Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 285
Filter
1.
Sci Bull (Beijing) ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39095273

ABSTRACT

Chemotherapy is the first-line treatment for cancer, but its systemic toxicity can be severe. Tumor-selective prodrug activation offers promising opportunities to reduce systemic toxicity. Here, we present a strategy for activating prodrugs using radiopharmaceuticals. This strategy enables the targeted release of chemotherapeutic agents due to the high tumor-targeting capability of radiopharmaceuticals. [18F]FDG (2-[18F]-fluoro-2-deoxy-D-glucose), one of the most widely used radiopharmaceuticals in clinics, can trigger Pt(IV) complex for controlled release of axial ligands in tumors, it might be mediated by hydrated electrons generated by water radiolysis resulting from the decay of radionuclide 18F. Its application offers the controlled release of fluorogenic probes and prodrugs in living cells and tumor-bearing mice. Of note, an OxaliPt(IV) linker is designed to construct an [18F]FDG-activated antibody-drug conjugate (Pt-ADC). Sequential injection of Pt-ADC and [18F]FDG efficiently releases the toxin in the tumor and remarkably suppresses the tumor growth. Radiotherapy is booming as a perturbing tool for prodrug activation, and we find that [18F]FDG is capable of deprotecting various radiotherapy-removable protecting groups (RPGs). Our results suggest that tumor-selective radiopharmaceutical may function as a trigger, for developing innovative prodrug activation strategies with enhanced tumor selectivity.

2.
Angew Chem Int Ed Engl ; : e202407443, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058370

ABSTRACT

The C-C coupling of methane (CH4) and carbon dioxide (CO2) to generate acetic acid (CH3COOH) represents a highly atom-efficient chemical conversion, fostering the comprehensive utilization of greenhouse gases. However, the inherent thermodynamic stability and kinetic inertness of CH4 and CO2 present obstacles to achieving efficient and selective conversion at room temperature. Our study reveals that hydroxyl radicals (·OH) and hydrated electrons (eaq-) produced by water radiolysis can effectively activate CH4 and CO2, yielding methyl radicals (·CH3) and carbon dioxide radicals (·CO2-) that facilitate the production of CH3COOH at ambient temperature. The introduction of radiation-synthesized CuO-anchored TiO2 bifunctional catalyst could further enhance reaction efficiency and selectivity remarkably by boosting radiation absorption and radical stability, resulting in a concentration of 7.1 mmol·L-1 of CH3COOH with near-unity selectivity (>95%). These findings offer valuable insights for catalyst design and implementation in radiation-induced chemical conversion.

3.
Nat Biomed Eng ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025943

ABSTRACT

Pt(II) drugs are a widely used chemotherapeutic, yet their side effects can be severe. Here we show that the radiation-induced reduction of Pt(IV) complexes to cytotoxic Pt(II) drugs is rapid, efficient and applicable in water, that it is mediated by hydrated electrons from water radiolysis and that the X-ray-induced release of Pt(II) drugs from an oxaliplatin prodrug in tumours inhibits their growth, as we show with nearly complete tumour regression in mice with subcutaneous human tumour xenografts. The combination of low-dose radiotherapy with a Pt(IV)-based antibody-trastuzumab conjugate led to the tumour-selective release of the chemotherapeutic in mice and to substantial therapeutic benefits. The radiation-induced local reduction of platinum prodrugs in the reductive tumour microenvironment may expand the utility of radiotherapy.

4.
Nanotechnology ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39084232

ABSTRACT

G band, originating from the in-plane vibrations of carbon atoms, is the main signature in Raman spectroscopy of graphene-based systems. It is often used to characterize the sample quality and obtain molecular vibration information. Here we investigate the Raman spectroscopy of ABt-twisted trilayer graphene (ABt-TTG) and observe two enhancement centers for the G band across samples with different twist angles. To understand the origin of these two enhancement centers, we theoretically calculate the G band intensity of ABt-TTG based on the continuum model. We find that the theoretical calculations exhibit two prominent peaks corresponding to the experimental observations after Fermi velocity corrections. We also investigated the real and imaginary parts of Raman resonances, respectively, and explained the origins of two enhancements of ABt-TTG. By using Raman spectroscopy, evolutions of band structures of ABt-TTG with respect to the twist angles can be characterized, which extends the potential applications of the Raman method in the investigation of electronic structures of graphene-based systems.

5.
Environ Res ; 261: 119647, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39032618

ABSTRACT

A Co3Mn-LDHs and carbon nanotube (Co3Mn-LDHs/CNT) composite catalyst was constructed for permonosulfate (PMS) activation and degrading sulfamethoxazole (SMX) under Vis light irradiation. The introduction of CNTs into Co3Mn-LDHs facilitate the exciton dissociation and carrier migration, and the e- and h+ were readily separated from Co3Mn-LDHs/CNT in the photocatalysis process, which promoted the production rate of reactive oxygen species (ROS), so the Co3Mn-LDHs + Vis + PMS system exhibited better activity with an SMX degradation ratio of 61.25% than those of Co3Mn-LDHs + Vis system (42.30%) and Co3Mn-LDHs + PMS system (48.30%). After 10 cycles, the degradation rate of SMX only decreased by 7.16%, indicating the good reusability of the Co3Mn-LDHs/CNTs catalyst. The results of electron paramagnetic resonance (EPR) analysis and radical quenching experiments demonstrated that that the SO4•- played crucial role for SMX removal in Co3Mn-LDHs/CNTs + Vis + PMS system, and both e- and h+ made an important contribution to activating PMS to produce ROS. Overall, this work provided an excellent catalyst for photo-assisted PMS activation and suggested the activation mechanism for organic pollutant remediation.

6.
Microsyst Nanoeng ; 10: 72, 2024.
Article in English | MEDLINE | ID: mdl-38828404

ABSTRACT

The collection of multiple-channel electrophysiological signals enables a comprehensive understanding of the spatial distribution and temporal features of electrophysiological activities. This approach can help to distinguish the traits and patterns of different ailments to enhance diagnostic accuracy. Microneedle array electrodes, which can penetrate skin without pain, can lessen the impedance between the electrodes and skin; however, current microneedle methods are limited to single channels and cannot achieve multichannel collection in small areas. Here, a multichannel (32 channels) microneedle dry electrode patch device was developed via a dimensionality reduction fabrication and integration approach and supported by a self-developed circuit system to record weak electrophysiological signals, including electroencephalography (EEG), electrocardiogram (ECG), and electromyography (EMG) signals. The microneedles reduced the electrode-skin contact impedance by penetrating the nonconducting stratum corneum in a painless way. The multichannel microneedle array (MMA) enabled painless transdermal recording of multichannel electrophysiological signals from the subcutaneous space, with high temporal and spatial resolution, reaching the level of a single microneedle in terms of signal precision. The MMA demonstrated the detection of the spatial distribution of ECG, EMG and EEG signals in live rabbit models, and the microneedle electrode (MNE) achieved better signal quality in the transcutaneous detection of EEG signals than did the conventional flat dry electrode array. This work offers a promising opportunity to develop advanced tools for neural interface technology and electrophysiological recording.

7.
Opt Lett ; 49(12): 3484-3487, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38875651

ABSTRACT

Enhancing and flexibly controlling the Goos-Hänchen (GH) shift directly is a significant challenge. Here, we report a tunable giant GH shift in a Au-ReS2-graphene heterostructure. The GH shift of this heterostructure demonstrates strong anisotropy and a unique "sign inversion" feature as the graphene reaches a specific thickness. Flexible control and enhancement of the GH shift to the centimeter scale can be achieved by simply rotating the crystallization direction of the heterostructure. Utilizing this feature, we designed an anisotropic refractive index sensor with a high sensitivity of 1.31 × 108 µm/RIU. This marks an order of magnitude improvement over previous research and introduces a rotation-dependent sensitivity adjustment feature. The tunable giant GH shift provides a promising approach for future designs of optical sensing and modulation devices.

8.
Nat Commun ; 15(1): 4832, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844447

ABSTRACT

Two-dimensional semiconductors with high thermal conductivity and charge carrier mobility are of great importance for next-generation electronic and optoelectronic devices. However, constrained by the long-held Slack's criteria, the reported two-dimensional semiconductors such as monolayers of MoS2, WS2, MoSe2, WSe2 and black phosphorus suffer from much lower thermal conductivity than silicon (~142 W·m-1·K-1) because of the complex crystal structure, large average atomic mass and relatively weak chemical bonds. Despite the more complex crystal structure, the recently emerging monolayer MoSi2N4 semiconductor has been predicted to have high thermal conductivity and charge carrier mobility simultaneously. In this work, using a noncontact optothermal Raman technique, we experimentally measure a high thermal conductivity of ~173 W·m-1·K-1 at room temperature for suspended monolayer MoSi2N4 grown by chemical vapor deposition. First-principles calculations reveal that such unusually high thermal conductivity benefits from the high Debye temperature and small Grüneisen parameter of MoSi2N4, both of which are strongly dependent on the high Young's modulus induced by the outmost Si-N bilayers. Our study not only establishes monolayer MoSi2N4 as a benchmark 2D semiconductor for next-generation electronic and optoelectronic devices, but also provides an insight into the design of 2D materials for efficient heat conduction.

9.
Nature ; 630(8015): 206-213, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38778111

ABSTRACT

Targeted radionuclide therapy, in which radiopharmaceuticals deliver potent radionuclides to tumours for localized irradiation, has addressed unmet clinical needs and improved outcomes for patients with cancer1-4. A therapeutic radiopharmaceutical must achieve both sustainable tumour targeting and fast clearance from healthy tissue, which remains a major challenge5,6. A targeted ligation strategy that selectively fixes the radiopharmaceutical to the target protein in the tumour would be an ideal solution. Here we installed a sulfur (VI) fluoride exchange (SuFEx) chemistry-based linker on radiopharmaceuticals to prevent excessively fast tumour clearance. When the engineered radiopharmaceutical binds to the tumour-specific protein, the system undergoes a binding-to-ligation transition and readily conjugates to the tyrosine residues through the 'click' SuFEx reaction. The application of this strategy to a fibroblast activation protein (FAP) inhibitor (FAPI) triggered more than 80% covalent binding to the protein and almost no dissociation for six days. In mice, SuFEx-engineered FAPI showed 257% greater tumour uptake than did the original FAPI, and increased tumour retention by 13-fold. The uptake in healthy tissues was rapidly cleared. In a pilot imaging study, this strategy identified more tumour lesions in patients with cancer than did other methods. SuFEx-engineered FAPI also successfully achieved targeted ß- and α-radionuclide therapy, causing nearly complete tumour regression in mice. Another SuFEx-engineered radioligand that targets prostate-specific membrane antigen (PSMA) also showed enhanced therapeutic efficacy. Considering the broad scope of proteins that can potentially be ligated to SuFEx warheads, it might be possible to adapt this strategy to other cancer targets.


Subject(s)
Molecular Targeted Therapy , Prostatic Neoplasms , Radioisotopes , Radiopharmaceuticals , Animals , Humans , Male , Mice , Antigens, Surface/chemistry , Antigens, Surface/metabolism , Cell Line, Tumor , Fluorides/chemistry , Fluorides/metabolism , Glutamate Carboxypeptidase II/chemistry , Glutamate Carboxypeptidase II/metabolism , Ligands , Membrane Proteins/metabolism , Membrane Proteins/chemistry , Molecular Targeted Therapy/methods , Pilot Projects , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/radiotherapy , Radioisotopes/therapeutic use , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/therapeutic use , Radiopharmaceuticals/metabolism , Radiopharmaceuticals/pharmacokinetics , Sulfur Compounds/chemistry , Sulfur Compounds/metabolism , Tyrosine/metabolism , Tyrosine/chemistry , Xenograft Model Antitumor Assays
10.
ACS Nano ; 18(20): 13298-13307, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38727530

ABSTRACT

As a second-order nonlinear optical phenomenon, the bulk photovoltaic (BPV) effect is expected to break through the Shockley-Queisser limit of thermodynamic photoelectron conversion and improve the energy conversion efficiency of photovoltaic cells. Here, we have successfully induced a strong flexo-photovoltaic (FPV) effect, a form of BPV effect, in strained violet phosphorene nanosheets (VPNS) by utilizing strain engineering at the h-BN nanoedge, which was first observed in nontransition metal dichalcogenide (TMD) systems. This BPV effect was found to originate from the disruption of inversion symmetry induced by uniaxial strain applied to VPNS at the h-BN nanoedge. We have revealed the intricate relationship between the bulk photovoltaic effect and strain gradients in VPNS through thickness-dependent photovoltaic response experiments. A bulk photovoltaic coefficient of up to 1.3 × 10-3 V-1 and a polarization extinction ratio of 21.6 have been achieved by systematically optimizing the height of the h-BN nanoedge and the thickness of VPNS, surpassing those of reported TMD materials (typically less than 3). Our results have revealed the fundamental relationship between the FPV effect and the strain gradients in low-dimensional materials and inspired further exploration of optoelectronic phenomena in strain-gradient engineered materials.

11.
Biomed Phys Eng Express ; 10(4)2024 May 21.
Article in English | MEDLINE | ID: mdl-38718764

ABSTRACT

Evaluation of skin recovery is an important step in the treatment of burns. However, conventional methods only observe the surface of the skin and cannot quantify the injury volume. Optical coherence tomography (OCT) is a non-invasive, non-contact, real-time technique. Swept source OCT uses near infrared light and analyzes the intensity of light echo at different depths to generate images from optical interference signals. To quantify the dynamic recovery of skin burns over time, laser induced skin burns in mice were evaluated using deep learning of Swept source OCT images. A laser-induced mouse skin thermal injury model was established in thirty Kunming mice, and OCT images of normal and burned areas of mouse skin were acquired at day 0, day 1, day 3, day 7, and day 14 after laser irradiation. This resulted in 7000 normal and 1400 burn B-scan images which were divided into training, validation, and test sets at 8:1.5:0.5 ratio for the normal data and 8:1:1 for the burn data. Normal images were manually annotated, and the deep learning U-Net model (verified with PSPNe and HRNet models) was used to segment the skin into three layers: the dermal epidermal layer, subcutaneous fat layer, and muscle layer. For the burn images, the models were trained to segment just the damaged area. Three-dimensional reconstruction technology was then used to reconstruct the damaged tissue and calculate the damaged tissue volume. The average IoU value and f-score of the normal tissue layer U-Net segmentation model were 0.876 and 0.934 respectively. The IoU value of the burn area segmentation model reached 0.907 and f-score value reached 0.951. Compared with manual labeling, the U-Net model was faster with higher accuracy for skin stratification. OCT and U-Net segmentation can provide rapid and accurate analysis of tissue changes and clinical guidance in the treatment of burns.


Subject(s)
Burns , Deep Learning , Image Processing, Computer-Assisted , Lasers , Skin , Tomography, Optical Coherence , Tomography, Optical Coherence/methods , Animals , Burns/diagnostic imaging , Mice , Skin/diagnostic imaging , Image Processing, Computer-Assisted/methods , Algorithms
12.
EJNMMI Radiopharm Chem ; 9(1): 42, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753262

ABSTRACT

BACKGROUND: The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biannual highlight commentary to update the readership on trends in the field of radiopharmaceutical development. MAIN BODY: This selection of highlights provides commentary on 24 different topics selected by each coauthoring Editorial Board member addressing a variety of aspects ranging from novel radiochemistry to first-in-human application of novel radiopharmaceuticals. CONCLUSION: Trends in radiochemistry and radiopharmacy are highlighted. Hot topics cover the entire scope of EJNMMI Radiopharmacy and Chemistry, demonstrating the progress in the research field in many aspects.

13.
Rev Sci Instrum ; 95(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38717655

ABSTRACT

We report a Bidirectional Electrode Control Arm Assembly (BECAA) for precisely manipulating dust clouds levitated above the powered electrode in RF plasmas. The reported techniques allow the creation of perfectly 2D dust layers by eliminating off-plane particles by moving the electrode from outside the plasma chamber without altering the plasma conditions. The tilting and moving of electrodes using BECAA also allows the precise and repeatable elimination of dust particles one by one to achieve any desired number of grains N without trial and error. Simultaneously acquired top and side view images of dust clusters show that they are perfectly planar or 2D. A demonstration of clusters with N = 1-28 without changing the plasma conditions is presented to show the utility of BECAA for complex plasma and statistical physics experimental design. Demonstration videos and 3D printable part files are available for easy reproduction and adaptation of this new method to repeatably produce 2D clusters in existing RF plasma chambers.

14.
Eur J Nucl Med Mol Imaging ; 51(9): 2558-2568, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38632133

ABSTRACT

PURPOSE: ß cell mass (BCM) and function are essential to the diagnosis and therapy of diabetes. Diabetic patients serve ß cell loss is, and damage of ß cells leads to severe insulin deficiency. Our understanding of the role of BCM in diabetes progression is extremely limited by lacking efficient methods to evaluate BCM in vivo. In vitro methods of labeling islets, including loading of contrast reagent or integration of exogenous biomarker, require artificial manipulation on islets, of which the clinical application is limited. Imaging methods targeting endogenous biomarkers may solve the above problems. However, traditional reagents targeting GLP-1R and VAMT2 result in a high background of adjacent tissues, complicating the identification of pancreatic signals. Here, we report a non-invasive and quantitative imaging technique by using radiolabeled glycine mimics ([18F]FBG, a boron-trifluoride derivative of glycine) to assay islet function and monitor BCM changes in living animals. METHODS: Glycine derivatives, FBG, FBSa, 2Me-FBG, 3Me-FBG, were successfully synthesized and labeled with 18F. Specificity of glycine derivatives were characterized by in vitro experiment. PET imaging and biodistribution studies were performed in animal models carring GLYT over-expressed cells. In vivo evaluation of BCM with [18F]FBG were performed in STZ (streptozocin) induced T1D (type 1 diabetes) models. RESULTS: GLYT responds to excess blood glycine levels and transports glycine into islet cells to maintain the activity of the glycine receptor (GLYR). Best PET imaging condition was 80 min after given a total of 240 ~ 250 nmol imaging reagent (a mixture of [18F]FBG and natural glycine) intravenously. [18F]FBG can detect both endogenous and exogenous islets clearly in vivo. When applied to STZ induced T1D mouse models, total uptake of [18F]FBG in the pancreas exhibited a linear correlation with survival BCM. CONCLUSION: [18F]FBG targeting the endogenous glycine transporter (GLYT), which is highly expressed on islet cells, avoiding extra modification on islet cells. Meanwhile the highly restricted expression pattern of GLYT excluded the background in adjacent tissues. This [18F]FBG-based imaging technique provides a non-invasive method to quantify BCM in vivo, implying a new evaluation index for diabetic assessment.


Subject(s)
Glycine , Insulin-Secreting Cells , Animals , Insulin-Secreting Cells/metabolism , Mice , Glycine/analogs & derivatives , Tissue Distribution , Biomarkers/metabolism , Positron-Emission Tomography/methods , Male , Fluorine Radioisotopes , Humans , Boron Compounds/chemistry , Diabetes Mellitus, Experimental/diagnostic imaging , Diabetes Mellitus, Experimental/metabolism
15.
Nat Chem ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561425

ABSTRACT

Radiotherapy-induced prodrug activation provides an ideal solution to reduce the systemic toxicity of chemotherapy in cancer therapy, but the scope of the radiation-activated protecting groups is limited. Here we present that the well-established photoinduced electron transfer chemistry may pave the way for developing versatile radiation-removable protecting groups. Using a functional reporter assay, N-alkyl-4-picolinium (NAP) was identified as a caging group that efficiently responds to radiation by releasing a client molecule. When evaluated in a competition experiment, the NAP moiety is more efficient than other radiation-removable protecting groups discovered so far. Leveraging this property, we developed a NAP-derived carbamate linker that releases fluorophores and toxins on radiation, which we incorporated into antibody-drug conjugates (ADCs). These designed ADCs were active in living cells and tumour-bearing mice, highlighting the potential to use such a radiation-removable protecting group for the development of next-generation ADCs with improved stability and therapeutic effects.

16.
Environ Toxicol Pharmacol ; 108: 104436, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599507

ABSTRACT

Plastics pose a hazard to the environment. Although plastics have toxicity, microplastics (MPs) and nanoplastics (NPs) are capable of interacting with the rest pollutants in the environment, so they serve as the carriers and interact with organic pollutants to modulate their toxicity, thus resulting in unpredictable ecological risks. PS-NPs and TDCIPP were used expose from 2 h post-fertilization (hpf) to 150 days post-fertilization (dpf) to determine the bioaccumulation of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and its potential effects on neurodevelopment in F1 zebrafish (Danio rerio) offspring under the action of polystyrene nano plastics (PS-NPs). The exposure groups were assigned to TDCIPP (0, 0.4, 2 or 10 µg/L) alone group and the PS-NPs (100 µg/L) and TDCIPP co-exposed group. F1 embryos were collected and grown in clean water to 5 dpf post-fertilization. PS-NPs facilitated the bioaccumulation of TDCIPP in the gut, gill, head,gonad and liver of zebrafish in a sex-dependent manner and promoted the transfer of TDCIPP to their offspring, thus contributing to PS-NPs aggravated the inhibition of offspring development and neurobehavior of TDCIPP-induced. In comparison with TDCIPP exposure alone, the combination could notably down-regulate the levels of the dopamine neurotransmitter, whereas the levels of serotonin or acetylcholine were not notably different. This result was achieved probably because PS-NPs interfered with the TDCIPP neurotoxic response of zebrafish F1 offspring not through the serotonin or acetylcholine neurotransmitter pathway. The increased transfer of TDCIPP to the offspring under the action of PS-NPs increased TDCIPP-induced transgenerational developmental neurotoxicity, which was proven by a further up-regulation/down-regulation the key gene and protein expression related to dopamine synthesis, transport, and metabolism in F1 larvae, in contrast to TDCIPP exposure alone. The above findings suggested that dopaminergic signaling involvement could be conducive to the transgenerational neurodevelopmental toxicity of F1 larval upon parental early co-exposure to PS-NPs and TDCIPP.


Subject(s)
Dopamine , Microplastics , Signal Transduction , Water Pollutants, Chemical , Zebrafish , Animals , Dopamine/metabolism , Water Pollutants, Chemical/toxicity , Signal Transduction/drug effects , Microplastics/toxicity , Male , Female , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/abnormalities , Organophosphorus Compounds/toxicity , Nanoparticles/toxicity , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/etiology , Polystyrenes/toxicity
17.
Nano Lett ; 24(15): 4485-4492, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38578031

ABSTRACT

Confining DNA in nanochannels is an important approach to studying its structure and transportation dynamics. Graphene nanochannels are particularly attractive for studying DNA confinement due to their atomic flatness, precise height control, and excellent mechanical strength. Here, using femtosecond laser etching and wetting transfer, we fabricate graphene nanochannels down to less than 4.3 nm in height, with the length-to-height ratios up to 103. These channels exhibit high stability, low noise, and self-cleaning ability during the long-term ionic current recording. We report a clear linear relationship between DNA length and the residence time in the channel and further utilize this relationship to differentiate DNA fragments based on their lengths, ranging widely from 200 bps to 48.5 kbps. The graphene nanochannel presented here provides a potential platform for label-free analyses and reveals fundamental insights into the conformational dynamics of DNA and proteins in confined space.


Subject(s)
Graphite , Electricity , Electric Conductivity , Proteins , DNA/chemistry
18.
Nanomaterials (Basel) ; 14(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38470720

ABSTRACT

Disordered reactive oxygen/nitrogen species are a common occurrence in various diseases, which usually cause cellular oxidative damage and inflammation. Despite the wide range of applications for biomimetic nanoparticles with antioxidant or anti-inflammatory properties, designs that seamlessly integrate these two abilities with a synergistic effect in a simple manner are seldom reported. In this study, we developed a novel PEI-Mn composite nanoparticle (PM NP) using a chelation method, and the curcumin was loaded onto PM NPs via metal-phenol coordination to form PEI-Mn@curcumin nanoparticles (PMC NPs). PMC NPs possessed excellent dispersibility and cytocompatibility, was engineered to serve as an effective nanozyme, and exhibited specific SOD-like and CAT-like activities. In addition, the incorporation of curcumin granted PMC NPs the ability to effectively suppress the expression of inflammatory cytokines in microglia induced by LPS. As curcumin also has antioxidant properties, it further amplified the synergistic efficiency of ROS scavenging. Significantly, PMC NPs effectively scavenged ROS triggered by H2O2 in SIM-A9 microglia cells and Neuro-2a cells. PMC NPs also considerably mitigated DNA and lipid oxidation in Neuro-2a cells and demonstrated an increase in cell viability under various H2O2 concentrations. These properties suggest that PMC NPs have significant potential in addressing excessive ROS and inflammation related to neural diseases.

19.
J Hand Surg Eur Vol ; : 17531934241237749, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38488626

ABSTRACT

Breakage of K-wires within the metacarpals and phalanges due to metal fatigue and overly aggressive joint movements are encountered occasionally. We established a simple and feasible technique for K-wire retrieval by overdrilling using a hypodermic needle.Level of evidence: IV.

SELECTION OF CITATIONS
SEARCH DETAIL