under cellular stress. SG formation and elimination process is a conserved cellular strategy to promote cell survival, although the precise regulation of this process is poorly understood. Here, we screened six E3 ubiquitin ligases present in SGs and identified TRIM21 (tripartite motif containing 21) as a central regulator of SG homeostasis that is highly enriched in SGs of cells under arsenite-induced oxidative stress. Knockdown of TRIM21 promotes SG formation whereas overexpression of TRIM21 inhibits the formation of physiological and pathological SGs associated with neurodegenerative diseases. TRIM21 catalyzes K63-linked ubiquitination of the SG core protein, G3BP1 (G3BP stress granule assembly factor 1), and G3BP1 ubiquitination can effectively inhibit LLPS, in vitro. Recent reports suggested the involvement of macroautophagy/autophagy, as a stress response pathway, in the regulation of SG homeostasis. We systematically investigated well-defined autophagy receptors and identified SQSTM1/p62 (sequestosome 1) and CALCOCO2/NDP52 (calcium binding and coiled-coil domain 2) as the primary receptors that directly interact with G3BP1 during arsenite-induced stress. Endogenous SQSTM1 and CALCOCO2 localize to the periphery of SGs under oxidative stress and mediate SG elimination, as single knockout of each receptor causes accumulation of physiological and pathological SGs. Collectively, our study broadens the understanding in the regulation of SG homeostasis by showing that TRIM21 and autophagy receptors modulate SG formation and elimination respectively, suggesting the possibility of clinical targeting of these molecules in therapeutic strategies for neurodegenerative diseases.Abbreviations: ACTB: actin beta; ALS: amyotrophic lateral sclerosis; BafA1: bafilomycin A1; BECN1: beclin 1; C9orf72: C9orf72-SMCR8 complex subunit; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; Co-IP: co-immunoprecipitation; DAPI: 4',6-diamidino-2-phenylindole; FTD: frontotemporal dementia; FUS: FUS RNA binding protein; G3BP1: G3BP stress granule assembly factor 1; GFP: green fluorescent protein; LLPS: liquid-liquid phase separation; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NBR1: NBR1 autophagy cargo receptor; NES: nuclear export signal; OPTN: optineurin; RFP: red fluorescent protein; SQSTM1/p62: sequestosome 1; SG: stress granule; TAX1BP1: Tax1 binding protein 1; TOLLIP: toll interacting protein; TRIM21: tripartite motif containing 21; TRIM56: tripartite motif containing 56; UB: ubiquitin; ULK1: unc-51 like autophagy activating kinase 1; WT: wild-type.


Subject(s)
Arsenites , DNA Helicases , Sequestosome-1 Protein/metabolism , DNA Helicases/metabolism , Arsenites/toxicity , Arsenites/metabolism , Stress Granules , C9orf72 Protein/genetics , Calcium/metabolism , Autophagy/physiology , RNA Helicases/metabolism , RNA Recognition Motif Proteins/genetics , RNA Recognition Motif Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Ubiquitination , Carrier Proteins/metabolism , Apoptosis Regulatory Proteins/metabolism , Homeostasis , Ubiquitins/metabolism
19.
ISA Trans ; 133: 559-574, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35914963

ABSTRACT

Helical gearboxes play a critical role in power transmission of industrial applications. They are vulnerable to various faults due to long-term and heavy-duty operating conditions. To improve the safety and reliability of helical gearboxes, it is necessary to monitor their health conditions and diagnose various types of faults. The conventional measurements for gearbox fault diagnosis mainly include lubricant analysis, vibration, airborne acoustics, thermal images, electrical signals, etc. However, a single domain measurement may lead to unreliable fault diagnosis and the contact installation of transducers is not always accessible, especially in harsh and dangerous environments. In this article, a Compressive Sensing (CS)-based Dual-Channel Convolutional Neural Network (CNN) method was proposed to accurately and intelligently diagnose common gearbox faults based on two complementary non-contact measurements (thermal images and acoustic signals) from a mobile phone. The raw acoustic signals were analysed by the Modulation Signal Bispectrum (MSB) to highlight the coupled modulation components relating to gear faults and suppress the irrelevant components and random noise, which generates a series of two-dimensional matrices as sparse MSB magnitude images. Then, CS was used to reduce the image redundancy but retain key information owing to the high sparsity of thermal images and acoustic MSB images, which significantly accelerates the CNN training speed. The experimental results convincingly demonstrate that the proposed CS-based Dual-Channel CNN method significantly improves the diagnostic accuracy (99.39% on average) of industrial helical gearbox faults compared to the single-channel ones.


Subject(s)
Cell Phone , Data Compression , Reproducibility of Results , Acoustics , Electricity
20.
Vet Med (Praha) ; 68(12): 464-476, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38303996

ABSTRACT

Peste des petits ruminants virus (PPRV), a member of the family Paramyxoviridae, belongs to the genus Morbillivirus. It causes devastating viral diseases in small ruminants and has been rapidly spreading over various regions in Africa, the Middle East, and Asia. Although vaccination is thought to be an effective management strategy against PPR infections, the heat sensitivity of PPRV vaccines severely restricts their use in regions with hot climates. In this research, we studied the antiviral activities of ribavirin and aimed to understand the potential mechanisms of action of ribavirin in the African green monkey kidney cells (Vero cells). In brief, the adsorption, intrusion, replication, and release of PPRV, as well as the mRNA expression level of RNA-dependent RNA polymerase (RdRp), were significantly inhibited in the ribavirin-treated Vero cells compared to those in the PPRV-infected cells that were not treated with ribavirin. Additionally, ribavirin has potential as an antiviral drug against PPRV, and its antiviral activity is mediated by the Janus kinase signal transducer and activator of transcription (JAK/STAT) and PI3K/AKT pathways.

SELECTION OF CITATIONS
SEARCH DETAIL
...