Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Sci Rep ; 14(1): 11009, 2024 05 14.
Article En | MEDLINE | ID: mdl-38744988

Cardiac magnetic resonance (CMR) imaging allows precise non-invasive quantification of cardiac function. It requires reliable image segmentation for myocardial tissue. Clinically used software usually offers automatic approaches for this step. These are, however, designed for segmentation of human images obtained at clinical field strengths. They reach their limits when applied to preclinical data and ultrahigh field strength (such as CMR of pigs at 7 T). In our study, eleven animals (seven with myocardial infarction) underwent four CMR scans each. Short-axis cine stacks were acquired and used for functional cardiac analysis. End-systolic and end-diastolic images were labelled manually by two observers and inter- and intra-observer variability were assessed. Aiming to make the functional analysis faster and more reproducible, an established deep learning (DL) model for myocardial segmentation in humans was re-trained using our preclinical 7 T data (n = 772 images and labels). We then tested the model on n = 288 images. Excellent agreement in parameters of cardiac function was found between manual and DL segmentation: For ejection fraction (EF) we achieved a Pearson's r of 0.95, an Intraclass correlation coefficient (ICC) of 0.97, and a Coefficient of variability (CoV) of 6.6%. Dice scores were 0.88 for the left ventricle and 0.84 for the myocardium.


Deep Learning , Disease Models, Animal , Myocardial Infarction , Animals , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/physiopathology , Swine , Reproducibility of Results , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine/methods , Humans , Heart/diagnostic imaging , Heart/physiopathology , Stroke Volume , Magnetic Resonance Imaging/methods
2.
Basic Res Cardiol ; 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38483601

Anthracyclines are highly potent anti-cancer drugs, but their clinical use is limited by severe cardiotoxic side effects. The impact of anthracycline-induced cardiotoxicity (AIC) on left ventricular (LV) microarchitecture and diffusion properties remains unknown. This study sought to characterize AIC by cardiovascular magnetic resonance diffusion tensor imaging (DTI). Mice were treated with Doxorubicin (DOX; n = 16) for induction of AIC or saline as corresponding control (n = 15). Cardiac function was assessed via echocardiography at the end of the study period. Whole hearts (n = 8 per group) were scanned ex vivo by high-resolution DTI at 7 T. Results were correlated with histopathology and mass spectrometry imaging. Mice with AIC demonstrated systolic dysfunction (LVEF 52 ± 3% vs. 43 ± 6%, P < 0.001), impaired global longitudinal strain (-19.6 ± 2.0% vs. -16.6 ± 3.0%, P < 0.01), and cardiac atrophy (LV mass index [mg/mm], 4.3 ± 0.1 vs. 3.6 ± 0.2, P < 0.01). Regional sheetlet angles were significantly lower in AIC, whereas helix angle and relative helicity remained unchanged. In AIC, fractional anisotropy was increased (0.12 ± 0.01 vs. 0.14 ± 0.02, P < 0.05). DOX-treated mice displayed higher planar and less spherical anisotropy (CPlanar 0.07 ± 0.01 vs. 0.09 ± 0.01, P < 0.01; CSpherical 0.89 ± 0.01 vs. 0.87 ± 0.02, P < 0.05). CPlanar and CSpherical yielded good discriminatory power to distinguish between mice with and without AIC (c-index 0.91 and 0.84, respectively, P for both < 0.05). AIC is associated with regional changes in sheetlet angle but no major abnormalities of global LV microarchitecture. The geometric shape of the diffusion tensor is altered in AIC. DTI may provide a new tool for myocardial characterization in patients with AIC, which warrants future clinical studies to evaluate its diagnostic utility.

3.
NMR Biomed ; 36(12): e5023, 2023 Dec.
Article En | MEDLINE | ID: mdl-37620002

A complementary safety assessment of the specific absorption rate (SAR) of the electromagnetic energy was performed in a prototype 8Tx/16Rx RF array for cardiac magnetic resonance imaging (MRI) at 7 T. The study aimed to address two critical aspects of 7-T SAR safety not always explicitly examined by coil vendors: (i) the influence of an RF-array position on a peak SAR value, and (ii) the risk of exceeding the permitted maximal SAR in the tissue surrounding conductive passive implants. The full-wave 3D electromagnetic simulations for the thorax with shifted array position and the whole-body volume in the presence of a dental retainer, an intrauterine contraceptive device (IUD), and a hip joint implant, were performed for two human voxel models. The effect of the array displacement on the SAR was simulated for seven array locations on the thorax shifted from the central position in different directions on 50 mm. The peak SAR values for both models were analyzed for the three phase-only transmit vectors optimized for B1 + homogeneity and transmit efficiency. Peak SAR values due to the shifts of the array position increase up to ≈50%. The worst-case peak SAR value for a dental retainer was found to be in the range of 10% of the maximal SAR in the tissue within the array's borders. For the IUD and artificial hip joint implants the effect was found to be negligible (peak SAR < 1% of the SAR within array borders). In addition to simulations for cardiac MRI, we performed a preliminary B1 + shimming and SAR-safety analysis for the same RF-array at various positions lower on the body trunk to assess a potential application in imaging abdominopelvic organs (prostate, kidney, and liver). The most promising target for an ad hoc alternative application of the array was found to be the prostate.


Magnetic Resonance Imaging , Thorax , Male , Humans , Phantoms, Imaging , Magnetic Resonance Imaging/methods , Heart/diagnostic imaging , Prostate
4.
Front Cardiovasc Med ; 10: 1068390, 2023.
Article En | MEDLINE | ID: mdl-37255709

A key step in translational cardiovascular research is the use of large animal models to better understand normal and abnormal physiology, to test drugs or interventions, or to perform studies which would be considered unethical in human subjects. Ultrahigh field magnetic resonance imaging (UHF-MRI) at 7 T field strength is becoming increasingly available for imaging of the heart and, when compared to clinically established field strengths, promises better image quality and image information content, more precise functional analysis, potentially new image contrasts, and as all in-vivo imaging techniques, a reduction of the number of animals per study because of the possibility to scan every animal repeatedly. We present here a solution to the dual use problem of whole-body UHF-MRI systems, which are typically installed in clinical environments, to both UHF-MRI in large animals and humans. Moreover, we provide evidence that in such a research infrastructure UHF-MRI, and ideally combined with a standard small-bore UHF-MRI system, can contribute to a variety of spatial scales in translational cardiovascular research: from cardiac organoids, Zebra fish and rodent hearts to large animal models such as pigs and humans. We present pilot data from serial CINE, late gadolinium enhancement, and susceptibility weighted UHF-MRI in a myocardial infarction model over eight weeks. In 14 pigs which were delivered from a breeding facility in a national SARS-CoV-2 hotspot, we found no infection in the incoming pigs. Human scanning using CINE and phase contrast flow measurements provided good image quality of the left and right ventricle. Agreement of functional analysis between CINE and phase contrast MRI was excellent. MRI in arrested hearts or excised vascular tissue for MRI-based histologic imaging, structural imaging of myofiber and vascular smooth muscle cell architecture using high-resolution diffusion tensor imaging, and UHF-MRI for monitoring free radicals as a surrogate for MRI of reactive oxygen species in studies of oxidative stress are demonstrated. We conclude that UHF-MRI has the potential to become an important precision imaging modality in translational cardiovascular research.

5.
MAGMA ; 36(2): 279-293, 2023 Apr.
Article En | MEDLINE | ID: mdl-37027119

INTRODUCTION: MRI of excised hearts at ultra-high field strengths ([Formula: see text]≥7 T) can provide high-resolution, high-fidelity ground truth data for biomedical studies, imaging science, and artificial intelligence. In this study, we demonstrate the capabilities of a custom-built, multiple-element transceiver array customized for high-resolution imaging of excised hearts. METHOD: A dedicated 16-element transceiver loop array was implemented for operation in parallel transmit (pTx) mode (8Tx/16Rx) of a clinical whole-body 7 T MRI system. The initial adjustment of the array was performed using full-wave 3D-electromagnetic simulation with subsequent final fine-tuning on the bench. RESULTS: We report the results of testing the implemented array in tissue-mimicking liquid phantoms and excised porcine hearts. The array demonstrated high efficiency of parallel transmits characteristics enabling efficient pTX-based B1+-shimming. CONCLUSION: The receive sensitivity and parallel imaging capability of the dedicated coil were superior to that of a commercial 1Tx/32Rx head coil in both SNR and T2*-mapping. The array was successfully tested to acquire ultra-high-resolution (0.1 × 0.1 × 0.8 mm voxel) images of post-infarction scar tissue. High-resolution (isotropic 1.6 mm3 voxel) diffusion tensor imaging-based tractography provided high-resolution information about normal myocardial fiber orientation.


Artificial Intelligence , Diffusion Tensor Imaging , Swine , Animals , Signal-To-Noise Ratio , Equipment Design , Magnetic Resonance Imaging/methods , Phantoms, Imaging
6.
Magn Reson Med ; 89(4): 1644-1659, 2023 04.
Article En | MEDLINE | ID: mdl-36468622

PURPOSE: In this work, a new method to determine the gradient system transfer function (GSTF) with high frequency resolution and high SNR is presented, using fast and simple phantom measurements. The GSTF is an effective instrument for hardware characterization and calibration, which can be used to correct for gradient distortions, or enhance gradient fidelity. METHODS: The thin-slice approach for phantom-based measurements of the GSTF is expanded by adding excitations that are shifted after the application of the probing gradient, to capture long-lasting field fluctuations with high SNR. A physics-informed regularization procedure is implemented to derive high-quality transfer functions from a small number of measurements. The resulting GSTFs are evaluated by means of gradient time-course estimation and pre-emphasis of a trapezoidal test gradient on a 7T scanner. RESULTS: The GSTFs determined with the proposed method capture sharp mechanical resonances with a high level of detail. The measured trapezoidal gradient progressions are authentically reproduced by the GSTF estimations on all three axes. The GSTF-based pre-emphasis considerably improves the gradient fidelity in the plateau phase of the test gradient and almost completely eliminates lingering field oscillations. CONCLUSION: The presented approach allows fast and simple characterization of gradient field fluctuations caused by long-living eddy current and vibration effects, which become more pronounced at ultrahigh field strengths.


Algorithms , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Calibration , Disease Progression
7.
PLoS One ; 17(6): e0270689, 2022.
Article En | MEDLINE | ID: mdl-35767553

BACKGROUND: To investigate the effects of B1-shimming and radiofrequency (RF) parallel transmission (pTX) on the visualization and quantification of the degree of stenosis in a coronary artery phantom using 7 Tesla (7 T) magnetic resonance imaging (MRI). METHODS: Stenosis phantoms with different grades of stenosis (0%, 20%, 40%, 60%, 80%, and 100%; 5 mm inner vessel diameter) were produced using 3D printing (clear resin). Phantoms were imaged with four different concentrations of diluted Gd-DOTA representing established arterial concentrations after intravenous injection in humans. Samples were centrally positioned in a thorax phantom of 30 cm diameter filled with a custom-made liquid featuring dielectric properties of muscle tissue. MRI was performed on a 7 T whole-body system. 2D-gradient-echo sequences were acquired with an 8-channel transmit 16-channel receive (8 Tx / 16 Rx) cardiac array prototype coil with and without pTX mode. Measurements were compared to those obtained with identical scan parameters using a commercially available 1 Tx / 16 Rx single transmit coil (sTX). To assess reproducibility, measurements (n = 15) were repeated at different horizontal angles with respect to the B0-field. RESULTS: B1-shimming and pTX markedly improved flip angle homogeneity across the thorax phantom yielding a distinctly increased signal-to-noise ratio (SNR) averaged over a whole slice relative to non-manipulated RF fields. Images without B1-shimming showed shading artifacts due to local B1+-field inhomogeneities, which hampered stenosis quantification in severe cases. In contrast, B1-shimming and pTX provided superior image homogeneity. Compared with a conventional sTX coil higher grade stenoses (60% and 80%) were graded significantly (p<0.01) more precise. Mild to moderate grade stenoses did not show significant differences. Overall, SNR was distinctly higher with B1-shimming and pTX than with the conventional sTX coil (inside the stenosis phantoms 14%, outside the phantoms 32%). Both full and half concentration (10.2 mM and 5.1 mM) of a conventional Gd-DOTA dose for humans were equally suitable for stenosis evaluation in this phantom study. CONCLUSIONS: B1-shimming and pTX at 7 T can distinctly improve image homogeneity and therefore provide considerably more accurate MR image analysis, which is beneficial for imaging of small vessel structures.


Coronary Vessels , Radio Waves , Constriction, Pathologic , Coronary Vessels/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Reproducibility of Results
8.
Front Cardiovasc Med ; 9: 839714, 2022.
Article En | MEDLINE | ID: mdl-35449873

Background: Obesity exerts multiple deleterious effects on the heart that may ultimately lead to cardiac failure. This study sought to characterize myocardial microstructure and function in an experimental model of obesity-related cardiac dysfunction. Methods: Male C57BL/6N mice were fed either a high-fat diet (HFD; 60 kcal% fat, n = 12) or standard control diet (9 kcal% fat, n = 10) for 15 weeks. At the end of the study period, cardiac function was assessed by ultra-high frequency echocardiography, and hearts were processed for further analyses. The three-dimensional myocardial microstructure was examined ex vivo at a spatial resolution of 100 × 100 × 100 µm3 by diffusion tensor magnetic resonance imaging (DT-MRI) at 7T. Myocardial deformation, diffusion metrics and fiber tract geometry were analyzed with respect to the different myocardial layers (subendocardium/subepicardium) and segments (base/mid-cavity/apex). Results were correlated with blood sample analyses, histopathology, and gene expression data. Results: HFD feeding induced significantly increased body weight combined with a pronounced accumulation of visceral fat (body weight 42.3 ± 5.7 vs. 31.5 ± 2.2 g, body weight change 73.7 ± 14.8 vs. 31.1 ± 6.6%, both P < 0.001). Obese mice showed signs of diastolic dysfunction, whereas left-ventricular ejection fraction and fractional shortening remained unchanged (E/e' 41.6 ± 16.6 vs. 24.8 ± 6.0, P < 0.01; isovolumic relaxation time 19 ± 4 vs. 14 ± 4 ms, P < 0.05). Additionally, global longitudinal strain was reduced in the HFD group (-15.1 ± 3.0 vs. -20.0 ± 4.6%, P = 0.01), which was mainly driven by an impairment in basal segments. However, histopathology and gene expression analyses revealed no myocardial fibrosis or differences in cardiomyocyte morphology. Mean diffusivity and eigenvalues of the diffusion tensor were lower in the basal subepicardium of obese mice as assessed by DT-MRI (P < 0.05). The three-dimensional fiber tract arrangement of the left ventricle (LV) remained preserved. Conclusion: Fifteen weeks of high-fat diet induced alterations in myocardial diffusion properties in mice, whereas no remodeling of the three-dimensional myofiber arrangement of the LV was observed. Obese mice showed reduced longitudinal strain and lower mean diffusivity predominantly in the left-ventricular base, and further investigation into the significance of this regional pattern is required.

9.
NMR Biomed ; 35(8): e4726, 2022 08.
Article En | MEDLINE | ID: mdl-35277907

To improve parallel transmit (pTx) and receive performance for cardiac MRI (cMRI) in pigs at 7 T, a dedicated transmit/receive (Tx/Rx), 16-element antisymmetric dipole antenna array, which combines L-shaped and straight dipoles, was designed, implemented, and evaluated in both cadavers and animals in vivo. Electromagnetic-field simulations were performed with the new 16-element dipole antenna array loaded with a pig thorax-shaped phantom and compared with an eight-element array of straight dipoles. The new dipole array was interfaced to a 7 T scanner in pTx mode (8Tx/16Rx). Imaging performance of the novel array was validated through MRI measurements in a pig phantom, an 85 kg pig cadaver, and two pigs in vivo (74 and 81 kg). Due to the improved decoupling between interleaved L-shaped and straight dipole elements, the 16-element dipole array fits within the same outer dimensions as an eight-element array of straight dipoles. This provides improvement of both transmit and receive characteristics and additional degrees of freedom for B1+ shimming. The antisymmetric dipole array demonstrated efficient suppression of destructive interferences in the B1+ field, with up to 25% improvement in the B1+ homogeneity achieved using static pTx-RFPA B1+ shimming in comparison with the hardware-adjusted state, which was optimized for single transmit. High-resolution (0.5 × 0.5 × 4 mm3 ) anatomical images of the heart after cardiac arrest proved good transmit and receive characteristics of the novel array design. Parallel imaging with an acceleration factor up to R = 6 was possible while maintaining a mean g factor of 1.55 within the pig heart. CINE images acquired in vivo in two pigs demonstrated SNR and parallel imaging capabilities similar to those of a reference 8Tx/16Rx dedicated loop array for cMRI in pigs.


Heart , Magnetic Resonance Imaging , Animals , Cadaver , Equipment Design , Heart/diagnostic imaging , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Signal-To-Noise Ratio , Swine
10.
NMR Biomed ; 35(6): e4685, 2022 06.
Article En | MEDLINE | ID: mdl-34967060

Cardiac diffusion tensor imaging (DTI) is an emerging technique for the in vivo characterisation of myocardial microstructure, and there is a growing need for its validation and standardisation. We sought to establish the accuracy, precision, repeatability and reproducibility of state-of-the-art pulse sequences for cardiac DTI among 10 centres internationally. Phantoms comprising 0%-20% polyvinylpyrrolidone (PVP) were scanned with DTI using a product pulsed gradient spin echo (PGSE; N = 10 sites) sequence, and a custom motion-compensated spin echo (SE; N = 5) or stimulated echo acquisition mode (STEAM; N = 5) sequence suitable for cardiac DTI in vivo. A second identical scan was performed 1-9 days later, and the data were analysed centrally. The average mean diffusivities (MDs) in 0% PVP were (1.124, 1.130, 1.113) x 10-3  mm2 /s for PGSE, SE and STEAM, respectively, and accurate to within 1.5% of reference data from the literature. The coefficients of variation in MDs across sites were 2.6%, 3.1% and 2.1% for PGSE, SE and STEAM, respectively, and were similar to previous studies using only PGSE. Reproducibility in MD was excellent, with mean differences in PGSE, SE and STEAM of (0.3 ± 2.3, 0.24 ± 0.95, 0.52 ± 0.58) x 10-5  mm2 /s (mean ± 1.96 SD). We show that custom sequences for cardiac DTI provide accurate, precise, repeatable and reproducible measurements. Further work in anisotropic and/or deforming phantoms is warranted.


Diffusion Tensor Imaging , Heart , Anisotropy , Diffusion Tensor Imaging/methods , Heart/diagnostic imaging , Phantoms, Imaging , Reproducibility of Results
11.
PLoS One ; 16(7): e0252797, 2021.
Article En | MEDLINE | ID: mdl-34297720

INTRODUCTION: Cardiac magnetic resonance (CMR) at ultrahigh field (UHF) offers the potential of high resolution and fast image acquisition. Both technical and physiological challenges associated with CMR at 7T require specific hardware and pulse sequences. This study aimed to assess the current status and existing, publicly available technology regarding the potential of a clinical application of 7T CMR. METHODS: Using a 7T MRI scanner and a commercially available radiofrequency coil, a total of 84 CMR examinations on 72 healthy volunteers (32 males, age 19-70 years, weight 50-103 kg) were obtained. Both electrocardiographic and acoustic triggering were employed. The data were analyzed regarding the diagnostic image quality and the influence of patient and hardware dependent factors. 50 complete short axis stacks and 35 four chamber CINE views were used for left ventricular (LV) and right ventricular (RV), mono-planar LV function, and RV fractional area change (FAC). Twenty-seven data sets included aortic flow measurements that were used to calculate stroke volumes. Subjective acceptance was obtained from all volunteers with a standardized questionnaire. RESULTS: Functional analysis showed good functions of LV (mean EF 56%), RV (mean EF 59%) and RV FAC (mean FAC 52%). Flow measurements showed congruent results with both ECG and ACT triggering. No significant influence of experimental parameters on the image quality of the LV was detected. Small fractions of 5.4% of LV and 2.5% of RV segments showed a non-diagnostic image quality. The nominal flip angle significantly influenced the RV image quality. CONCLUSION: The results demonstrate that already now a commercially available 7T MRI system, without major methods developments, allows for a solid morphological and functional analysis similar to the clinically established CMR routine approach. This opens the door towards combing routine CMR in patients with development of advanced 7T technology.


Magnetic Resonance Imaging , Adult , Aged , Humans , Male , Middle Aged , Pilot Projects , Stroke Volume , Ventricular Function, Right , Young Adult
12.
Magn Reson Med ; 86(4): 2179-2191, 2021 10.
Article En | MEDLINE | ID: mdl-34002412

PURPOSE: Artificial neural networks show promising performance in automatic segmentation of cardiac MRI. However, training requires large amounts of annotated data and generalization to different vendors, field strengths, sequence parameters, and pathologies is limited. Transfer learning addresses this challenge, but specific recommendations regarding type and amount of data required is lacking. In this study, we assess data requirements for transfer learning to experimental cardiac MRI at 7T where the segmentation task can be challenging. In addition, we provide guidelines, tools, and annotated data to enable transfer learning approaches by other researchers and clinicians. METHODS: A publicly available segmentation model was used to annotate a publicly available data set. This labeled data set was subsequently used to train a neural network for segmentation of left ventricle and myocardium in cardiac cine MRI. The network is used as starting point for transfer learning to 7T cine data of healthy volunteers (n = 22; 7873 images) by updating the pre-trained weights. Structured and random data subsets of different sizes were used to systematically assess data requirements for successful transfer learning. RESULTS: Inconsistencies in the publically available data set were corrected, labels created, and a neural network trained. On 7T cardiac cine images the model pre-trained on public imaging data, acquired at 1.5T and 3T, achieved DICELV = 0.835 and DICEMY = 0.670. Transfer learning using 7T cine data and ImageNet weight initialization improved model performance to DICELV = 0.900 and DICEMY = 0.791. Using only end-systolic and end-diastolic images reduced training data by 90%, with no negative impact on segmentation performance (DICELV = 0.908, DICEMY = 0.805). CONCLUSIONS: This work demonstrates and quantifies the benefits of transfer learning for cardiac cine image segmentation. We provide practical guidelines for researchers planning transfer learning projects in cardiac MRI and make data, models, and code publicly available.


Deep Learning , Heart/diagnostic imaging , Humans , Magnetic Resonance Imaging , Magnetic Resonance Imaging, Cine , Neural Networks, Computer
13.
BMC Med Imaging ; 21(1): 27, 2021 02 15.
Article En | MEDLINE | ID: mdl-33588786

BACKGROUND: Image segmentation is a common task in medical imaging e.g., for volumetry analysis in cardiac MRI. Artificial neural networks are used to automate this task with performance similar to manual operators. However, this performance is only achieved in the narrow tasks networks are trained on. Performance drops dramatically when data characteristics differ from the training set properties. Moreover, neural networks are commonly considered black boxes, because it is hard to understand how they make decisions and why they fail. Therefore, it is also hard to predict whether they will generalize and work well with new data. Here we present a generic method for segmentation model interpretation. Sensitivity analysis is an approach where model input is modified in a controlled manner and the effect of these modifications on the model output is evaluated. This method yields insights into the sensitivity of the model to these alterations and therefore to the importance of certain features on segmentation performance. RESULTS: We present an open-source Python library (misas), that facilitates the use of sensitivity analysis with arbitrary data and models. We show that this method is a suitable approach to answer practical questions regarding use and functionality of segmentation models. We demonstrate this in two case studies on cardiac magnetic resonance imaging. The first case study explores the suitability of a published network for use on a public dataset the network has not been trained on. The second case study demonstrates how sensitivity analysis can be used to evaluate the robustness of a newly trained model. CONCLUSIONS: Sensitivity analysis is a useful tool for deep learning developers as well as users such as clinicians. It extends their toolbox, enabling and improving interpretability of segmentation models. Enhancing our understanding of neural networks through sensitivity analysis also assists in decision making. Although demonstrated only on cardiac magnetic resonance images this approach and software are much more broadly applicable.


Deep Learning , Heart/diagnostic imaging , Image Processing, Computer-Assisted , Magnetic Resonance Imaging/methods , Humans , Neural Networks, Computer , Sensitivity and Specificity , Software
14.
Magn Reson Med ; 85(1): 182-196, 2021 01.
Article En | MEDLINE | ID: mdl-32700791

PURPOSE: Inhomogeneities of the static magnetic B0 field are a major limiting factor in cardiac MRI at ultrahigh field (≥ 7T), as they result in signal loss and image distortions. Different magnetic susceptibilities of the myocardium and surrounding tissue in combination with cardiac motion lead to strong spatio-temporal B0 -field inhomogeneities, and their homogenization (B0 shimming) is a prerequisite. Limitations of state-of-the-art shimming are described, regional B0 variations are measured, and a methodology for spherical harmonics shimming of the B0 field within the human myocardium is proposed. METHODS: The spatial B0 -field distribution in the heart was analyzed as well as temporal B0 -field variations in the myocardium over the cardiac cycle. Different shim region-of-interest selections were compared, and hardware limitations of spherical harmonics B0 shimming were evaluated by calibration-based B0 -field modeling. The role of third-order spherical harmonics terms was analyzed as well as potential benefits from cardiac phase-specific shimming. RESULTS: The strongest B0 -field inhomogeneities were observed in localized spots within the left-ventricular and right-ventricular myocardium and varied between systolic and diastolic cardiac phases. An anatomy-driven shim region-of-interest selection allowed for improved B0 -field homogeneity compared with a standard shim region-of-interest cuboid. Third-order spherical harmonics terms were demonstrated to be beneficial for shimming of these myocardial B0 -field inhomogeneities. Initial results from the in vivo implementation of a potential shim strategy were obtained. Simulated cardiac phase-specific shimming was performed, and a shim term-by-term analysis revealed periodic variations of required currents. CONCLUSION: Challenges in state-of-the-art B0 shimming of the human heart at 7 T were described. Cardiac phase-specific shimming strategies were found to be superior to vendor-supplied shimming.


Heart , Image Processing, Computer-Assisted , Calibration , Heart/diagnostic imaging , Humans , Magnetic Resonance Imaging
15.
Front Cardiovasc Med ; 7: 580296, 2020.
Article En | MEDLINE | ID: mdl-33330644

Although heart failure following myocardial infarction (MI) represents a major health burden, underlying microstructural and functional changes remain incompletely understood. Here, we report on a case of unexpected MI after treatment with the catecholamine isoproterenol in an experimental imaging study in mice using different state-of-the-art imaging modalities. The decline in cardiac function was documented by ultrahigh-frequency echocardiography and speckle-tracking analyses. Myocardial microstructure was studied ex vivo at a spatial resolution of 100 × 100 × 100 µm3 using diffusion tensor magnetic resonance imaging (DT-MRI) and histopathologic analyses. Two weeks after ISO treatment, the animal showed an apical aneurysm accompanied by reduced radial strain in corresponding segments and impaired global systolic function. DT-MRI revealed a loss of contractile fiber tracts together with a disarray of remaining fibers as corresponding microstructural correlates. This preclinical case report provides valuable insights into pathophysiology and morphologic-functional relations of heart failure following MI using emerging imaging technologies.

16.
NMR Biomed ; 33(7): e4298, 2020 07.
Article En | MEDLINE | ID: mdl-32207190

In this study we aimed to assess the effects of continuous formalin fixation on diffusion and relaxation metrics of the ex vivo porcine heart at 7 T. Magnetic resonance imaging was performed on eight piglet hearts using a 7 T whole body system. Hearts were measured fresh within 3 hours of cardiac arrest followed by immersion in 10% neutral buffered formalin. T2* and T2 were assessed using a gradient multi-echo and multi-echo spin echo sequence, respectively. A spin echo and a custom stimulated echo sequence were employed to assess diffusion time-dependent changes in metrics of cardiac diffusion tensor imaging. SNR was determined for b = 0 images. Scans were performed for 5 mm thick apical, midcavity and basal slices (in-plane resolution: 1 mm) and repeated 7, 15, 50, 100 and 200 days postfixation. Eigenvalues of the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) decreased significantly (P < 0.05) following fixation. Relative to fresh hearts, FA values 7 and 200 days postfixation were 90% and 80%, while respective relative ADC values at those fixation stages were 78% and 92%. Statistical helix and sheetlet angle distributions as well as respective mean and median values showed no systematic influence of continuous formalin fixation. Similar to changes in the ADC, values for T2 , T2* and SNR dropped initially postfixation. Respective relative values compared with fresh hearts at day 7 were 64%, 79% and 68%, whereas continuous fixation restored T2 , T2* and SNR leading to relative values of 74%, 100%, and 81% at day 200, respectively. Relaxation parameters and diffusion metrics are significantly altered by continuous formalin fixation. The preservation of microstructure metrics following prolonged fixation is a key finding that may enable future studies of ventricular remodeling in cardiac pathologies.


Diffusion Magnetic Resonance Imaging , Formaldehyde/chemistry , Heart/diagnostic imaging , Tissue Fixation , Animals , Signal-To-Noise Ratio , Spin Labels , Swine
17.
Sci Rep ; 10(1): 3117, 2020 02 20.
Article En | MEDLINE | ID: mdl-32080274

A novel mono-surface antisymmetric 16-element transmit/receive (Tx/Rx) coil array was designed, simulated, constructed, and tested for cardiac magnetic resonance imaging (cMRI) in pigs at 7 T. The cardiac array comprised of a mono-surface 16-loops with two central elements arranged anti-symmetrically and flanked by seven elements on either side. The array was configured for parallel transmit (pTx) mode to have an eight channel transmit and 16-channel receive (8Tx/16Rx) coil array. Electromagnetic (EM) simulations, bench-top measurements, phantom, and MRI experiments with two pig cadavers (68 and 46 kg) were performed. Finally, the coil was used in pilot in-vivo measurements with a 60 kg pig. Flip angle (FA), geometry factor (g-factor), signal-to-noise ratio (SNR) maps, and high-resolution cardiac images were acquired with an in-plane resolution of 0.6 mm × 0.6 mm (in-vivo) and 0.3 mm × 0.3 mm (ex-vivo). The mean g-factor over the heart was 1.26 (R = 6). Static phase [Formula: see text] shimming in a pig body phantom with the optimal phase vectors makes possible to improve the [Formula: see text] homogeneity by factor > 2 and transmit efficiency by factor > 3 compared to zero phases (before RF shimming). Parallel imaging performed in the in-vivo measurements demonstrated well preserved diagnostic quality of the resulting images at acceleration factors up to R = 6. The described hardware design can be adapted for arrays optimized for animals and humans with a larger number of elements (32-64) while maintaining good decoupling for various MRI applications at UHF (e.g., cardiac, head, and spine).


Biomedical Engineering/instrumentation , Heart/diagnostic imaging , Magnetic Resonance Imaging/instrumentation , Animals , Cadaver , Electromagnetic Radiation , Equipment Design , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Signal-To-Noise Ratio , Swine
18.
Hypertension ; 74(2): 295-304, 2019 08.
Article En | MEDLINE | ID: mdl-31291149

Subendocardial damage is among the first cardiac manifestations of hypertension and is already present in asymptomatic disease states. Accordingly, markers of subendocardial impairment may facilitate early detection of cardiac damages and risk stratification under these conditions. This study aimed to investigate the impact of subendocardial damage on myocardial microstructure and function to elucidate early pathophysiologic processes and to identify corresponding diagnostic measures. Mice (n=38) were injected with isoproterenol to induce isolated subendocardial scarring or saline as corresponding control. Cardiac function and myocardial deformation were determined by high-frequency echocardiography. The cardiac stress response was assessed in a graded exercise test and during dobutamine stress echocardiography. Myocardial microstructure was studied ex vivo by 7 T diffusion tensor magnetic resonance imaging at a spatial resolution of 100×100×100 µm 3 . Results were correlated with histology and biomarker expression. Subendocardial fibrosis was accompanied by diastolic dysfunction, impaired longitudinal deformation (global peak longitudinal strain [LS]: -12.5±0.5% versus -15.6±0.5%; P<0.001) and elevated biomarker expression (ANP [atrial natriuretic peptide], Galectin-3, and ST2). Systolic function and cardiac stress response remained preserved. Diffusion tensor magnetic resonance imaging revealed a left-shift in helix angle towards lower values in isoproterenol-treated animals, which was mainly determined by subepicardial myofibers (mean helix angle: 2.2±0.8° versus 5.9±1.0°; P<0.01). Longitudinal strain and subepicardial helix angle were highly predictive for subendocardial fibrosis (sensitivity, 82%-92% and specificity, 89%-90%). The results indicate that circumscribed subendocardial damage alone can cause several hallmarks observed in cardiovascular high-risk patients. Microstructural remodeling under these conditions involves also remote regions, and corresponding changes in longitudinal strain and helix angle might serve as diagnostic markers.


Endocardium/pathology , Image Interpretation, Computer-Assisted , Isoproterenol/adverse effects , Magnetic Resonance Imaging, Cine/methods , Ventricular Dysfunction, Left/diagnostic imaging , Animals , Biopsy, Needle , Disease Models, Animal , Echocardiography/methods , Endocardium/diagnostic imaging , Endocardium/injuries , Fibrosis/diagnostic imaging , Fibrosis/pathology , Germany , Humans , Immunohistochemistry , Injections, Subcutaneous , Isoproterenol/administration & dosage , Linear Models , Mice , Mice, Inbred Strains , ROC Curve , Random Allocation , Reference Values , Stroke Volume/physiology , Survival Analysis , Ventricular Dysfunction, Left/pathology
19.
PLoS One ; 14(3): e0213994, 2019.
Article En | MEDLINE | ID: mdl-30908510

Purpose of this work was to assess feasibility of cardiac diffusion tensor imaging (cDTI) at 7 T in a set of healthy, unfixed, porcine hearts using various parallel imaging acceleration factors and to compare SNR and derived cDTI metrics to a reference measured at 3 T. Magnetic resonance imaging was performed on 7T and 3T whole body systems using a spin echo diffusion encoding sequence with echo planar imaging readout. Five reference (b = 0 s/mm2) images and 30 diffusion directions (b = 700 s/mm2) were acquired at both 7 T and 3 T using a GRAPPA acceleration factor R = 1. Scans at 7 T were repeated using R = 2, R = 3, and R = 4. SNR evaluation was based on 30 reference (b = 0 s/mm2) images of 30 slices of the left ventricle and cardiac DTI metrics were compared within AHA segmentation. The number of hearts scanned at 7 T and 3 T was n = 11. No statistically significant differences were found for evaluated helix angle, secondary eigenvector angle, fractional anisotropy and apparent diffusion coefficient at the different field strengths, given sufficiently high SNR and geometrically undistorted images. R≥3 was needed to reduce susceptibility induced geometric distortions to an acceptable amount. On average SNR in myocardium of the left ventricle was increased from 29±3 to 44±6 in the reference image (b = 0 s/mm2) when switching from 3 T to 7 T. Our study demonstrates that high resolution, ex vivo cDTI is feasible at 7 T using commercial hardware.


Diffusion Tensor Imaging/methods , Heart/anatomy & histology , Sus scrofa/anatomy & histology , Animals , Diffusion Tensor Imaging/statistics & numerical data , Echo-Planar Imaging/methods , Echo-Planar Imaging/statistics & numerical data , Feasibility Studies , Heart/diagnostic imaging , Imaging, Three-Dimensional/methods , Imaging, Three-Dimensional/statistics & numerical data , In Vitro Techniques , Male , Models, Animal , Models, Cardiovascular , Signal-To-Noise Ratio
20.
Magn Reson Med ; 76(3): 880-7, 2016 09.
Article En | MEDLINE | ID: mdl-26414857

PURPOSE: To reduce saturation effects in the arterial input function (AIF) estimation of quantitative myocardial first-pass saturation recovery perfusion imaging by employing a model-based reconstruction. THEORY AND METHODS: Imaging was performed with a saturation recovery prepared radial FLASH sequence. A model-based reconstruction was applied for reconstruction. By exploiting prior knowledge about the relaxation process, an image series with different saturation recovery times was reconstructed. By evaluating images with an effective saturation time of approximately 3 ms, saturation effects in the AIF determination were reduced. In a volunteer study, this approach was compared with a standard prebolus technique. RESULTS: In comparison to the low-dose injection of a prebolus acquisition, saturation effects were further reduced in the AIFs determined using the model-based approach. These effects, which were clearly visible for all six volunteers, were reflected in a statistically significant difference of up to 20% in the absolute perfusion values. CONCLUSION: The application of model-based reconstruction algorithms in quantitative myocardial perfusion imaging promises a significant improvement of the AIF determination. In addition to greatly reducing saturation effects that occur even for the prebolus methods, only a single bolus has to be applied. Magn Reson Med 76:880-887, 2016. © 2015 Wiley Periodicals, Inc.


Blood Flow Velocity/physiology , Contrast Media/pharmacokinetics , Coronary Circulation/physiology , Magnetic Resonance Imaging/methods , Models, Cardiovascular , Myocardial Perfusion Imaging/methods , Myocardium/metabolism , Algorithms , Computer Simulation , Female , Heart , Humans , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine/methods , Male , Reproducibility of Results , Sensitivity and Specificity , Signal Processing, Computer-Assisted , Young Adult
...