Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters











Publication year range
1.
Planta ; 259(4): 83, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441675

ABSTRACT

MAIN CONCLUSION: WOX family gene WOX2 is highly expressed during seed development, which functions redundantly with WOX1 and WOX4 to positively regulate seed germination. WOX (WUSCHEL-related homeobox) is a family of transcription factors in plants. They play essential roles in the regulation of plant growth and development, but their function in seed germination is not well understood. In this report, we show that WOX1, WOX2, and WOX4 are close homologues in Arabidopsis. WOX2 has a redundant function with WOX1 and WOX4, respectively, in seed germination. WOX2 is highly expressed during seed development, from the globular embryonic stage to mature dry seeds, and its expression is decreased after germination. Loss of function single mutant wox2, and double mutants wox1 wox2 and wox2 wox4-1 show decreased germination speed. WOX2 and WOX4 are essential for hypocotyl-radicle zone elongation during germination, potentially by promoting the expression of cell wall-related genes. We also found that WOX2 and WOX4 regulate germination through the gibberellin (GA) pathway. These results suggest that WOX2 and WOX4 integrate the GA pathway and downstream cell wall-related genes during germination.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Wall , Germination/genetics , Gibberellins , Homeodomain Proteins/genetics , Seeds/genetics
2.
Planta ; 258(3): 56, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37522994

ABSTRACT

MAIN CONCLUSION: Taetr1-1 can promote enhanced seed dormancy and ethylene insensitivity in wheat, indicating a conserved function of ETR1 in regulating seed dormancy. Lots of wheat cultivars have weak dormant seed. Weak seed dormancy can cause pre-harvest sprouting (PHS) in grain which significantly reduces grain yield and quality. The mining of causal genes of PHS resistance will serve to enhance breeding selection and cultivar development. In a previous study in Arabidopsis, we identified reduced dormancy 3 as a loss-of-function mutant of the ethylene receptor 1 (ETR1), which can control seed dormancy through the ERF12-TPL-DOG1 pathway. However, it is unknown whether ETR1 also functions in the regulation of wheat seed dormancy. To identify the regulatory role of ETR1 in wheat, we cloned TaETR1 and overexpressed the gain-of-function mutant Taetr1-1. The result indicated that overexpression of Taetr1-1 can promote enhanced seed dormancy and ethylene insensitivity in wheat. This study contributed to our understanding of the molecular basis for the regulation of wheat PHS resistance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Triticum/genetics , Plant Dormancy/genetics , Plant Breeding , Ethylenes
3.
Plant J ; 115(2): 494-509, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37035898

ABSTRACT

Seed dormancy is an important adaptive trait to prevent germination occurring at an inappropriate time. The mechanisms governing seed dormancy and germination are complex. Here, we report that FACTOR INTERACTING WITH POLY(A) POLYMERASE 1 (FIP1), a component of the pre-mRNA 3' end processing machinery, is involved in seed dormancy and germination processes in Arabidopsis thaliana. FIP1 is mainly expressed in seeds and the knockout of FIP1 causes reduced seed dormancy, indicating that FIP1 positively influences seed dormancy. Meanwhile, fip1 mutants are insensitive to exogenous ABA during seed germination and early seedling establishment. The terms 'seed maturation' and 'response to ABA stimulus' are significantly enriched in a gene ontology analysis based on genes differentially expressed between fip1-1 and the wild type. Several of these genes, including ABI5, DOG1 and PYL12, show significantly decreased transcript levels in fip1. Genetic analysis showed that either cyp707a2 or dog1-5 partially, but in combination completely, represses the reduced seed dormancy of fip1, indicating that the double mutant cyp707a2 dog1-5 is epistatic to fip1. Moreover, FIP1 is required for CFIM59, another component of pre-mRNA 3' end processing machinery, to govern seed dormancy and germination. Overall, we identified FIP1 as a regulator of seed dormancy and germination that plays a crucial role in governing these processes through the DOG1 and ABA pathways.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Abscisic Acid/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/genetics , Germination/genetics , Mutation , Plant Dormancy/genetics , RNA Precursors/genetics , RNA Precursors/metabolism , Seeds/metabolism
4.
Theor Appl Genet ; 135(9): 3265-3276, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35882642

ABSTRACT

KEY MESSAGE: Twelve QTL associated with pre-harvest sprouting tolerance were identified using association analysis in wheat. Two markers were validated and a candidate gene TaNAC074 for Qgpf.cas-3B.2 was verified using Agrobacterium-mediated transformation. Pre-harvest sprouting (PHS) is a considerable global threat to wheat yield and quality. Due to this threat, breeders must identify quantitative trait loci (QTL) and genes conferring PHS-tolerance (PHST) to reduce the negative effects of PHS caused by low seed dormancy. In this study, we evaluated a panel of 302 diverse wheat genotypes for PHST in four environments and genotyped the panel with a high-density wheat 660 K SNP array. By using a genome-wide association study (GWAS), we identified 12 stable loci significantly associated with PHST (P < 0.0001), explaining 3.34 - 9.88% of the phenotypic variances. Seven of these loci co-located with QTL and genes reported previously. Five loci (Qgpf.cas-3B.2, Qgpf.cas-3B.3, Qgpf.cas-3B.4, Qgpf.cas-7B.2, and Qgpf.cas-7B.3), located in genomic regions with no known PHST QTL or genes, are likely to be new QTL conferring PHST. Additionally, two molecular markers were developed for Qgpf.cas-3A and Qgpf.cas-7B.3, and validated using a different set of 233 wheat accessions. Finally, the PHST-related function of candidate gene TaNAC074 for Qgpf.cas-3B.2 was confirmed by CAPS (cleaved amplified polymorphic sequences) marker association analysis in 233 wheat accessions and by expression and phenotypic analysis of transgenic wheat. Overexpression of TaNAC074 significantly reduced seed dormancy in wheat. This study contributes to broaden the genetic basis and molecular marker-assisted breeding of PHST.


Subject(s)
Genome-Wide Association Study , Triticum , Chromosome Mapping , Genetic Markers , Plant Breeding , Transcription Factors/genetics , Triticum/genetics
5.
BMC Plant Biol ; 22(1): 288, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35698038

ABSTRACT

BACKGROUND: Wheat (Triticum aestivum L.) is an important cereal crop. Increasing grain yield for wheat is always a priority. Due to the complex genome of hexaploid wheat with 21 chromosomes, it is difficult to identify underlying genes by traditional genetic approach. The combination of genetics and omics analysis has displayed the powerful capability to identify candidate genes for major quantitative trait loci (QTLs), but such studies have rarely been carried out in wheat. In this study, candidate genes related to yield were predicted by a combined use of linkage mapping and weighted gene co-expression network analysis (WGCNA) in a recombinant inbred line population. RESULTS: QTL mapping was performed for plant height (PH), spike length (SL) and seed traits. A total of 68 QTLs were identified for them, among which, 12 QTLs were stably identified across different environments. Using RNA sequencing, we scanned the 99,168 genes expression patterns of the whole spike for the recombinant inbred line population. By the combined use of QTL mapping and WGCNA, 29, 47, 20, 26, 54, 46 and 22 candidate genes were predicted for PH, SL, kernel length (KL), kernel width, thousand kernel weight, seed dormancy, and seed vigor, respectively. Candidate genes for different traits had distinct preferences. The known PH regulation genes Rht-B and Rht-D, and the known seed dormancy regulation genes TaMFT can be selected as candidate gene. Moreover, further experiment revealed that there was a SL regulatory QTL located in an interval of about 7 Mbp on chromosome 7A, named TaSL1, which also involved in the regulation of KL. CONCLUSIONS: A combination of QTL mapping and WGCNA was applied to predicted wheat candidate genes for PH, SL and seed traits. This strategy will facilitate the identification of candidate genes for related QTLs in wheat. In addition, the QTL TaSL1 that had multi-effect regulation of KL and SL was identified, which can be used for wheat improvement. These results provided valuable molecular marker and gene information for fine mapping and cloning of the yield-related trait loci in the future.


Subject(s)
Chromosomes, Plant , Triticum , Chromosome Mapping/methods , Chromosomes, Plant/genetics , Edible Grain/genetics , Phenotype , Plant Dormancy/genetics , Quantitative Trait Loci/genetics , Triticum/genetics
6.
Planta ; 255(2): 34, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35006338

ABSTRACT

MAIN CONCLUSION: The SNF5-type protein BUSHY plays a role in the regulation of seed germination via the gibberellin pathway dependent on HUB1 in Arabidopsis thaliana. SWITCH/SUCROSE NONFERMENTING (SWI/SNF) complexes play diverse roles in plant development. Some components have roles in embryo development and seed maturation, however, whether the SNF5-type protein BUSHY (BSH), one of the components, plays a role in Arabidopsis seed related traits is presently unclear. In our study, we show that a loss-of-function mutation in BSH causes increased seed germination in Arabidopsis. BSH transcription was induced by the gibberellin (GA) inhibitor paclobutrazol (PAC) in the seed, and BSH regulates the expression of GA pathway genes, such as Gibberellin 3-Oxidase 1 (GA3OX1), Gibberellic Acid-Stimulated Arabidopsis 4 (GASA4), and GASA6 during seed germination. A genetic analysis showed that seed germination was distinctly improved in the bshga3ox1ga3ox2 triple mutant, indicating that BSH acts partially downstream of GA3OX1 and GA3OX2. Moreover, the regulation of seed germination by BSH in response to PAC is dependent on HUB1. These results provide new insights and clues to understand the mechanisms of phytohormones in the regulation of seed germination.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Germination , Gibberellins , Seeds/metabolism
7.
Plant Physiol Biochem ; 170: 23-35, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34844115

ABSTRACT

Drought is one of the major abiotic stresses that threaten wheat production worldwide, especially in the Mongolian Plateau and adjacent regions. This study aims to find local wheat varieties with high yields and drought resistance at various developmental stages based on agronomic traits and drought resistance indices analysis and explore the underlining molecular mechanisms by transcriptome analysis. Our results revealed that drought stress started at the seedling stage has a greater impact on crop yields. Four types of drought responses were found among the tested varieties. Type 1 and type 2 show low tolerance to drought stress despite high or low yield in control condition, type 3 exhibits high yield under control condition but dropped significantly after drought, and type 4 displays relatively high and stable yields under control and drought conditions. Transcriptome analysis performed with the representative varieties of the four types revealed GO terms and KEGG pathways enriched among drought-triggered differential expressed genes (DEGs). A network containing 18 modules was constructed using weighted gene co-expression analysis (WGCNA). Ten modules were significantly correlated to yield by module-trait correlation, and 3 modules showed Darkhan 144 specific gene expression patterns. C2H2 zinc finger factor-recognized motifs were identified from the promoters of genes in these modules. qRT-PCR confirmed several key DEGs with specific expression patterns and physiological measurements validated the relatively low oxidative damage and high antioxidant capacity in the drought tolerant variety Dankhan 144. These findings provide an important basis for local agriculture and breeding of drought-tolerant high yield wheat varieties.


Subject(s)
Droughts , Triticum , Gene Expression Profiling , Gene Expression Regulation, Plant , Mongolia , Plant Breeding , Stress, Physiological/genetics , Triticum/genetics
8.
Plant J ; 107(3): 909-924, 2021 08.
Article in English | MEDLINE | ID: mdl-34037275

ABSTRACT

Ectopic expression of specific genes in seeds could be a tool for molecular design of crops to alter seed dormancy and germination, thereby improving production. Here, a seed-specific vector, 12S-pLEELA, was applied to study the roles of genes in Arabidopsis seeds. Transgenic lines containing FLOWERING LOCUS T (FT) driven by the 12S promoter exhibited significantly increased seed dormancy and earlier flowering. Mutated FT(Y85H) and TERMINAL FLOWER1 (TFL1) transgenic lines also showed increased seed dormancy but without altered flowering time. FT(Y85H) and TFL1 caused weaker seed dormancy enhancement compared to FT. The FT and TFL1 transgenic lines showed hypersensitivity to paclobutrazol, but not to abscisic acid in seed germination. The levels of bioactive gibberellin 3 (GA3 ) and GA4 were significantly reduced, consistent with decreased expression of COPALYL DIPHOSPHATE SYNTHASE (CPS), KAURENE OXIDASE (KO), GIBBERELLIN 3-OXIDASE2 (GA3ox2), and GA20ox1 in p12S::FT lines. Exogenous GA4+7 could recover the germination ability of FT transgenic lines. These results revealed that FT regulates GA biosynthesis. A genetic analysis indicated that the GA signaling regulator SPINDLY (SPY) is epistatic to FT in GA-mediated seed germination. Furthermore, DELAY OF GERMINATION1 (DOG1) showed significantly higher transcript levels in p12S::FT lines. Seed dormancy analysis of dog1-2 spy-3 p12S::FT-2 indicated that the combination of SPY and DOG1 is epistatic to FT in the regulation of dormancy. Overall, we showed that ectopic expression of FT and TFL1 in seeds enhances dormancy through affecting GA and DOG1 pathways.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Mixed Function Oxygenases/metabolism , Plant Dormancy/physiology , Seeds/physiology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/physiology , Mixed Function Oxygenases/genetics , Mutagenesis, Site-Directed , Plant Dormancy/genetics , Plants, Genetically Modified
9.
Front Cell Dev Biol ; 8: 553728, 2020.
Article in English | MEDLINE | ID: mdl-33195189

ABSTRACT

Depression is a major cause of disease burden and severely impairs well-being of patients around the globe. Geniposide (GP) has been revealed to play a significant role in depression treatment. Of note, RNA sequencing of this study identified highly expressed long non-coding RNA Six3os1 in response to GP treatment. Thus, we aim to explore how GP affected chronic unpredictable mild stress (CUMS)-induced depression-like behaviors in mice in vivo and in vitro and the downstream molecular mechanism related to Six3os1. The relationship of Six3os1, miR-511-3p and Fezf1 was evaluated by dual-luciferase reporter gene assay, RIP assay, and RNA pulling down assay. Ectopic expression and knockdown experiments were developed in CUMS-induced mice and neurons with or without GP treatment. In vitro experiments and behavioral tests were conducted to examine alteration of CUMS-triggered oxidative stress following different interferences. The experimental data validated that GP treatment resulted in high expression of Six3os1 and Fezf1 and poor expression of miR-511-3p in CUMS-induced neurons. Six3os1 activated the AKT signaling pathway by upregulating miR-511-3p-targeted Fezf1. Either GP treatment or overexpression of Six3os1 or Fezf1 alleviated depression-like behaviors of CUMS-induced mice. GP treatment, miR-511-3p inhibition or overexpression of Six3os1 or Fezf1 not only reduced oxidative stress in CUMS-induced mice and neurons, but also reduced CUMS-induced neuronal apoptosis. Collectively, GP treatment-mediated Six3os1 upregulation ameliorated oxidative stress of mice with depression-like behaviors via the miR-511-3p/Fezf1/AKT axis.

10.
Front Mol Neurosci ; 13: 131, 2020.
Article in English | MEDLINE | ID: mdl-33613190

ABSTRACT

Depression is a common mental disorder that presents a considerable challenge for public health. The natural product geniposide has neuroprotective effects on depression, but the underlying mechanism behind these effects had remained undefined. The present study was designed to investigate the role of microRNAs (miRs) in this mechanism. It studied mice with depression-like behavior established by exposure to chronic unpredictable mild stress (CUMS) for 2 months. The CUMS mice were intragastrically fed with geniposide at a dose of 10 ml/kg daily for two consecutive weeks. We monitored the depression-like behaviors of the CUMS mice by the forced swimming test (FST) and tail suspension test (TST). Then, we measured the cerebral expression of miR-298-5p and NADPH oxidase 1 (Nox1) mRNA in the CUMS mice by the RT-qPCR. The targeting relationship between miR-298-5p and Nox1 was evaluated by dual-luciferase reporter gene assay. The concentrations of adenosine triphosphate (ATP) and reactive oxygen species (ROS) were determined by the CellTiter-Glo® and flow cytometry, respectively. The mitochondrial membrane potential (MMP) was detected using JC-1 staining. Moreover, the expression of inflammatory cytokines (TNF-α, IL-1ß, IL-6, and TGF-ß) was determined by ELISA, RT-qPCR, and western blot analysis. We found that miR-298-5p was poorly-expressed while Nox1 was highly-expressed in the brain tissues of the CUMS-induced mice. Intriguingly, Geniposide treatment reversed the behavioral abnormalities of CUMS mice, including shortened immobility time. Geniposide inhibited the Nox1 expression by increasing miR-298-5p levels. There were increased ATP content and MMP and reduced contents of ROS and inflammatory cytokines in the CUMS mice receiving geniposide treatment. Hence, this study revealed an antidepressant effect of geniposide on CUMS-induced depression-like behavior in mice by down-regulating the miR-298-5p-targeted Nox1. This highlights a novel candidate target for the treatment of depression.

11.
J Exp Bot ; 71(3): 919-933, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31641755

ABSTRACT

The molecular mechanisms underlying seed dormancy and germination are not fully understood. Here, we show that Arabidopsis thaliana SEED DORMANCY 4-LIKE (AtSdr4L) is a novel specific regulator of dormancy and germination. AtSdr4L encodes a protein with an unknown biochemical function that is localized in the nucleus and is expressed specifically in seeds. Loss of function of AtSdr4L results in increased seed dormancy. The germination of freshly harvested seeds of the Atsdr4l mutant is insensitive to gibberellin (GA). After-ripened mutant seeds are hypersensitive to the GA biosynthesis-inhibitor paclobutrazol but show unaltered sensitivity to abscisic acid. Several GA biosynthesis genes and GA-regulated cell wall remodeling genes are down-regulated in the mutant in both dormant and after-ripened seeds. These results suggest that the Atsdr4l mutation causes both decreased GA biosynthesis and reduced responses. In addition, a genetic analysis indicated that AtSdr4L is epistatic to DELAY OF GERMINATION1 (DOG1) for dormancy and acts upstream of RGA-LIKE 2 (RGL2) in the GA pathway. We propose that AtSdr4L regulates seed dormancy and germination by mediating both the DOG1 and GA pathways.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Germination , Gibberellins/metabolism , Plant Dormancy , Seeds/metabolism , Transcription Factors/metabolism
12.
Funct Integr Genomics ; 19(6): 919-932, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31168755

ABSTRACT

Bread wheat (Triticum aestivum L.) is an allohexaploid, and the transcriptional characteristics of the wheat embryo and endosperm during grain development remain unclear. To analyze the transcriptome, we performed isoform sequencing (Iso-Seq) for wheat grain and RNA sequencing (RNA-Seq) for the embryo and de-embryonated kernels. The differential regulation between the embryo and de-embryonated kernels was found to be greater than the difference between the two time points for each tissue. Exactly 2264 and 4790 tissue-specific genes were found at 14 days post-anthesis (DPA), while 5166 and 3784 genes were found at 25 DPA in the embryo and de-embryonated kernels, respectively. Genes expressed in the embryo were more likely to be related to nucleic acid and enzyme regulation. In de-embryonated kernels, genes were rich in substance metabolism and enzyme activity functions. Moreover, 4351, 4641, 4516, and 4453 genes with the A, B, and D homoeoloci were detected for each of the four tissues. Expression characteristics suggested that the D genome may be the largest contributor to the transcriptome in developing grain. Among these, 48, 66, and 38 silenced genes emerged in the A, B, and D genomes, respectively. Gene ontology analysis showed that silenced genes could be inclined to different functions in different genomes. Our study provided specific gene pools of the embryo and de-embryonated kernels and a homoeolog expression bias model on a large scale. This is helpful for providing new insights into the molecular physiology of wheat.


Subject(s)
Transcriptome , Triticum/genetics , Edible Grain/genetics , Edible Grain/growth & development , Gene Expression Regulation, Plant , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Triticum/growth & development
13.
Planta ; 250(1): 187-198, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30972483

ABSTRACT

MAIN CONCLUSION: Totally, 23 and 26 loci for the first count germination ratio and the final germination ratio were detected by quantitative trait loci (QTL) mapping and association mapping, respectively, which could be used to facilitate wheat pre-harvest sprouting breeding. Weak dormancy can cause pre-harvest sprouting in seeds of common wheat which significantly reduces grain yield. In this study, both quantitative trait loci (QTL) mapping and genome-wide association study (GWAS) were used to identify loci controlling seed dormancy. The analyses were based on a recombinant inbred line population derived from Zhou 8425B/Chinese Spring cross and 166 common wheat accessions. Inclusive composite interval mapping detected 8 QTL, while 45 loci were identified in the 166 wheat accessions by GWAS. Among these, four loci (Qbifcgr.cas-3AS/Qfcgr.cas-3AS, Qbifcgr.cas-6AL.1/Qfcgr.cas-6AL.1, Qbifcgr.cas-7BL.2/Qfcgr.cas-7BL.2, and Qbigr.cas-3DL/Qgr.cas-3DL) were detected in both QTL mapping and GWAS. In addition, 41 loci co-located with QTL reported previously, whereas 8 loci (Qfcgr.cas-5AL, Qfcgr.cas-6DS, Qfcgr.cas-7AS, Qgr.cas-3DS.1, Qgr.cas-3DS.2, Qbigr.cas-3DL/Qgr.cas-3DL, Qgr.cas-4B, and Qgr.cas-5A) were likely to be new. Linear regression showed the first count germination ratio or the final germination ratio reduced while multiple favorable alleles increased. It is suggested that QTL pyramiding was effective to reduce pre-harvest sprouting risk. This study could enrich the research on pre-harvest sprouting and provide valuable information of marker exploration for wheat breeding programs.


Subject(s)
Genome-Wide Association Study , Plant Dormancy/genetics , Quantitative Trait Loci/genetics , Triticum/genetics , Chromosome Mapping , Germination/genetics , Plant Breeding , Seeds/genetics , Seeds/physiology , Triticum/physiology
14.
Plant Cell ; 31(4): 832-847, 2019 04.
Article in English | MEDLINE | ID: mdl-30837295

ABSTRACT

The control of seed dormancy by ethylene has been well studied, but the underlying molecular mechanisms are not fully understood. Here, we report the characterization of the Arabidopsis (Arabidopsis thaliana) mutant reduced dormancy 3 (rdo3) and the cloning of the underlying gene. We demonstrate that rdo3 is a loss-of-function mutant of the ethylene receptor ETHYLENE RESPONSE1 (ETR1). ETR1 controls seed dormancy partially through the DELAY OF GERMINATION1 (DOG1) pathway. Molecular and genetic analyses demonstrated that ETHYLENE RESPONSE FACTOR12 (ERF12) is involved in the regulation of seed dormancy downstream of ETR1. ERF12 interacts with TOPLESS (TPL) and genetically requires TPL to function. ERF12 and TPL repress the expression of DOG1 by occupying its promoter. Thus, we identified the dormancy pathway ETR1-ERF12-TPL-DOG1 and provide mechanistic insights into the regulation of seed dormancy by linking the ethylene and DOG1 pathways.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/physiology , Plant Dormancy/physiology , Receptors, Cell Surface/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Plant Dormancy/genetics , Receptors, Cell Surface/genetics , Seeds/genetics , Seeds/metabolism , Seeds/physiology
15.
Front Plant Sci ; 9: 1101, 2018.
Article in English | MEDLINE | ID: mdl-30100918

ABSTRACT

Long-term storage of seeds leads to lose seed vigor with slow and non-uniform germination. Time, rate, homogeneity, and synchrony are important aspects during the dynamic germination process to assess seed viability after storage. The aim of this study is to identify quantitative trait loci (QTLs) using a high-density genetic linkage map of common wheat (Triticum aestivum) for seed vigor-related traits under artificial aging. Two hundred and forty-six recombinant inbred lines derived from the cross between Zhou 8425B and Chinese Spring were evaluated for seed storability. Ninety-six QTLs were detected on all wheat chromosomes except 2B, 4D, 6D, and 7D, explaining 2.9-19.4% of the phenotypic variance. These QTLs were clustered into 17 QTL-rich regions on chromosomes 1AL, 2DS, 3AS (3), 3BS, 3BL (2), 3DL, 4AS, 4AL (3), 5AS, 5DS, 6BL, and 7AL, exhibiting pleiotropic effects. Moreover, 10 stable QTLs were identified on chromosomes 2D, 3D, 4A, and 6B (QaMGT.cas-2DS.2, QaMGR.cas-2DS.2, QaFCGR.cas-2DS.2, QaGI.cas-3DL, QaGR.cas-3DL, QaFCGR.cas-3DL, QaMGT.cas-4AS, QaMGR.cas-4AS, QaZ.cas-4AS, and QaGR.cas-6BL.2). Our results indicate that one of the stable QTL-rich regions on chromosome 2D flanked by IWB21991 and IWB11197 in the position from 46 to 51 cM, presenting as a pleiotropic locus strongly impacting seed vigor-related traits under artificial aging. These new QTLs and tightly linked SNP markers may provide new valuable information and could serve as targets for fine mapping or markers assisted breeding.

16.
Nat Commun ; 7: 13412, 2016 11 11.
Article in English | MEDLINE | ID: mdl-27834370

ABSTRACT

Histone acetylation is known to affect the speed of seed germination, but the molecular regulatory basis of this remains ambiguous. Here we report that loss of function of two histone deacetylase-binding factors, SWI-INDEPENDENT3 (SIN3)-LIKE1 (SNL1) and SNL2, results in accelerated radicle protrusion and growth during seed germination. AUXIN RESISTANT 1 (AUX1) is identified as a key factor in this process, enhancing germination speed downstream of SNL1 and SNL2. AUX1 expression and histone H3 acetylation at lysines 9 and 18 is regulated by SNL1 and SNL2. The D-type cyclins encoding genes CYCD1;1 and CYCD4;1 display increased expression in AUX1 over-expression lines and the snl1snl2 double mutant. Accordingly, knockout of CYCD4;1 reduces seed germination speed of AUX1 over-expression lines and snl1snl2 suggesting the importance of cell cycling for radicle protrusion during seed germination. Together, our work identifies AUX1 as a link between histone acetylation mediated by SNL1 and SNL2, and radicle growth promoted by CYCD1;1 and CYCD4;1 during seed germination.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Germination/physiology , Repressor Proteins/metabolism , Seeds/physiology , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/physiology , Histones/metabolism , Indoleacetic Acids/metabolism , RNA, Plant , Repressor Proteins/genetics
17.
Plant Physiol ; 172(4): 2347-2362, 2016 12.
Article in English | MEDLINE | ID: mdl-27760880

ABSTRACT

Seeds with physiological dormancy usually experience primary and secondary dormancy in the nature; however, little is known about the differential regulation of primary and secondary dormancy. We combined multiple approaches to investigate cytological changes, hormonal levels, and gene expression dynamics in Cunninghamia lanceolata seeds during primary dormancy release and secondary dormancy induction. Light microscopy and transmission electron microscopy revealed that protein bodies in the embryo cells coalesced during primary dormancy release and then separated during secondary dormancy induction. Transcriptomic profiling demonstrated that expression of genes negatively regulating gibberellic acid (GA) sensitivity reduced specifically during primary dormancy release, whereas the expression of genes positively regulating abscisic acid (ABA) biosynthesis increased during secondary dormancy induction. Parallel analysis of RNA ends revealed uncapped transcripts for ∼55% of all unigenes. A negative correlation between fold changes in expression levels of uncapped versus capped mRNAs was observed during primary dormancy release. However, this correlation was loose during secondary dormancy induction. Our analyses suggest that the reversible changes in cytology and gene expression during dormancy release and induction are related to ABA/GA balance. Moreover, mRNA degradation functions as a critical posttranscriptional regulator during primary dormancy release. These findings provide a mechanistic framework for understanding physiological dormancy in seeds.


Subject(s)
Cunninghamia/genetics , Plant Dormancy/genetics , RNA Stability/genetics , Seeds/genetics , Transcriptome/genetics , Abscisic Acid/pharmacology , Cell Wall/drug effects , Cell Wall/metabolism , Cunninghamia/cytology , Cunninghamia/drug effects , Cunninghamia/ultrastructure , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Germination/drug effects , Germination/genetics , Gibberellins/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Molecular Sequence Annotation , Plant Dormancy/drug effects , Plant Growth Regulators/pharmacology , RNA Stability/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Seeds/cytology , Seeds/drug effects , Seeds/ultrastructure , Sequence Analysis, RNA , Transcriptome/drug effects
18.
Plant Physiol ; 168(4): 1389-405, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26143250

ABSTRACT

Histone H2B monoubiquitination (H2Bub1) is an important regulatory mechanism in eukaryotic gene transcription and is essential for normal plant development. However, the function of H2Bub1 in reproductive development remains elusive. Here, we report rice (Oryza sativa) HISTONE MONOUBIQUITINATION1 (OsHUB1) and OsHUB2, the homologs of Arabidopsis (Arabidopsis thaliana) HUB1 and HUB2 proteins, which function as E3 ligases in H2Bub1, are involved in late anther development in rice. oshub mutants exhibit abnormal tapetum development and aborted pollen in postmeiotic anthers. Knockout of OsHUB1 or OsHUB2 results in the loss of H2Bub1 and a reduction in the levels of dimethylated lysine-4 on histone 3 (H3K4me2). Anther transcriptome analysis revealed that several key tapetum degradation-related genes including OsC4, rice Cysteine Protease1 (OsCP1), and Undeveloped Tapetum1 (UDT1) were down-regulated in the mutants. Further, chromatin immunoprecipitation assays demonstrate that H2Bub1 directly targets OsC4, OsCP1, and UDT1 genes, and enrichment of H2Bub1 and H3K4me2 in the targets is consistent to some degree. Our studies suggest that histone H2B monoubiquitination, mediated by OsHUB1 and OsHUB2, is an important epigenetic modification that in concert with H3K4me2, modulates transcriptional regulation of anther development in rice.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation, Plant , Histone Code , Histones/genetics , Oryza/genetics , Ubiquitin-Protein Ligases/metabolism , Arabidopsis Proteins/genetics , Flowers/genetics , Flowers/growth & development , Flowers/ultrastructure , Histones/metabolism , Lysine/metabolism , Methylation , Models, Biological , Mutation , Oryza/growth & development , Oryza/ultrastructure , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/genetics , Seeds/growth & development , Seeds/ultrastructure , Ubiquitin-Protein Ligases/genetics , Ubiquitination
19.
PLoS One ; 10(5): e0124032, 2015.
Article in English | MEDLINE | ID: mdl-25993093

ABSTRACT

Plants are exposed to various environmental stresses during their life cycle such as salt, drought and cold. Natural variation mediated plant growth adaptation has been employed as an effective approach in response to the diverse environmental cues such as salt stress. However, the molecular mechanism underlying this process is not well understood. In the present study, a collection of 82 Arabidopsis thaliana accessions (ecotypes) was screened with a view to identify variation for salinity tolerance. Seven accessions showed a higher level of tolerance than Col-0. The young seedlings of the tolerant accessions demonstrated a higher K(+) content and a lower Na(+)/K(+) ratio when exposed to salinity stress, but its Na(+) content was the same as that of Col-0. The K(+) transporter genes AtHAK5, AtCHX17 and AtKUP1 were up-regulated significantly in almost all the tolerant accessions, even in the absence of salinity stress. There was little genetic variation or positive transcriptional variation between the selections and Col-0 with respect to Na+-related transporter genes, as AtSOS genes, AtNHX1 and AtHKT1;1. In addition, under salinity stress, these selections accumulated higher compatible solutes and lower reactive oxygen species than did Col-0. Taken together, our results showed that natural variation in salinity tolerance of Arabidopsis seems to have been achieved by the strong capacity of K(+) retention.


Subject(s)
Adaptation, Physiological , Arabidopsis/physiology , Potassium/metabolism , Salinity , Stress, Physiological , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Genetic Variation , Oxidation-Reduction , Potassium-Hydrogen Antiporters/genetics , RNA, Messenger/genetics , SOS Response, Genetics
20.
Plant Cell Physiol ; 56(7): 1429-41, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25907569

ABSTRACT

Boea hygrometrica resurrection plants require a period of acclimation by slow soil-drying in order to survive a subsequent period of rapid desiccation. The molecular basis of this observation was investigated by comparing gene expression profiles under different degrees of water deprivation. Transcripts were clustered according to the expression profiles in plants that were air-dried (rapid desiccation), soil-dried (gradual desiccation), rehydrated (acclimated) and air-dried after acclimation. Although phenotypically indistinguishable, it was shown by principal component analysis that the gene expression profiles in rehydrated, acclimated plants resemble those of desiccated plants more closely than those of hydrated acclimated plants. Enrichment analysis based on gene ontology was performed to deconvolute the processes that accompanied desiccation tolerance. Transcripts associated with autophagy and α-tocopherol accumulation were found to be activated in both air-dried, acclimated plants and soil-dried non-acclimated plants. Furthermore, transcripts associated with biosynthesis of ascorbic acid, cell wall catabolism, chaperone-assisted protein folding, respiration and macromolecule catabolism were activated and maintained during soil-drying and rehydration. Based on these findings, we hypothesize that activation of these processes leads to the establishment of an optimal physiological and cellular state that enables tolerance during rapid air-drying. Our study provides a novel insight into the transcriptional regulation of critical priming responses to enable survival following rapid dehydration in B. hygrometrica.


Subject(s)
Acclimatization/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Magnoliopsida/genetics , Cell Wall/genetics , Cell Wall/metabolism , Desiccation , Gene Ontology , Lignin/metabolism , Magnoliopsida/metabolism , Oligonucleotide Array Sequence Analysis , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Water/metabolism , Water Deprivation
SELECTION OF CITATIONS
SEARCH DETAIL