Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Res Sq ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38562878

ABSTRACT

The germinal center (GC) dark zone (DZ) and light zone (LZ) regions spatially separate expansion and diversification from selection of antigen-specific B-cells to ensure antibody affinity maturation and B cell memory. The DZ and LZ differ significantly in their immune composition despite the lack of a physical barrier, yet the determinants of this polarization are poorly understood. This study provides novel insights into signals controlling asymmetric T-cell distribution between DZ and LZ regions. We identify spatially-resolved DNA damage response and chromatin compaction molecular features that underlie DZ T-cell exclusion. The DZ spatial transcriptional signature linked to T-cell immune evasion clustered aggressive Diffuse Large B-cell Lymphomas (DLBCL) for differential T cell infiltration. We reveal the dependence of the DZ transcriptional core signature on the ATR kinase and dissect its role in restraining inflammatory responses contributing to establishing an immune-repulsive imprint in DLBCL. These insights may guide ATR-focused treatment strategies bolstering immunotherapy in tumors marked by DZ transcriptional and chromatin-associated features.

2.
J Transl Med ; 22(1): 35, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38191367

ABSTRACT

BACKGROUND: Mucosal Melanomas (MM) are highly aggressive neoplasms arising from mucosal melanocytes. Current treatments offer a limited survival benefit for patients with advanced MM; moreover, the lack of pre-clinical cellular systems has significantly limited the understanding of their immunobiology. METHODS: Five novel cell lines were obtained from patient-derived biopsies of MM arising in the sino-nasal mucosa and designated as SN-MM1-5. The morphology, ultrastructure and melanocytic identity of SN-MM cell lines were validated by transmission electron microscopy and immunohistochemistry. Moreover, in vivo tumorigenicity of SN-MM1-5 was tested by subcutaneous injection in NOD/SCID mice. Molecular characterization of SN-MM cell lines was performed by a mass-spectrometry proteomic approach, and their sensitivity to PI3K chemical inhibitor LY294002 was validated by Akt activation, measured by pAkt(Ser473) and pAkt(Thr308) in immunoblots, and MTS assay. RESULTS: This study reports the validation and functional characterization of five newly generated SN-MM cell lines. Compared to the normal counterpart, the proteomic profile of SN-MM is consistent with transformed melanocytes showing a heterogeneous degree of melanocytic differentiation and activation of cancer-related pathways. All SN-MM cell lines resulted tumorigenic in vivo and display recurrent structural variants according to aCGH analysis. Of relevance, the microscopic analysis of the corresponding xenotransplants allowed the identification of clusters of MITF-/CDH1-/CDH2 + /ZEB1 + /CD271 + cells, supporting the existence of melanoma-initiating cells also in MM, as confirmed in clinical samples. In vitro, SN-MM cell lines were sensitive to cisplatin, but not to temozolomide. Moreover, the proteomic analysis of SN-MM cell lines revealed that RICTOR, a subunit of mTORC2 complex, is the most significantly activated upstream regulator, suggesting a relevant role for the PI3K-Akt-mTOR pathway in these neoplasms. Consistently, phosphorylation of NDRG1 and Akt activation was observed in SN-MM, the latter being constitutive and sustained by PTEN loss in SN-MM2 and SN-MM3. The cell viability impairment induced by LY294002 confirmed a functional role for the PI3K-Akt-mTOR pathway in SN-MM cell lines. CONCLUSIONS: Overall, these novel and unique cellular systems represent relevant experimental tools for a better understanding of the biology of these neoplasms and, as an extension, to MM from other sites.


Subject(s)
Melanoma , Mice , Animals , Humans , Mice, Inbred NOD , Mice, SCID , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Proteomics , TOR Serine-Threonine Kinases
3.
Cancers (Basel) ; 16(2)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38254773

ABSTRACT

Colony-stimulating factor 1 receptor (CFS-1R) is a myeloid receptor with a crucial role in monocyte survival and differentiation. Its overexpression is associated with aggressive tumors characterized by an immunosuppressive microenvironment and poor prognosis. CSF-1R ligands, IL-34 and M-CSF, are produced by many cells in the tumor microenvironment (TME), suggesting a key role for the receptor in the crosstalk between tumor, immune and stromal cells in the TME. Recently, CSF-1R expression was reported in the cell membrane of the cancer cells of different solid tumors, capturing the interest of various research groups interested in investigating the role of this receptor in non-myeloid cells. This review summarizes the current data available on the expression and activity of CSF-1R in different tumor types. Notably, CSF-1R+ cancer cells have been shown to produce CSF-1R ligands, indicating that CSF-1R signaling is positively regulated in an autocrine manner in cancer cells. Recent research demonstrated that CSF-1R signaling enhances cell transformation by supporting tumor cell proliferation, invasion, stemness and drug resistance. In addition, this review covers recent therapeutic strategies, including monoclonal antibodies and small-molecule inhibitors, targeting the CSF-1R and designed to block the pro-oncogenic role of CSF-1R in cancer cells.

4.
Proc Natl Acad Sci U S A ; 120(52): e2318710120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38109523

ABSTRACT

Recent studies have characterized various mouse antigen-presenting cells (APCs) expressing the lymphoid-lineage transcription factor RORγt (Retinoid-related orphan receptor gamma t), which exhibit distinct phenotypic features and are implicated in the induction of peripheral regulatory T cells (Tregs) and immune tolerance to microbiota and self-antigens. These APCs encompass Janus cells and Thetis cell subsets, some of which express the AutoImmune REgulator (AIRE). RORγt+ MHCII+ type 3 innate lymphoid cells (ILC3) have also been implicated in the instruction of microbiota-specific Tregs. While RORγt+ APCs have been actively investigated in mice, the identity and function of these cell subsets in humans remain elusive. Herein, we identify a rare subset of RORγt+ cells with dendritic cell (DC) features through integrated single-cell RNA sequencing and single-cell ATAC sequencing. These cells, which we term RORγt+ DC-like cells (R-DC-like), exhibit DC morphology, express the MHC class II machinery, and are distinct from all previously reported DC and ILC3 subsets, but share transcriptional and epigenetic similarities with DC2 and ILC3. We have developed procedures to isolate and expand them in vitro, enabling their functional characterization. R-DC-like cells proliferate in vitro, continue to express RORγt, and differentiate into CD1c+ DC2-like cells. They stimulate the proliferation of allogeneic T cells. The identification of human R-DC-like cells with proliferative potential and plasticity toward CD1c+ DC2-like cells will prompt further investigation into their impact on immune homeostasis, inflammation, and autoimmunity.


Subject(s)
Immunity, Innate , Lymphocytes , Humans , Mice , Animals , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Inflammation/metabolism , Dendritic Cells
5.
Haematologica ; 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37994105

ABSTRACT

Standardized treatment options are lacking for patients with unresectable or multifocal follicular dendritic cell sarcoma (FDCS) and disease-related mortality is as high as 20%. Applying whole genome sequencing (WGS) in one case and whole exome sequencing (WES) in additional twelve, this study adds information on the molecular landscape of FDCS, expanding knowledge on pathobiological mechanisms and identifying novel markers of potential theragnostic significance. Massive parallel sequencing showed high frequency of mutations on oncosuppressor genes, particularly in RB1, CARS and BRCA2 and unveiled alterations on homologous recombination DNA damage repair related genes in 70% (9/13) of cases. This indicates that patients with high stage FDCS may be eligible for poly ADP ribose polymerase inhibition protocols. Low tumor mutational burden was confirmed in this study despite common PDL1 expression in FDCS arguing on the efficacy of immune checkpoint inhibitors. CDKN2A deletion, detected by WGS and confirmed by FISH in 41% of cases (9/22) indicates that impairment of cell cycle regulation may sustain oncogenesis in FDCS. Absence of mutations in the RAS/RAF/MAPK pathway and lack of clonal hematopoiesis related mutations in FDCS sanction its differences from dendritic cell-derived neoplasms of haematopoietic derivation. WGS and WES in FDCS provides additional information on the molecular landscape of this rare tumor, proposing novel candidate genes for innovative therapeutical approaches to improve survival of patients with multifocal disease.

7.
Virchows Arch ; 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37884676

ABSTRACT

Evaluation of B-cell clonality can be challenging in the interpretation of lymphoid infiltrates on tissue sections. Clonality testing based on IG gene rearrangements analysis by PCR (IG-PCR) is the gold standard. Alternatively, B-cell clonality can be assessed by the recognition of immunoglobulin light chain (IgLC) restriction, by immunohistochemistry (IHC), chromogenic in situ hybridization (ISH) or flow cytometry (FC). IG-PCR requires molecular facilities, and FC requires cell suspensions, both not widely available in routine pathology units. This study evaluates the performance of B-cell clonality detection by IgLC-RNAscope® (RNAsc) in a group of 216 formalin-fixed, paraffin-embedded samples including 185 non-Hodgkin B-cell lymphomas, 11 Hodgkin lymphomas (HL) and 20 reactive samples. IgLC-RNAsc, performed in parallel with FC in 53 cases, demonstrated better performances (93% vs 83%), particularly in diffuse large B-cell lymphoma (98% vs 71%) and follicular lymphoma (93% vs 83%) diagnosis. IgLC-RNAsc was also superior to IHC and ISH especially in samples with limited tumor cell content, where IG-PCR was not informative. Performed for the first time on mediastinal lymphomas, IgLC-RNAsc identified monotypic IgLC transcripts in 69% of primary mediastinal large B-cell lymphoma (PMBCL) and 67% of mediastinal gray zone lymphomas (MGZL). IGK/L double-negative cells were detected in 1 PMBCL, 2 MGZL, and all classical HL, while monotypic IgLC expression appeared to be a hallmark in nodular lymphocyte-predominant HL. IgLC-RNAsc demonstrates to be a powerful tool in B-cell lymphoma diagnosis, above all in challenging cases with limited tumor cell content, ensuring in situ investigations on mechanisms of Ig regulation across lymphoma entities.

8.
Cancer Immunol Res ; 11(11): 1538-1552, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37695535

ABSTRACT

Monocytes positive for 6-Sulfo LacNAc (slan) are a major subset of nonclassical CD14dimCD16+ monocytes in humans. We have shown that slan+ cells infiltrate lymphomas and elicit an antibody-dependent cellular cytotoxicity (ADCC) of neoplastic B cells mediated by the anti-CD20 therapeutic rituximab. Herein, by performing blocking experiments and flow cytometry analyses, as well as confocal microscopy and live-cell imaging assays, we extended the findings to other humanized antibodies and deciphered the underlying effector mechanism(s). Specifically, we show that, after coculture with target cells coated with anti-CD20 or anti-CD38, slan+ monocytes mediate trogocytosis, a cell-cell contact dependent, antibody-mediated process that triggers an active, mechanic disruption of target cell membranes. Trogocytosis by slan+ monocytes leads to a necrotic type of target cell death known as trogoptosis, which, once initiated, was partially sustained by endogenous TNFα. We also found that slan+ monocytes, unlike natural killer (NK) cells, mediate a direct ADCC with all types of anti-CD47 analyzed, and this was independent of their IgG isotype. The latter findings unveil a potentially relevant contribution by slan+ monocytes in mediating the therapeutic efficacy of anti-CD47 in clinical practice, which could be particularly important when NK cells are exhausted or deficient in number. Overall, our observations shed new light on the cytotoxic mechanisms exerted by slan+ monocytes in antibody-dependent tumor cell targeting and advance our knowledge on how to expand our therapeutic arsenal for cancer therapy.


Subject(s)
Monocytes , Neoplasms , Humans , Rituximab/pharmacology , Rituximab/therapeutic use , Antibodies, Monoclonal, Humanized/metabolism , Coculture Techniques , Antibody-Dependent Cell Cytotoxicity , Neoplasms/drug therapy
9.
Cancers (Basel) ; 15(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37370706

ABSTRACT

Colorectal carcinoma (CRC) represents a lethal disease with heterogeneous outcomes. Only patients with mismatch repair (MMR) deficient CRC showing microsatellite instability and hyper-mutated tumors can obtain clinical benefits from current immune checkpoint blockades; on the other hand, immune- or target-based therapeutic strategies are very limited for subjects with mismatch repair proficient CRC (CRCpMMR). Here, we report a comprehensive typing of immune infiltrating cells in CRCpMMR. We also tested the expression and interferon-γ-modulation of PD-L1/CD274. Relevant findings were subsequently validated by immunohistochemistry on fixed materials. CRCpMMR contain a significantly increased fraction of CD163+ macrophages (TAMs) expressing TREM2 and CD66+ neutrophils (TANs) together with decrease in CD4-CD8-CD3+ double negative T lymphocytes (DNTs); no differences were revealed by the analysis of conventional and plasmacytoid dendritic cell populations. A fraction of tumor-infiltrating T-cells displays an exhausted phenotype, co-expressing PD-1 and TIM-3. Remarkably, expression of PD-L1 on fresh tumor cells and TAMs was undetectable even after in vitro stimulation with interferon-γ. These findings confirm the immune suppressive microenvironment of CRCpMMR characterized by dense infiltration of TAMs, occurrence of TANs, lack of DNTs, T-cell exhaustion, and interferon-γ unresponsiveness by host and tumor cells. Appropriate bypass strategies should consider these combinations of immune escape mechanisms in CRCpMMR.

10.
Front Immunol ; 13: 1049079, 2022.
Article in English | MEDLINE | ID: mdl-36466913

ABSTRACT

Background: Psoriasis is a chronic skin disease associated with deregulated interplays between immune cells and keratinocytes. Neutrophil accumulation in the skin is a histological feature that characterizes psoriasis. However, the role of neutrophils in psoriasis onset and development remains poorly understood. Methods: In this study, we utilized the model of psoriasiform dermatitis, caused by the repeated topical application of an imiquimod containing cream, in neutrophil-depleted mice or in mice carrying impairment in neutrophil functions, including p47phox -/- mice (lacking a cytosolic subunit of the phagocyte nicotinamide adenine dinucleotide phosphate - NADPH - oxidase) and Sykfl/fl MRP8-cre+ mice (carrying the specific deletion of the Syk kinase in neutrophils only), to elucidate the specific contribution of neutrophils to psoriasis development. Results: By analyzing disease development/progression in neutrophil-depleted mice, we now report that neutrophils act as negative modulators of disease propagation and exacerbation by inhibiting gammadelta T cell effector functions via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-mediated reactive oxygen species (ROS) production. We also report that Syk functions as a crucial molecule in determining the outcome of neutrophil and γδ T cell interactions. Accordingly, we uncover that a selective impairment of Syk-dependent signaling in neutrophils is sufficient to reproduce the enhancement of skin inflammation and γδ T cell infiltration observed in neutrophil-depleted mice. Conclusions: Overall, our findings add new insights into the specific contribution of neutrophils to disease progression in the IMQ-induced mouse model of psoriasis, namely as negative regulatory cells.


Subject(s)
Eczema , Psoriasis , Mice , Animals , Imiquimod , Neutrophils , NADP , Psoriasis/chemically induced , Disease Models, Animal , NADPH Oxidases/genetics , Disease Progression
11.
Biomedicines ; 10(11)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36359228

ABSTRACT

Macrophages are the most abundant immune cells of the tumor microenvironment (TME) and have multiple important functions in cancer. During tumor growth, both tissue-resident macrophages and newly recruited monocyte-derived macrophages can give rise to tumor-associated macrophages (TAMs), which have been associated with poor prognosis in most cancers. Compelling evidence indicate that the high degree of plasticity of macrophages and their ability to self-renew majorly impact tumor progression and resistance to therapy. In addition, the microenvironmental factors largely affect the metabolism of macrophages and may have a major influence on TAMs proliferation and subsets functions. Thus, understanding the signaling pathways regulating TAMs self-renewal capacity may help to identify promising targets for the development of novel anticancer agents. In this review, we focus on the environmental factors that promote the capacity of macrophages to self-renew and the molecular mechanisms that govern TAMs proliferation. We also highlight the impact of tumor-derived factors on macrophages metabolism and how distinct metabolic pathways affect macrophage self-renewal.

12.
Methods Mol Biol ; 2452: 291-303, 2022.
Article in English | MEDLINE | ID: mdl-35554913

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can be demonstrated in tissue sections by immunohistochemistry (IHC), which has the power to localize in bright field specific antigens in cells and tissues. The use of double or triple immunostains is capable of highlighting which cells are infected and/or the relationship of infected cell with other cells and tissue structures. In addition, immunoenzymatic multi-staining permits the simultaneous identification, localization, and enumeration of different cellular epitopes. Moreover, this method improves analytical precision, decreasing the time required for morphometric quantification, maximizing the information obtained from a single slide of paraffin-embedded tissue.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Epitopes , Humans , Immunohistochemistry
13.
Nat Immunol ; 23(5): 679-691, 2022 05.
Article in English | MEDLINE | ID: mdl-35484408

ABSTRACT

Here we report the identification of human CD66b-CD64dimCD115- neutrophil-committed progenitor cells (NCPs) within the SSCloCD45dimCD34+ and CD34dim/- subsets in the bone marrow. NCPs were either CD45RA+ or CD45RA-, and in vitro experiments showed that CD45RA acquisition was not mandatory for their maturation process. NCPs exclusively generated human CD66b+ neutrophils in both in vitro differentiation and in vivo adoptive transfer experiments. Single-cell RNA-sequencing analysis indicated NCPs fell into four clusters, characterized by different maturation stages and distributed along two differentiation routes. One of the clusters was characterized by an interferon-stimulated gene signature, consistent with the reported expansion of peripheral mature neutrophil subsets that express interferon-stimulated genes in diseased individuals. Finally, comparison of transcriptomic and phenotypic profiles indicated NCPs represented earlier neutrophil precursors than the previously described early neutrophil progenitors (eNePs), proNeus and COVID-19 proNeus. Altogether, our data shed light on the very early phases of neutrophil ontogeny.


Subject(s)
Antigens, CD , Bone Marrow , Cell Adhesion Molecules , Cell Differentiation , Neutrophils , Receptor, Macrophage Colony-Stimulating Factor , Receptors, IgG , Bone Marrow Cells , COVID-19 , GPI-Linked Proteins , Humans , Interferons , Neutrophils/cytology
14.
Int J Cancer ; 151(4): 637-648, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35429348

ABSTRACT

For high-risk endometrial cancer (EC) patients, adjuvant chemotherapy is recommended to improve outcome. Yet, predictive biomarkers for response to platinum-based chemotherapy (Pt-aCT) are currently lacking. We tested expression of L1 cell-adhesion molecule (L1CAM), a well-recognised marker of poor prognosis in EC, in tumour samples from high-risk EC patients, to explore its role as a predictive marker of Pt-aCT response. L1CAM expression was determined using RT-qPCR and immunohistochemistry in a cohort of high-risk EC patients treated with Pt-aCT and validated in a multicentric independent cohort. The association between L1CAM and clinicopathologic features and L1CAM additive value in predicting platinum response were determined. The effect of L1CAM gene silencing on response to carboplatin was functionally tested on primary L1CAM-expressing cells. Increased L1CAM expression at both genetic and protein level correlated with high-grade, non-endometrioid histology and poor response to platinum treatment. A predictive model adding L1CAM to prognostic clinical variables significantly improved platinum response prediction (C-index 78.1%, P = .012). In multivariate survival analysis, L1CAM expression was significantly associated with poor outcome (HR: 2.03, P = .019), potentially through an indirect effect, mediated by its influence on response to chemotherapy. In vitro, inhibition of L1CAM significantly increased cell sensitivity to carboplatin, supporting a mechanistic link between L1CAM expression and response to platinum in EC cells. In conclusion, we have demonstrated the role of L1CAM in the prediction of response to Pt-aCT in two independent cohorts of high-risk EC patients. L1CAM is a promising candidate biomarker to optimise decision making in high-risk patients who are eligible for Pt-aCT.


Subject(s)
Carcinoma, Endometrioid , Endometrial Neoplasms , Neural Cell Adhesion Molecule L1 , Biomarkers, Tumor/analysis , Carboplatin/pharmacology , Carcinoma, Endometrioid/pathology , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Endometrial Neoplasms/metabolism , Female , Humans , Neoplasm Staging , Neural Cell Adhesion Molecule L1/genetics , Platinum , Prognosis
15.
Cancers (Basel) ; 14(2)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35053510

ABSTRACT

Extracellular signal-regulated kinase 5 (ERK5) is a unique kinase among MAPKs family members, given its large structure characterized by the presence of a unique C-terminal domain. Despite increasing data demonstrating the relevance of the ERK5 pathway in the growth, survival, and differentiation of normal cells, ERK5 has recently attracted the attention of several research groups given its relevance in inflammatory disorders and cancer. Accumulating evidence reported its role in tumor initiation and progression. In this review, we explore the gene expression profile of ERK5 among cancers correlated with its clinical impact, as well as the prognostic value of ERK5 and pERK5 expression levels in tumors. We also summarize the importance of ERK5 in the maintenance of a cancer stem-like phenotype and explore the major known contributions of ERK5 in the tumor-associated microenvironment. Moreover, although several questions are still open concerning ERK5 molecular regulation, different ERK5 isoforms derived from the alternative splicing process are also described, highlighting the potential clinical relevance of targeting ERK5 pathways.

16.
Cancers (Basel) ; 13(22)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34830817

ABSTRACT

Several studies have reported that cellular and soluble components of the tumor microenvironment (TME) play a key role in cancer-initiation and progression. Considering the relevance and the complexity of TME in cancer biology, recent research has focused on the investigation of the TME content, in terms of players and informational exchange. Understanding the crosstalk between tumor and non-tumor cells is crucial to design more beneficial anti-cancer therapeutic strategies. Malignant pleural mesothelioma (MPM) is a complex and heterogenous tumor mainly caused by asbestos exposure with few treatment options and low life expectancy after standard therapy. MPM leukocyte infiltration is rich in macrophages. Given the failure of macrophages to eliminate asbestos fibers, these immune cells accumulate in pleural cavity leading to the establishment of a unique inflammatory environment and to the malignant transformation of mesothelial cells. In this inflammatory landscape, stromal and immune cells play a driven role to support tumor development and progression via a bidirectional communication with tumor cells. Characterization of the MPM microenvironment (MPM-ME) may be useful to understand the complexity of mesothelioma biology, such as to identify new molecular druggable targets, with the aim to improve the outcome of the disease. In this review, we summarize the known evidence about the MPM-ME network, including its prognostic and therapeutic relevance.

17.
Cancers (Basel) ; 13(20)2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34680345

ABSTRACT

Tumor-associated macrophages (TAMs) are major components of the tumor microenvironment. In colorectal cancer (CRC), a strong infiltration of TAMs is accompanied by a decrease in effector T cells and an increase in the metastatic potential of CRC. We investigated the functional profile of TAMs infiltrating CRC tissue by immunohistochemistry, flow cytometry, ELISA, and qRT-PCR and their involvement in impairing the activation of effector T cells. In CRC biopsies, we evidenced a high percentage of macrophages with low expression of the antigen-presenting complex MHC-II and high expression of CD206. Monocytes co-cultured with tumor cells or a decellularized tumor matrix differentiated toward a pro-tumoral macrophage phenotype characterized by decreased expression of MHC-II and CD86 and increased expression of CD206 and an abundant release of pro-tumoral cytokines and chemokines. We demonstrated that the hampered expression of MHC-II in macrophages is due to the downregulation of the MHC-II transactivator CIITA and that this effect relies on increased expression of miRNAs targeting CIITA. As a result, macrophages become unable to present antigens to CD4 T lymphocytes. Our data suggest that the tumor microenvironment contributes to defining a pro-tumoral profile of macrophages infiltrating CRC tissue with impaired capacity to activate T cell effector functions.

18.
Cells ; 10(9)2021 08 26.
Article in English | MEDLINE | ID: mdl-34571850

ABSTRACT

Oral cavity squamous cell carcinoma (OSCC) is a common head and neck cancer characterized by a poor prognosis associated with locoregional or distant failure. Among the predictors of prognosis, a dense infiltration of adaptive immune cells is protective and associated with improved clinical outcomes. However, few tools are available to integrate immune contexture variables into clinical settings. By using digital microscopy analysis of a large retrospective OSCC cohort (n = 182), we explored the clinical significance of tumor-infiltrating CD8+ T-cells. To this end, CD8+ T-cells counts were combined with well-established clinical variables and peripheral blood immune cell parameters. Through variable clustering, five metavariables (MV) were obtained and included descriptors of nodal (NODALMV) and primary tumor (TUMORMV) involvement, the frequency of myeloid (MYELOIDMV) or lymphoid (LYMPHOIDMV) peripheral blood immune cell populations, and the density of tumor-infiltrating CD8+ T-cells (TI-CD8MV). The clinical relevance of the MV was evaluated in the multivariable survival models. The NODALMV was significantly associated with all tested outcomes (p < 0.001), the LYMPHOIDMV showed a significant association with the overall, disease-specific and distant recurrence-free survival (p < 0.05) and the MYELOIDMV with the locoregional control only (p < 0.001). Finally, TI-CD8MV was associated with distant recurrence-free survival (p = 0.029). Notably, the performance in terms of survival prediction of the combined effect of NODALMV and immune metavariables (LYMPHOIDMV, MYELOIDMV and TI-CD8MV) was superior to the TNM stage for most of the outcomes analyzed. These findings indicate that the analysis of the baseline host immune features are promising tools to complement clinical features, in stratifying the risk of recurrences.


Subject(s)
Biomarkers, Tumor/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Squamous Cell Carcinoma of Head and Neck/immunology , Adaptive Immunity/immunology , Adaptive Immunity/physiology , Aged , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Squamous Cell/pathology , Cohort Studies , Female , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/pathology , Humans , Italy/epidemiology , Lymphocytes, Tumor-Infiltrating/physiology , Male , Middle Aged , Mouth Neoplasms/pathology , Neoplasm Recurrence, Local/pathology , Prognosis , Retrospective Studies , Squamous Cell Carcinoma of Head and Neck/mortality , Squamous Cell Carcinoma of Head and Neck/physiopathology , Treatment Outcome
20.
Am J Surg Pathol ; 45(10): 1428-1438, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34081040

ABSTRACT

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive neoplasm derived from plasmacytoid dendritic cells (pDCs). In this study, we investigated by immunohistochemical analysis the expression of E-cadherin (EC) on pDCs in reactive lymph nodes and tonsils, bone marrow, and in BPDCN. We compared the expression of EC in BPDCN to that in leukemia cutis (LC) and cutaneous lupus erythematosus (CLE), the latter typically featuring pDC activation. In BPDCN, we also assessed the immunomodulatory activity of malignant pDCs through the expression of several type I interferon (IFN-I) signaling effectors and downstream targets, PD-L1/CD274, and determined the extent of tumor infiltration by CD8-expressing T cells. In reactive lymph nodes and tonsils, pDCs expressed EC, whereas no reactivity was observed in bone marrow pDCs. BPDCN showed EC expression in the malignant pDCs in the vast majority of cutaneous (31/33 cases, 94%), nodal, and spleen localizations (3/3 cases, 100%), whereas it was more variable in the bone marrow (5/13, 38,5%), where tumor cells expressed EC similarly to the skin counterpart in 4 cases and differently in other 4. Notably, EC was undetectable in LC (n=30) and in juxta-epidermal pDCs in CLE (n=31). Contrary to CLE showing robust expression of IFN-I-induced proteins MX1 and ISG5 in 20/23 cases (87%), and STAT1 phosphorylation, BPDCN biopsies showed inconsistent levels of these proteins in most cases (85%). Expression of IFN-I-induced genes, IFI27, IFIT1, ISG15, RSAD2, and SIGLEC1, was also significantly (P<0.05) lower in BPDCN as compared with CLE. In BPDCN, a significantly blunted IFN-I response correlated with a poor CD8+T-cell infiltration and the lack of PD-L1/CD274 expression by the tumor cells. This study identifies EC as a novel pDC marker of diagnostic relevance in BPDCN. The results propose a scenario whereby malignant pDCs through EC-driven signaling promote the blunting of IFN-I signaling and, thereby, the establishment of a poorly immunogenic tumor microenvironment.


Subject(s)
Antigens, CD/analysis , Biomarkers, Tumor/analysis , Cadherins/analysis , Dendritic Cells/chemistry , Hematologic Neoplasms/chemistry , Interferon Type I/immunology , B7-H1 Antigen/analysis , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation , Dendritic Cells/immunology , Dendritic Cells/pathology , Hematologic Neoplasms/immunology , Hematologic Neoplasms/pathology , Humans , Immunohistochemistry , Lymphocytes, Tumor-Infiltrating/immunology , Signal Transduction , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL