Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Front Med (Lausanne) ; 11: 1405097, 2024.
Article in English | MEDLINE | ID: mdl-39015789

ABSTRACT

Background: Pathological scars, including keloids and hypertrophic scars, represent a significant dermatological challenge, and emerging evidence suggests a potential role for the gut microbiota in this process. Methods: Utilizing a two-sample Mendelian randomization (MR) methodology, this study meticulously analyzed data from genome-wide association studies (GWASs) relevant to the gut microbiota, keloids, and hypertrophic scars. The integrity and reliability of the results were rigorously evaluated through sensitivity, heterogeneity, pleiotropy, and directionality analyses. Results: By employing inverse variance weighted (IVW) method, our findings revealed a causal influence of five bacterial taxa on keloid formation: class Melainabacteria, class Negativicutes, order Selenomonadales, family XIII, and genus Coprococcus2. Seven gut microbiota have been identified as having causal relationships with hypertrophic scars: class Alphaproteobacteria, family Clostridiaceae1, family Desulfovibrionaceae, genus Eubacterium coprostanoligenes group, genus Eubacterium fissicatena group, genus Erysipelotrichaceae UCG003 and genus Subdoligranulum. Additional sensitivity analyses further validated the robustness of the associations above. Conclusion: Overall, our MR analysis supports the hypothesis that gut microbiota is causally linked to pathological scar formation, providing pivotal insights for future mechanistic and clinical research in this domain.

2.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2117-2127, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812227

ABSTRACT

Piperlongumine(PL), a natural alkaloid extracted from Piperis Longi Fructus, has attracted much attention in recent years because of its strong anti-tumor activity, little toxicity to normal cells, and excellent sensitizing effect combined with chemotherapy and radiotherapy, which endow PL with unique advantages as an anti-tumor drug. However, similar to other alkaloids, PL has low water solubility and poor bioavailability. To improve the application of PL in the clinical treatment of tumors, researchers have constructed various nano-drug delivery systems to increase the efficiency of PL delivery. This paper reviewed the physicochemical properties, anti-tumor mechanism, combined therapies, and nano-drug delivery systems of PL in recent years. The review aimed to provide a reference for further research on the anti-tumor effect and nano-drug delivery system of PL. Moreover, this review is expected to provide a reference for the development and application of PL in the anti-tumor therapies.


Subject(s)
Dioxolanes , Neoplasms , Dioxolanes/chemistry , Humans , Animals , Neoplasms/drug therapy , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Delivery Systems , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/administration & dosage , Nanoparticle Drug Delivery System/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/pharmacology , Piperidones
3.
Clin Cosmet Investig Dermatol ; 17: 885-889, 2024.
Article in English | MEDLINE | ID: mdl-38651074

ABSTRACT

Lipoid proteinosis (LP) is an uncommon, autosomal recessive genetic disorder. Multigene panel testing was conducted to confirm the diagnosis of a sporadic family with suspected LP. In the proband, we identified two mutations of ECMI and provided genetic evidence for informed genetic counselling.

4.
Nanoscale ; 16(3): 1415-1427, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38167914

ABSTRACT

To effectively treat aggressive breast cancer by tumor-activated targetable photothermal chemotherapy, in this work, folate (FA)-modified hybrid polymeric nanoassemblies (HPNs) with a poly(ethylene glycol) (PEG)-detachable capability are developed as vehicles for tumor-targeted co-delivery of IR780, a lipophilic photothermal reagent, and zoledronic acid (ZA), a hydrophilic chemotherapy drug. Through hydrophobic interaction-induced co-assembly, IR780 molecules and ZA/poly(ethylenimine) (PEI) complexes were co-encapsulated into a poly(lactic-co-glycolic acid) (PLGA)-rich core stabilized by the amphiphilic FA-modified D-α-tocopheryl poly(ethylene glycol) succinate (FA-TPGS) and acidity-sensitive PEG-benzoic imine-octadecane (C18) (PEG-b-C18) conjugates. The developed FA-ZA/IR780@HPNs with high ZA and IR780 payloads not only showed excellent colloidal stability in a serum-containing milieu, but also promoted IR780-based photostability and photothermal conversion efficiency. Furthermore, for FA-ZA/IR780@HPNs under simulated physiological conditions, the premature leakage of IR780 and ZA molecules was remarkably declined. In a mimetic acidic tumor microenvironment, the uptake of FA-ZA/IR780@HPNs by FA receptor-overexpressed 4T1 breast cancer cells was remarkably promoted by PEG detachment combined with FA receptor-mediated endocytosis, thus effectively hindering migration of cancer cells and augmenting the anticancer efficacy of photothermal chemotherapy. Notably, the in vivo studies demonstrated that the FA-ZA/IR780@HPNs largely deposited at 4T1 tumor sites and profoundly suppressed tumor growth and metastasis without severe systemic toxicity upon near infrared (NIR)-triggered IR780-mediated hyperthermia integrated with ZA chemotherapy. This work presents a practical strategy to treat aggressive breast tumors with tumor-triggered targetable photothermal chemotherapy using FA-ZA/IR780@HPNs.


Subject(s)
Breast Neoplasms , High Pressure Neurological Syndrome , Nanoparticles , Humans , Female , Breast Neoplasms/drug therapy , Zoledronic Acid , Folic Acid/chemistry , High Pressure Neurological Syndrome/drug therapy , Indoles/chemistry , Phototherapy , Polymers , Polyethylene Glycols/chemistry , Cell Line, Tumor , Nanoparticles/therapeutic use , Nanoparticles/chemistry , Tumor Microenvironment
5.
Clin Transplant ; 38(1): e15163, 2024 01.
Article in English | MEDLINE | ID: mdl-37823247

ABSTRACT

BACKGROUND AND AIM: Limited data are available regarding pre-liver transplantation (LT) bacteremia in adults with end-stage liver disease. In this study, we investigated the risk factors independently associated with pre-LT bacteremia and their effects on clinical outcomes of LT. METHODS: This retrospective study performed between 2010 and 2021 included 1287 LT recipients. The study population was categorized into patients with pre-LT bacteremia and those without pre-LT infection. Pre-LT bacteremia was defined as bacteremia detected within 90 days before LT. RESULTS: Among 1287 LT recipients, 92 (7.1%) developed pre-LT bacteremia. The mean interval between bacteremia and LT was 28.3 ± 19.5 days. Of these 92 patients, seven (7.6%) patients died after LT. Of the 99 microorganisms isolated in this study, gram-negative bacteria were the most common microbes (72.7%). Bacteremia was mainly attributed to spontaneous bacterial peritonitis. The most common pathogen isolated was Escherichia coli (25.2%), followed by Klebsiella pneumoniae (18.2%), and Staphylococcus aureus (15.1%). Multivariate analysis showed that massive ascites (adjusted odds ratio [OR] 1.67, 95% confidence Interval [CI] 1.048-2.687) and a prolonged international normalized ratio for prothrombin time (adjusted OR 1.13, 95% CI 1.074-1.257) were independent risk factors for pre-LT bacteremia in patients with end-stage liver disease. Intensive care unit and in-hospital stay were significantly longer, and in-hospital mortality was significantly higher among LT recipients with pre-LT bacteremia than among those without pre-LT infection. CONCLUSIONS: This study highlights predictors of pre-LT bacteremia in patients with end-stage liver disease. Pre-LT bacteremia increases the post-transplantation mortality risk.


Subject(s)
Bacteremia , End Stage Liver Disease , Liver Transplantation , Adult , Humans , Liver Transplantation/adverse effects , Retrospective Studies , End Stage Liver Disease/complications , End Stage Liver Disease/surgery , Risk Factors , Bacteremia/epidemiology
6.
Huan Jing Ke Xue ; 44(12): 7036-7044, 2023 Dec 08.
Article in Chinese | MEDLINE | ID: mdl-38098426

ABSTRACT

The aim of this study was to explore the effects of different sulfur fertilizers combined with sulfate-reducing bacteria on the accumulation of cadmium and arsenic in rice and the formation of iron plaque under long-term flooding conditions and to provide a reference for the safe production of rice fields polluted by moderate and mild cadmium and arsenic. We adopted a pot experiment, selecting two sulfur fertilizers, sulfur and calcium sulfate, and Enterobacter M5 with sulfate-reducing ability, and designed six treatments of single application and combined application of different sulfur fertilizers and M5. The results showed that the combined application of calcium sulfate and M5(CM5) had the best effect on reducing available cadmium and arsenic in rice rhizosphere soil. The combined application of sulfur fertilizer or M5 could reduce the content of cadmium and inorganic arsenic in early season rice grains by 8%-51% and 42%-61%, respectively, under flooding conditions. The content of cadmium and inorganic arsenic in late rice grains decreased by 81%-92% and 41%-62%, respectively. The treatment of the combined application of sulfur and M5(SM5) and CM5 had the best effect on reducing cadmium and arsenic content in both early and late season rice grains. SM5 and CM5 could promote the adsorption of cadmium and arsenic by iron plaque, and the extracted cadmium and arsenic content of ACA in both treatments was significantly higher than that of CK. The extracted iron content of ACA in the CM5 treatment was also significantly higher than that of CK, which indicates that the combined application of calcium sulfate and M5 would promote the formation of iron plaque. The results showed that the combined application of sulfur fertilizer and M5 was better than single application in reducing the content of cadmium and arsenic in grains, whereas the combined application of calcium sulfate and M5 was the best and most stable method.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Arsenic/analysis , Fertilizers/analysis , Enterobacter , Cadmium/analysis , Calcium Sulfate , Soil Pollutants/analysis , Iron , Sulfates , Sulfur , Soil
7.
Phytomedicine ; 119: 154953, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37573809

ABSTRACT

BACKGROUND: Glucocorticoids (GC)-induced osteoporosis (GIOP) is the most common cause of secondary osteoporosis, which leads to an increased risk of fracture in patients. The inhibition of the osteoblast effect is one of the main pathological characteristics of GIOP, but without effective drugs on treatment. PURPOSE: The aim of this study was to investigate the potential effects of orcinol glucoside (OG) on osteoblast cells and GIOP mice, as well as the mechanism of the underlying molecular target protein of OG both in vitro osteoblast cell and in vivo GIOP mice model. METHODS: GIOP mice were used to determine the effect of OG on bone density and bone formation. Then, a cellular thermal shift assay coupled with mass spectrometry (CETSA-MS) method was used to identify the target of OG. Surface plasmon resonance (SPR), enzyme activity assay, molecular docking, and molecular dynamics were used to detect the affinity, activity, and binding site between OG and its target, respectively. Finally, the anti-osteoporosis effect of OG through the target signal pathway was investigated in vitro osteoblast cell and in vivo GIOP mice model. RESULTS: OG treatment increased bone mineral density (BMD) in GIOP mice and effectively promoted osteoblast proliferation, osteogenic differentiation, and mineralization in vitro. The CETSA-MS result showed that the target of OG acting on the osteoblast is the p38 protein. SPR, molecular docking assay and enzyme activity assay showed that OG could direct bind to the p38 protein and is a p38 agonist. The cellular study found that OG could promote p38 phosphorylation and upregulate the proteins expression of its downstream osteogenic (Runx2, Osx, Collagen Ⅰ, Dlx5). Meanwhile, it could also inhibit the nuclear transport of GR by increasing the phosphorylation site at GR226 in osteoblast cell. In vivo GIOP mice experiment further confirmed that OG could prevent bone loss in the GIOP mice model through promoting p38 activity as well as its downstream proteins expression and activity. CONCLUSIONS: This study has established that OG could promote osteoblast activity and revise the bone loss in GIOP mice by direct binding to the p38 protein and is a p38 agonist to improve its downstream signaling, which has great potential in GIOP treatment for targeting p38. This is the first report to identify OG anti-osteoporosis targets using a label-free strategy (CETSA-MS).


Subject(s)
Glucocorticoids , Osteoporosis , Animals , Mice , Glucocorticoids/adverse effects , Osteogenesis , Glucosides/therapeutic use , Molecular Docking Simulation , Osteoporosis/chemically induced , Osteoporosis/drug therapy , Osteoporosis/metabolism
8.
J Transl Med ; 21(1): 485, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37475016

ABSTRACT

BACKGROUND: The nuclear factor kappa B (NFκB) regulatory pathways downstream of tumor necrosis factor (TNF) play a critical role in carcinogenesis. However, the widespread influence of NFκB in cells can result in off-target effects, making it a challenging therapeutic target. Ensemble learning is a machine learning technique where multiple models are combined to improve the performance and robustness of the prediction. Accordingly, an ensemble learning model could uncover more precise targets within the NFκB/TNF signaling pathway for cancer therapy. METHODS: In this study, we trained an ensemble learning model on the transcriptome profiles from 16 cancer types in the TCGA database to identify a robust set of genes that are consistently associated with the NFκB/TNF pathway in cancer. Our model uses cancer patients as features to predict the genes involved in the NFκB/TNF signaling pathway and can be adapted to predict the genes for different cancer types by switching the cancer type of patients. We also performed functional analysis, survival analysis, and a case study of triple-negative breast cancer to demonstrate our model's potential in translational cancer medicine. RESULTS: Our model accurately identified genes regulated by NFκB in response to TNF in cancer patients. The downstream analysis showed that the identified genes are typically involved in the canonical NFκB-regulated pathways, particularly in adaptive immunity, anti-apoptosis, and cellular response to cytokine stimuli. These genes were found to have oncogenic properties and detrimental effects on patient survival. Our model also could distinguish patients with a specific cancer subtype, triple-negative breast cancer (TNBC), which is known to be influenced by NFκB-regulated pathways downstream of TNF. Furthermore, a functional module known as mononuclear cell differentiation was identified that accurately predicts TNBC patients and poor short-term survival in non-TNBC patients, providing a potential avenue for developing precision medicine for cancer subtypes. CONCLUSIONS: In conclusion, our approach enables the discovery of genes in NFκB-regulated pathways in response to TNF and their relevance to carcinogenesis. We successfully categorized these genes into functional groups, providing valuable insights for discovering more precise and targeted cancer therapeutics.


Subject(s)
NF-kappa B , Triple Negative Breast Neoplasms , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Triple Negative Breast Neoplasms/drug therapy , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/therapeutic use , Signal Transduction/genetics , Carcinogenesis , Machine Learning
9.
Taiwan J Ophthalmol ; 13(2): 238-241, 2023.
Article in English | MEDLINE | ID: mdl-37484611

ABSTRACT

We report a case of Schnyder corneal dystrophy (SCD) treated with deep phototherapeutic keratectomy (PTK). A 33-year-old man presented with a 5-year history of blurred vision and corneal haze in both eyes. Slit-lamp examination revealed needle-like subepithelial crystalline depositions and prominent arcus lipoides bilaterally. Similar clinical findings were observed in the patient's father. A diagnosis of SCD was made on the basis of the clinical presentation. PTK was performed using a multizone, multipass, and shoot and check technique with the WaveLight EX500 excimer laser. After 22 months of follow-up, the best-corrected visual acuity had increased from 0.5 to 0.9 in the right eye and from 0.3 to 0.9 in the left eye. SCD is rare but has a unique ocular presentation, which facilitates the diagnosis. PTK can increase patients' visual acuity and eliminate the need for aggressive management through penetrating keratoplasty or deep anterior lamellar keratoplasty.

10.
Exp Biol Med (Maywood) ; 248(7): 656-664, 2023 04.
Article in English | MEDLINE | ID: mdl-37340785

ABSTRACT

Ellagic acid, the marker component of peels of Punica granatum L., is known traditionally to treat traumatic hemorrhage. In this study, the cellular mechanism underlying ellagic acid-induced anti-inflammation was investigated using lipopolysaccharides (LPSs) as a neuroinflammation inducer. Our in vitro data showed that LPS (1 µg/mL) consistently phosphorylated ERK and induced neuroinflammation, such as elevation in tumor necrosis factor-α (TNF-α) and nitric oxide production in treated BV-2 cells. Incubation of ellagic acid significantly inhibited LPS-induced ERK phosphorylation and subsequent neuroinflammation in treated BV-2 cells. Furthermore, our in vivo study of neuroinflammation employed an intranigral infusion of LPS that resulted in a time-dependent elevation in phosphorylated ERK levels in the infused substantia nigra (SN). Oral administration of ellagic acid (100 mg/kg) significantly attenuated LPS-induced ERK phosphorylation. A four-day treatment of ellagic acid did not alter LPS-induced ED-1 elevation but ameliorated LPS-induced reduction in CD206 and arginase-1 (two biomarkers of M2 microglia). A seven-day treatment of ellagic acid abolished LPS-induced increases in heme-oxygenase-1, cyclo-oxygenase 2, and α-synuclein trimer levels (a pathological hallmark) in the infused SN. At the same time, ellagic acid attenuated LPS-induced increases in active caspase 3 and receptor-interacting protein kinase-3 levels (respective biomarkers of apoptosis and necroptosis) as well as reduction in tyrosine hydroxylase-positive cells in the infused SN. In silico analysis showed that ellagic acid binds to the catalytic site of MEK1. Our data suggest that ellagic acid is capable of inhibiting MEK1-ERK signaling and then attenuated LPS-induced neuroinflammation, protein aggregation, and programmed cell deaths. Moreover, M2 microglial polarization is suggested as a novel antineuroinflammatory mechanism in the ellagic acid-induced neuroprotection.


Subject(s)
Lipopolysaccharides , Microglia , Rats , Animals , Lipopolysaccharides/pharmacology , Microglia/metabolism , Ellagic Acid/pharmacology , Ellagic Acid/metabolism , Neuroinflammatory Diseases , Biomarkers/metabolism , Brain
11.
Taiwan J Ophthalmol ; 13(1): 97-100, 2023.
Article in English | MEDLINE | ID: mdl-37252164

ABSTRACT

To report a unique case of a 31-year-old woman developing corneal ectasia after an abandoned laser-assisted in situ keratomileusis (LASIK) procedure with incomplete flap creation without laser ablation. A 31-year-old Taiwanese woman presented with corneal ectasia after a failed LASIK with an incomplete flap creation without laser procedure in her right eye 4 years ago. A visible scar was observed in the flap margin from the 7 to 10 o'clock position. The auto refractometer revealed myopia with high astigmatism, -1.25/-7.25 × 30. Keratometry was 47.00/40.75 D. In contrast, no sign of keratoconus was found in the fellow eye, which did not experience any surgery. Corneal tomography indicated that the incomplete flap scar was compatible with the main area of corneal ectasia. Furthermore, anterior segment optical coherence tomography showed a deep cutting plane and a relatively thin corneal bed. Both findings explained the cause for corneal ectasia. Corneal ectasia can occur whenever corneal structure or integrity is compromised.

12.
BMC Plant Biol ; 23(1): 242, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37150815

ABSTRACT

BACKGROUND: Ophiopogon japonicus, mainly planted in Sichuan (CMD) and Zhejiang (ZMD) province in China, has a lengthy cultivation history. During the long period of domestication, the genetic diversity of cultivated O. japonicus has substantially declined, which will affect the population continuity and evolutionary potential of this species. Therefore, it is necessary to clarify the phylogeography of cultivated O. japonicus to establish a theoretical basis for the utilization and conservation of the genetic resources of O. japonicus. RESULT: The genetic diversity and population structure of 266 O. japonicus individual plants from 23 sampling sites were analyzed based on 4 chloroplast DNA sequences (atpB-rbcL, rpl16, psbA-trnH and rpl20-5'rps12) to identify the effects of domestication on genetic diversity of cultivars and determine their geographic origins. The results showed that cultivated O. japonicus and wild O. japonicus had 4 and 15 haplotypes respectively. The genetic diversity of two cultivars (Hd = 0.35700, π = 0.06667) was much lower than that of the wild populations (Hd = 0.76200, π = 0.20378), and the level of genetic diversity in CMD (Hd = 0.01900, π = 0.00125) was lower than that in ZMD (Hd = 0.06900, π = 0.01096). There was significant difference in genetic differentiation between the cultivated and the wild (FST = 0.82044), especially between the two cultivars (FST = 0.98254). This species showed a pronounced phylogeographical structure (NST > GST, P < 0.05). The phylogenetic tree showed that the genetic difference between CMD and ZMD was not enough to distinguish the cultivars between the two producing areas by using O. amblyphyllus Wang et Dai as an outgroup. In addition, both CMD and ZMD have a closer relationship with wild populations in Sichuan than that in Zhejiang. The results of the TCS network and species distribution model suggested that the wild population TQ located in Sichuan province could serve as the ancestor of cultivated O. japonicus, which was supported by RASP analysis. CONCLUSION: These results suggest that cultivated O. japonicus has experienced dramatic loss of genetic diversity under anthropogenic influence. The genetic differentiation between CMD and ZMD is likely to be influenced by founder effect and strong artificial selection for plant traits. It appears that wild populations in Sichuan area are involved in the origin of not only CMD but also ZMD. In addition, we also raise some suggestions for planning scientific strategies for resource conservation of O. japonicus based on its genetic diversity and population structure.


Subject(s)
DNA, Chloroplast , Ophiopogon , DNA, Chloroplast/genetics , Phylogeography , Phylogeny , Ophiopogon/chemistry , Ophiopogon/genetics , Haplotypes/genetics , Genetic Variation
13.
World J Clin Cases ; 11(1): 242-248, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36687196

ABSTRACT

BACKGROUND: Cystic artery pseudoaneurysm is a condition rarely encountered by clinicians; this, its etiology and presentation as well as appropriate treatments are not well studied. Although it is treated by removal of the diseased gallbladder and cystic artery, such surgery can be difficult and risky if acute inflammation with bleeding occurs, and not every patient can tolerate the surgery. CASE SUMMARY: An 81-year-old man complained of epigastric pain and tarry stool passage that lasted for 3 d. He had a medical history of poor cardiopulmonary function. The computed tomographic scan of abdomen showed cystic artery pseudoaneurysm and dilatation of gallbladder. Because of high adverse outcomes related to general anesthesia, the patient was successfully managed with endovascular embolization for this cystic artery pseudoaneurysm and percutaneous drainage for the distended gallbladder. CONCLUSION: A patient with cystic artery pseudoaneurysm may quickly deteriorate with the occurrence of concurrent arterial bleeding and sepsis. This report presents the case of a patient who did not undergo surgery due to multiple cardiopulmonary comorbidities and whose condition was managed successfully with embolization and biliary drainage. Endovascular embolization and biliary drainage may provide an alternative option to manage this complicated condition.

14.
Huan Jing Ke Xue ; 44(1): 436-443, 2023 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-36635831

ABSTRACT

A strain of Enterobacter was screened from cadmium and arsenic contaminated farmland soil and its passivation mechanism of cadmium and arsenic were explored through removing performance and characterization experiments. The results showed that the screened strain M5 was identified as Enterobacter sp. with a sulfate-reduction function, and its maximum resistance concentration was approximately 1 mmol·L-1 to cadmium and arsenic. In the simulation system, the maximum removal efficiencies of cadmium and arsenic were 94.13% and 27.26% by strain M5, respectively. The results of SEM-EDS and XRD confirmed that Cd and As were fixed to CdS and As2S3, and XPS results showed that carboxyl groups, hydroxyl groups, and amide groups on the surface of the bacteria were mainly involved in biological adsorption. These results can provide new ideas and a theoretical basis for microbial applications to soil remediations for heavy metal pollution.


Subject(s)
Arsenic , Soil Pollutants , Cadmium/analysis , Enterobacter , Farms , Soil Pollutants/analysis , Soil , Biodegradation, Environmental
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 289: 122223, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36502747

ABSTRACT

The level of hydrogen sulfide (H2S) in human body is related to many diseases, such as Alzheimer's disease, Down syndrome, etc. Therefore, the detection of H2S level in biological systems is very important and has attracted great attention from scientific and clinical researchers. Understanding the design and working mechanism of fluorescent probes for H2S level detection is important for building new highly efficient fluorescent probe. The mechanisms of a recently reported efficient small molecule fluorescent probe based on the Fluorescence Resonance Energy Transfer (FRET) were investigated thoroughly in this work. The theoretical results would provide the insights for designing new efficient and multi-functional fluorescent probe applicable in the biological systems.


Subject(s)
Hydrogen Sulfide , Humans , Fluorescence Resonance Energy Transfer/methods , Fluorescent Dyes , HeLa Cells
16.
Cancer Manag Res ; 14: 3485-3492, 2022.
Article in English | MEDLINE | ID: mdl-36561983

ABSTRACT

Purpose of Review: To summarize the targeted therapies and immunotherapy of Kirsten rat sarcoma viral oncogene homolog (KRAS)-mutant non-small cell lung cancer (NSCLC), and discuss the ongoing clinical trials. Recent Findings: KRAS mutations occur in about 30% of patients with NSCLC and are the second most frequent genetic variation in lung cancer. It has been considered "undruggable" for 40 years until the discovery of a direct inhibitor of KRAS G12C. The promising direct KRAS G12C inhibitors such as sotorasib and MRTX849 have made a breakthrough with promising anti-tumor effects in patients with KRAS G12C-mutant advanced/metastatic NSCLC post one prior line of therapy. Following the success of immune checkpoint inhibitors (ICIs) in NSCLC, many patients harboring KRAS mutations can benefit from ICIs. However, due to disease heterogeneity, the prognosis of patients remains unsatisfactory, leaving room for personalized treatment options, such as new targeted therapies and other therapies. Summary: In this review, we aim to dissect the strategies of clinical trials in these tumors, shifting from a few chemotherapy options to targeted and immunotherapy, in the context of molecular selection of KRAS-mutant NSCLC subtypes.

17.
Nutrients ; 14(23)2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36501080

ABSTRACT

Obesity has become a global epidemic disease as it is closely associated with a chronic low-grade inflammatory state that results in metabolic dysfunction. Ramulus Mori (Sangzhi) alkaloids (SZ-A) derived from Morus alba L. were licensed to treat type 2 diabetes (T2DM) in 2020. In this study, we explored the effect of SZ-A on adipose tissue metabolism and inflammation using an obesity model induced by a high-fat diet (HFD). C57BL/6J mice were fed high fat for 14 weeks and followed by SZ-A 400 mg/kg treatment via gavage for another six weeks, during which they were still given the high-fat diet. The results showed that SZ-A notably reduced body weight and serum levels of lipid metabolism-related factors, such as triglycerides (TG) and total cholesterol (TC); and inflammation-related factors, namely tumor necrosis factor alpha (TNFα), interleukin 6 (IL6), fibrinogen activator inhibitor-1 (PAI-1), angiopoietin-2 (Ang-2), and leptin (LEP), in the HFD-induced mice. SZ-A increased the protein and mRNA expression of lipid metabolism-related factors, including phosphorylated acetyl coenzyme A carboxylase (p-ACC), phosphorylated hormone-sensitive triglyceride lipase (p-HSL), adipose triglyceride lipase (ATGL), and peroxisome proliferator-activated receptor-alpha (PPARα), in adipose tissue. Immunohistochemistry results demonstrated that SZ-A significantly reduced the infiltration of pro-inflammatory M1-type macrophages in epididymal fat. The data also suggested that SZ-A down-regulates the transcriptional levels of inflammatory factors Il6, Tnfα, monocyte chemoattractant protein-1 (Mcp1), and F4/80, and up-regulates interleukin 4 (Il4), interleukin 10 (Il10), and interleukin 13 (Il13) in adipose tissue. Overall, the results indicate that SZ-A exhibits potential in regulating lipid metabolism and ameliorating obesity-linked adipose inflammation.


Subject(s)
Diabetes Mellitus, Type 2 , Animals , Mice , Adipose Tissue/metabolism , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Inflammation/metabolism , Lipase/metabolism , Lipid Metabolism , Mice, Inbred C57BL , Obesity/metabolism
18.
Huan Jing Ke Xue ; 43(11): 5106-5114, 2022 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-36437082

ABSTRACT

Due to the large scale of mining and smelting activities, considerable amounts of heavy metals are discharged into the environment and accumulate in the sediment of rivers and lakes. The combined pollution of heavy metals and the intrinsic phosphorus in sediment calls for novel remediation technologies. In this study, lanthanum-modified zeolite (LMZ) was employed as an inactivation agent for the immobilization of phosphorus, zinc, and lead in sediments. The adsorption capacities as well as the inactivation performance of LMZ for P, Zn, and Pb were investigated, and the adsorption mechanisms were explored via desorption experiments, X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). The results indicated that the adsorption maximums of LMZ for P, Zn, and Pb were 53.76, 27.70, and 123.45 mg·g-1, respectively. Pre-adsorption of Zn and Pb had a negligible effect on the P adsorption by LMZ, whereas the adsorption of Zn and Pb were inhibited significantly by the pre-adsorption. P, Zn, and Pb in the sediment were transformed to more stable or less bioavailable forms by dosing 0.83% and 1.66% weight percentages of LMZ. It was found that P, Zn, and Pb were adsorbed through the formation of inner-sphere complexes. Further, desorption experiments and XRD patterns suggested that electrostatic attraction and surface precipitation also contributed to the adsorption of Zn and Pb, respectively.


Subject(s)
Metals, Heavy , Zeolites , Zeolites/chemistry , Lanthanum , Phosphates/chemistry , Adsorption , Lead , Metals, Heavy/chemistry , Phosphorus
19.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3701-3708, 2022 Jul.
Article in Chinese | MEDLINE | ID: mdl-35850826

ABSTRACT

The production of solid preparations is a multi-unit and multi-step system and is a whole process chain. Its quality is affected by many factors such as material properties and process parameters. As an important analysis tool, multivariate models play an important role in pharmaceutical monitoring. Besides, multivariate models can comprehensively understand the multi-factor relationship between material properties, process parameters, and quality attributes of products, thereby promoting the whole process optimization and controlling the drug production quality. This paper summarized the application of commonly used multivariate models in the process of solid preparations, which provides a certain reference for the process modeling of Chinese medicinal preparations.


Subject(s)
Technology, Pharmaceutical , Pharmaceutical Preparations , Quality Control
20.
J Mater Chem B ; 10(23): 4363-4374, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35587692

ABSTRACT

Zoledronic acid (ZA), a third-generation bisphosphonate, has been extensively used to treat osteoporosis and cancer bone metastasis and demonstrated to suppress proliferation of varied cancer cells and selectively kill tumor-associated microphages (TAMs). However, the clinical applications of ZA in extraskeletal tumor treatment are largely restricted due to its rapid renal clearance and binding to bones. In this study, to promote intracellular delivery of ZA for amplified antitumor efficacy, tumor acidity-responsive polymeric nanoparticles with high ZA payload (ca. 12.3 wt%) and low premature ZA leakage were designed. As a pivotal material for surface coating, the acidity-sensitive and amphiphilic methoxy poly(ethylene glycol) (mPEG)-benzoic imine-octadecane (C18) (mPEG-b-C18) was synthesized by conjugation of mPEG-CHO with 1-octadecylamine upon Schiff base reaction. Through tailor-made co-assembly of the hydrophobic poly(lactic-co-glycolic acid) (PLGA), amphiphilic tocopheryl polyethylene glycol succinate (TPGS) and mPEG-b-C18 to encapsulate ionic complexes composed of ZA molecules and branched poly(ethylenimine) (PEI) segments, the attained therapeutic polymeric nanoparticles, characterized to have a hydrophobic PLGA/ZA/PEI-constituted core covered with mPEG-b-C18 and TPGS, were able to not only detach mPEG shielding upon acidity-triggered hydrolysis of benzoic imine bonds but also expose surface positive charges of protonated PEI segments. The in vitro cellular uptake and cytotoxicity studies demonstrated that the internalization of acidity-sensitive ZA-encapsulated nanoparticles by TRAMP-C1 mouse prostate cancer cells and murine macrophages RAW 264.7 was considerably promoted upon acidity-elicited PEG detachment and surface charge conversion, thus remarkably boosting intracellular ZA delivery and anticancer potency. Compared to PEG non-detachable ZA-loaded nanoparticles with poor tumor deposition and antitumor effect, the PEG-detachable ZA-carrying nanoparticles markedly accumulated in TRAMP-C1 solid tumors in vivo and inhibited tumor growth, thereby increasing the survival rate of the treated mice. The collective data suggest the great promise of tumor acidity-sensitive ZA-carrying hybrid nanoparticles in the treatment of extraskeletal solid tumors.


Subject(s)
Nanoparticles , Neoplasms , Polyethylene Glycols/chemistry , Animals , Imines , Male , Mice , Nanoparticles/chemistry , Neoplasms/drug therapy , Polylactic Acid-Polyglycolic Acid Copolymer/therapeutic use , Polymers/chemistry , Zoledronic Acid/pharmacology , Zoledronic Acid/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL