Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Inorg Chem ; 63(31): 14345-14353, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39033409

ABSTRACT

A biocompatible metal-organic framework (MOF), named HSTC-4, constructed using the flexible 4,4'-oxybis(benzoic acid) (OBA), was developed to enable efficient loading and controlled release of vitamin C (VC) through a combination of strategies involving ligand length, structure design, and metal selection. The kinetic product HSTC-4 demonstrates a propensity for transforming into the thermodynamically stable HSTC-5 under external stimuli, such as photoillumination and vacuum heating, as witnessed by single-crystal to single-crystal transformation. Density functional theory (DFT) calculations reveal that the VC guest molecules exhibit stronger binding affinity with HSTC-5 due to its narrower pores compared to HSTC-4, resulting in a slower release of VC from VC@HSTC-5. Furthermore, precise control over VC release can be achieved by introducing surface modifications involving SiO2 onto the structure of VC@HSCT-5, while simultaneously adjusting environmental factors such as pH and temperature conditions. Preliminary cell culture experiments and cytotoxicity assays highlight the biocompatibility of HSTC-5, suggesting that it is a promising platform for sustained drug delivery and diverse biomedical applications.


Subject(s)
Ascorbic Acid , Metal-Organic Frameworks , Thermodynamics , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Ascorbic Acid/chemistry , Kinetics , Humans , Density Functional Theory , Cell Survival/drug effects , Drug Carriers/chemistry , Molecular Structure , Drug Liberation
SELECTION OF CITATIONS
SEARCH DETAIL