Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Plast ; 2019: 3972918, 2019.
Article in English | MEDLINE | ID: mdl-31015828

ABSTRACT

The primary aim of this viewpoint article is to examine recent literature on fetal and neonatal processing of music. In particular, we examine the behavioral, neurophysiological, and neuroimaging literature describing fetal and neonatal music perception and processing to the first days of term equivalent life. Secondly, in light of the recent systematic reviews published on this topic, we discuss the impact of music interventions on the potential neuroplasticity pathways through which the early exposure to music, live or recorded, may impact the fetal, preterm, and full-term infant brain. We conclude with recommendations for music stimuli selection and its role within the framework of early socioemotional development and environmental enrichment.


Subject(s)
Auditory Perception/physiology , Brain/growth & development , Child Development , Music , Neuronal Plasticity , Acoustic Stimulation , Humans , Infant, Newborn , Infant, Premature , Music Therapy/methods
2.
Cell Death Dis ; 4: e738, 2013 Jul 25.
Article in English | MEDLINE | ID: mdl-23887629

ABSTRACT

Abexinostat is a pan histone deacetylase inhibitor (HDACi) that demonstrates efficacy in malignancy treatment. Like other HDACi, this drug induces a profound thrombocytopenia whose mechanism is only partially understood. We have analyzed its effect at doses reached in patient plasma on in vitro megakaryopoiesis derived from human CD34(+) cells. When added at day 0 in culture, abexinostat inhibited CFU-MK growth, megakaryocyte (MK) proliferation and differentiation. These effects required only a short incubation period. Decreased proliferation was due to induction of apoptosis and was not related to a defect in TPO/MPL/JAK2/STAT signaling. When added later (day 8), the compound induced a dose-dependent decrease (up to 10-fold) in proplatelet (PPT) formation. Gene profiling from MK revealed a silencing in the expression of DNA repair genes with a marked RAD51 decrease at protein level. DNA double-strand breaks were increased as attested by elevated γH2AX phosphorylation level. Moreover, ATM was phosphorylated leading to p53 stabilization and increased BAX and p21 expression. The use of a p53 shRNA rescued apoptosis, and only partially the defect in PPT formation. These results suggest that HDACi induces a thrombocytopenia by a p53-dependent mechanism along MK differentiation and a p53-dependent and -independent mechanism for PPT formation.


Subject(s)
Benzofurans/adverse effects , Histone Deacetylase Inhibitors/adverse effects , Hydroxamic Acids/adverse effects , Thrombocytopenia/chemically induced , Thrombocytopenia/metabolism , Tumor Suppressor Protein p53/metabolism , Acetylation , Benzofurans/administration & dosage , Cell Growth Processes/physiology , DNA Repair , Histone Deacetylase Inhibitors/administration & dosage , Humans , Hydroxamic Acids/administration & dosage , Phosphorylation , Signal Transduction , Thrombocytopenia/genetics , Tumor Suppressor Protein p53/genetics
3.
Cell Death Dis ; 3: e356, 2012 Jul 26.
Article in English | MEDLINE | ID: mdl-22833095

ABSTRACT

Diamond-Blackfan anemia (DBA) is caused by aberrant ribosomal biogenesis due to ribosomal protein (RP) gene mutations. To develop mechanistic understanding of DBA pathogenesis, we studied CD34⁺ cells from peripheral blood of DBA patients carrying RPL11 and RPS19 ribosomal gene mutations and determined their ability to undergo erythroid differentiation in vitro. RPS19 mutations induced a decrease in proliferation of progenitor cells, but the terminal erythroid differentiation was normal with little or no apoptosis. This phenotype was related to a G0/G1 cell cycle arrest associated with activation of the p53 pathway. In marked contrast, RPL11 mutations led to a dramatic decrease in progenitor cell proliferation and a delayed erythroid differentiation with a marked increase in apoptosis and G0/G1 cell cycle arrest with activation of p53. Infection of cord blood CD34⁺ cells with specific short hairpin (sh) RNAs against RPS19 or RPL11 recapitulated the two distinct phenotypes in concordance with findings from primary cells. In both cases, the phenotype has been reverted by shRNA p53 knockdown. These results show that p53 pathway activation has an important role in pathogenesis of DBA and can be independent of the RPL11 pathway. These findings shed new insights into the pathogenesis of DBA.


Subject(s)
Anemia, Diamond-Blackfan/metabolism , Erythroid Cells/metabolism , Ribosomal Proteins/genetics , Anemia, Diamond-Blackfan/genetics , Anemia, Diamond-Blackfan/pathology , Antigens, CD34/metabolism , Apoptosis , Cell Differentiation , Cell Proliferation , Cells, Cultured , Child, Preschool , Erythroid Cells/cytology , Female , G1 Phase Cell Cycle Checkpoints , Humans , Infant , Infant, Newborn , Male , Phenotype , RNA Interference , RNA, Small Interfering/metabolism , Ribosomal Proteins/antagonists & inhibitors , Ribosomal Proteins/metabolism , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
4.
Cell Death Differ ; 18(4): 678-89, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21072057

ABSTRACT

Stem cell factor (SCF) and erythropoietin are strictly required for preventing apoptosis and stimulating proliferation, allowing the differentiation of erythroid precursors from colony-forming unit-E to the polychromatophilic stage. In contrast, terminal maturation to generate reticulocytes occurs independently of cytokine signaling by a mechanism not fully understood. Terminal differentiation is characterized by a sequence of morphological changes including a progressive decrease in cell size, chromatin condensation in the nucleus and disappearance of organelles, which requires transient caspase activation. These events are followed by nucleus extrusion as a consequence of plasma membrane and cytoskeleton reorganization. Here, we show that in early step, SCF stimulates the Rho/ROCK pathway until the basophilic stage. Thereafter, ROCK-1 is activated independently of Rho signaling by caspase-3-mediated cleavage, allowing terminal maturation at least in part through phosphorylation of the light chain of myosin II. Therefore, in this differentiation system, final maturation occurs independently of SCF signaling through caspase-induced ROCK-1 kinase activation.


Subject(s)
Caspase 3/metabolism , Cytokines/metabolism , Erythroblasts/cytology , rho GTP-Binding Proteins/metabolism , rho-Associated Kinases/metabolism , Cell Differentiation , Cell Size , Chromatin/physiology , Erythroblasts/enzymology , Erythroblasts/metabolism , Humans , Myosin Type II/metabolism , Phosphorylation , RNA Interference , RNA, Small Interfering/metabolism , Signal Transduction , Stem Cell Factor/metabolism , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/genetics
5.
J Thromb Haemost ; 7 Suppl 1: 227-34, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19630806

ABSTRACT

Each day in every human, approximately 1 x 10(11) platelets are produced by the cytoplasmic fragmentation of megakaryocytes (MK), their marrow precursor cells. Platelets are the predominating factor in the process of hemostasis and thrombosis. Recent studies have shown that platelets also play a hitherto unsuspected role in several other processes such as inflammation, innate immunity, neoangiogenesis and tumor metastasis. The late phases of MK differentiation identified by polyploidization, maturation and organized fragmentation of the cytoplasm leading to the release of platelets in the blood stream represent a unique model of differentiation. The molecular and cellular mechanisms regulating platelet biogenesis are better understood and may explain several platelet disorders. This review focuses on MK polyploidization, and platelet formation, and discusses their alteration in some platelet disorders.


Subject(s)
Blood Platelets/cytology , Cell Differentiation , Megakaryocytes/cytology , Blood Platelet Disorders , Humans , Polyploidy
SELECTION OF CITATIONS
SEARCH DETAIL