Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Int J Biol Macromol ; 277(Pt 2): 133985, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39033887

ABSTRACT

Crocins are bioactive natural products that rarely exist in plants. High costs and resource shortage severely limit its development and application. Synthetic biology studies on crocins are of considerable global interest. However, the lack of high-efficiency genetic tools and complex cascade biocatalytic systems have substantially hindered progress in crocin biosynthesis-related research. Based on mutagenesis, a high-efficiency GjCCD4a mutant (N212m) was constructed with a catalytic efficiency that was 25.08-fold higher than that of the wild-type. Solubilized GjCCD4a was expressed via fusion with an MBP tag. Moreover, N212m and ten other genes were introduced into Escherichia coli for the de novo biosynthesis of five crocins. The engineered E57 strain produced crocins III and V with a total yield of 11.50 mg/L, and the E579 strain produced crocins I-V with a total output of 8.43 mg/L at shake-flask level. This study identified a marvelous genetic element (N212m) for crocin biosynthesis and achieved its de novo biosynthesis in E. coli using glucose. This study provides a reference for the large-scale production of five crocins using E. coli cell factories.

2.
Mathematics (Basel) ; 12(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38784721

ABSTRACT

While existing research has identified diverse fall risk factors in adults aged 60 and older across various areas, comprehensively examining the interrelationships between all factors can enhance our knowledge of complex mechanisms and ultimately prevent falls. This study employs a novel approach-a mixed undirected graphical model (MUGM)-to unravel the interplay between sociodemographics, mental well-being, body composition, self-assessed and performance-based fall risk assessments, and physical activity patterns. Using a parameterized joint probability density, MUGMs specify the higher-order dependence structure and reveals the underlying graphical structure of heterogeneous variables. The MUGM consisting of mixed types of variables (continuous and categorical) has versatile applications that provide innovative and practical insights, as it is equipped to transcend the limitations of traditional correlation analysis and uncover sophisticated interactions within a high-dimensional data set. Our study included 120 elders from central Florida whose 37 fall risk factors were analyzed using an MUGM. Among the identified features, 34 exhibited pairwise relationships, while COVID-19-related factors and housing composition remained conditionally independent from all others. The results from our study serve as a foundational exploration, and future research investigating the longitudinal aspects of these features plays a pivotal role in enhancing our knowledge of the dynamics contributing to fall prevention in this population.

3.
STAR Protoc ; 5(2): 103080, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38776227

ABSTRACT

Co-immunoprecipitation (coIP) is an experimental technique to study protein-protein interactions (PPIs). However, single-step coIP can only be used to identify the interaction between two proteins and does not solve the interaction testing of ternary complexes. Here, we present a protocol to test for the formation of ternary protein complexes in vivo or in vitro using a two-step coIP approach. We describe steps for cell culture and transfection, elution of target proteins, and two-step coIP including western blot analyses. For complete details on the use and execution of this protocol, please refer to Li et al.1.


Subject(s)
Immunoprecipitation , Immunoprecipitation/methods , Humans , Protein Interaction Mapping/methods , Proteins/metabolism , Blotting, Western/methods , Transfection , Animals , Protein Binding , Multiprotein Complexes/metabolism , Multiprotein Complexes/chemistry , HEK293 Cells
4.
Front Microbiol ; 15: 1323572, 2024.
Article in English | MEDLINE | ID: mdl-38450170

ABSTRACT

The challenge of discriminating closely related species persists, notably within clinical diagnostic laboratories for invasive aspergillosis (IA)-related species and food contamination microorganisms with toxin-producing potential. We employed Analysis of the whole-GEnome (AGE) to address the challenges of closely related species within the genus Aspergillus and developed a rapid detection method. First, reliable whole genome data for 77 Aspergillus species were downloaded from the database, and through bioinformatic analysis, specific targets for each species were identified. Subsequently, sequencing was employed to validate these specific targets. Additionally, we developed an on-site detection method targeting a specific target using a genome editing system. Our results indicate that AGE has successfully achieved reliable identification of all IA-related species (Aspergillus fumigatus, Aspergillus niger, Aspergillus nidulans, Aspergillus flavus, and Aspergillus terreus) and three well-known species (A. flavus, Aspergillus parasiticus, and Aspergillus oryzae) within the Aspergillus section. Flavi and AGE have provided species-level-specific targets for 77 species within the genus Aspergillus. Based on these reference targets, the sequencing results targeting specific targets substantiate the efficacy of distinguishing the focal species from its closely related species. Notably, the amalgamation of room-temperature amplification and genome editing techniques demonstrates the capacity for rapid and accurate identification of genomic DNA samples at a concentration as low as 0.1 ng/µl within a concise 30-min timeframe. Importantly, this methodology circumvents the reliance on large specialized instrumentation by presenting a singular tube operational modality and allowing for visualized result assessment. These advancements aptly meet the exigencies of on-site detection requirements for the specified species, facilitating prompt diagnosis and food quality monitoring. Moreover, as an identification method based on species-specific genomic sequences, AGE shows promising potential as an effective tool for epidemiological research and species classification.

5.
Int J Mol Sci ; 25(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38474203

ABSTRACT

Survival crises stalk many animals, especially endangered and rare animals. Accurate species identification plays a pivotal role in animal resource conservation. In this study, we developed an animal species identification method called Analysis of whole-GEnome (AGE), which identifies species by finding species-specific sequences through bioinformatics analysis of the whole genome and subsequently recognizing these sequences using experimental technologies. To clearly demonstrate the AGE method, Cervus nippon, a well-known endangered species, and a closely related species, Cervus elaphus, were set as model species, without and with published genomes, respectively. By analyzing the whole genomes of C. nippon and C. elaphus, which were obtained through next-generation sequencing and online databases, we built specific sequence databases containing 7,670,140 and 570,981 sequences, respectively. Then, the species specificities of the sequences were confirmed experimentally using Sanger sequencing and the CRISPR-Cas12a system. Moreover, for 11 fresh animal samples and 35 commercially available products, our results were in complete agreement with those of other authoritative identification methods, demonstrating AGE's precision and potential application. Notably, AGE found a mixture in the 35 commercially available products and successfully identified it. This study broadens the horizons of species identification using the whole genome and sheds light on the potential of AGE for conserving animal resources.


Subject(s)
Computational Biology , Genome , Animals , Computational Biology/methods , Sequence Analysis, DNA
6.
Autophagy ; 20(8): 1897-1898, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38477302

ABSTRACT

Embryonic stem cells (ESCs), with abilities of infinite proliferation (self-renewal) and to differentiate into distinct cell types (pluripotency), show attenuated inflammatory response against cytokines or pathogens, which is recognized as a unique characteristic of ESCs compared with somatic cells. However, the underlying molecular mechanisms remain unclear, and whether the attenuated inflammatory state is involved in ESC differentiation is completely unknown. Our recent study demonstrated that macroautophagy/autophagy-related protein ATG5 inhibits the inflammatory response of mouse ESCs (MmESCs) by promoting the degradation of BTRC/ß-TrCP1 and further the downregulation of NFKB/NF-κB signaling. In addition, maintenance of an attenuated inflammation status in MmESCs is required for their differentiation. In conclusion, ATG5 is a key regulator for the regulation of inflammatory response and differentiation of MmESCs.


Subject(s)
Autophagy-Related Protein 5 , Autophagy , Cell Differentiation , Inflammation , Mouse Embryonic Stem Cells , Animals , Mice , Inflammation/pathology , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Autophagy-Related Protein 5/metabolism , Autophagy-Related Protein 5/genetics , Signal Transduction , NF-kappa B/metabolism
7.
Front Microbiol ; 15: 1336143, 2024.
Article in English | MEDLINE | ID: mdl-38500585

ABSTRACT

Fungal identification is a cornerstone of fungal research, yet traditional molecular methods struggle with rapid and accurate onsite identification, especially for closely related species. To tackle this challenge, we introduce a universal identification method called Analysis of whole GEnome (AGE). AGE includes two key steps: bioinformatics analysis and experimental practice. Bioinformatics analysis screens candidate target sequences named Targets within the genome of the fungal species and determines specific Targets by comparing them with the genomes of other species. Then, experimental practice using sequencing or non-sequencing technologies would confirm the results of bioinformatics analysis. Accordingly, AGE obtained more than 1,000,000 qualified Targets for each of the 13 fungal species within the phyla Ascomycota and Basidiomycota. Next, the sequencing and genome editing system validated the ultra-specific performance of the specific Targets; especially noteworthy is the first-time demonstration of the identification potential of sequences from unannotated genomic regions. Furthermore, by combining rapid isothermal amplification and phosphorothioate-modified primers with the option of an instrument-free visual fluorescence method, AGE can achieve qualitative species identification within 30 min using a single-tube test. More importantly, AGE holds significant potential for identifying closely related species and differentiating traditional Chinese medicines from their adulterants, especially in the precise detection of contaminants. In summary, AGE opens the door for the development of whole-genome-based fungal species identification while also providing guidance for its application in plant and animal kingdoms.

8.
Br J Anaesth ; 132(4): 735-745, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38336518

ABSTRACT

BACKGROUND: Cigarette smoking is commonly reported among chronic pain patients in the clinic. Although chronic nicotine exposure is directly linked to nociceptive hypersensitivity in rodents, underlying neurobiological mechanisms remain unknown. METHODS: Multi-tetrode recordings in freely moving mice were used to test the activity of dopaminergic projections from the ventral tegmental area (VTA) to pyramidal neurones in the anterior cingulate cortex (ACC) in chronic nicotine-treated mice. The VTA→ACC dopaminergic pathway was inhibited by optogenetic manipulation to detect chronic nicotine-induced allodynia (pain attributable to a stimulus that does not normally provoke pain) assessed by von Frey monofilaments (force units in g). RESULTS: Allodynia developed concurrently with chronic (28-day) nicotine exposure in mice (0.36 g [0.0141] vs 0.05 g [0.0018], P<0.0001). Chronic nicotine activated dopaminergic projections from the VTA to pyramidal neurones in the ACC, and optogenetic inhibition of VTA dopaminergic terminals in the ACC alleviated chronic nicotine-induced allodynia in mice (0.06 g [0.0064] vs 0.28 g [0.0428], P<0.0001). Moreover, optogenetic inhibition of Drd2 dopamine receptor signalling in the ACC attenuated nicotine-induced allodynia (0.07 g [0.0082] vs 0.27 g [0.0211], P<0.0001). CONCLUSIONS: These findings implicate a role of Drd2-mediated dopaminergic VTA→ACC pathway signalling in chronic nicotine-elicited allodynia.


Subject(s)
Gyrus Cinguli , Nicotine , Humans , Mice , Animals , Nicotine/pharmacology , Hyperalgesia/chemically induced , Dopamine/metabolism , Pain
9.
Physiol Plant ; 175(5): e14016, 2023.
Article in English | MEDLINE | ID: mdl-37882258

ABSTRACT

Iris lactea var. chinensis (Fisch.) Koidz has a unique floral fragrance that differs from that of other Iris spp.; however, its characteristic aroma composition remains unknown. This study aimed to identify the floral fragrance components of I. lactea var. chinensis during different flowering stages using headspace solid-phase microextraction in conjunction with gas chromatography mass spectrometry, electronic nose, and sensory evaluation. During the three flowering phases (bud stage, bloom stage, and decay stage), 70 volatile organic compounds (VOCs), including 13 aldehydes, 13 esters, 11 alcohols, 10 alkanes, 8 ketones, 7 terpenes, 7 benzenoids, and 1 nitrogenous compound, were identified. According to principal component analysis, the primary VOCs were (-)-pinene, ß-irone, methyl heptenone, phenylethanol, hexanol, and 2-pinene. A comparison of the differential VOCs across the different flowering stages using orthogonal partial least squares discriminant analysis and hierarchical clustering analysis revealed that 3-carene appeared only in the bud stage, whereas hexanol, ethyl caprate, ethyl caproate, linalool, (-)-pinene, and 2-pinene appeared or were present at significantly increased levels during the bloom stage. The phenylethanol, methyl heptenone, 3-methylheptane, and ß-irone reached a peak in the decay stage. The odor activity value and sensory evaluation suggested that "spicy" is the most typical odor of I. lactea var. chinensis, mainly due to 2-methoxy-3-sec-butylpyrazine, which is rare in floral fragrances.


Subject(s)
Iris Plant , Phenylethyl Alcohol , Volatile Organic Compounds , Iris Plant/chemistry , Odorants/analysis , Norisoprenoids , Hexanols
10.
J Neuroinflammation ; 20(1): 81, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36944965

ABSTRACT

BACKGROUND: Long-term smoking is a risk factor for chronic pain, and chronic nicotine exposure induces pain-like effects in rodents. The anterior cingulate cortex (ACC) has been demonstrated to be associated with pain and substance abuse. This study aims to investigate whether ACC microglia are altered in response to chronic nicotine exposure and their interaction with ACC neurons and subsequent nicotine-induced allodynia in mice. METHODS: We utilized a mouse model that was fed nicotine water for 28 days. Brain slices of the ACC were collected for morphological analysis to evaluate the impacts of chronic nicotine on microglia. In vivo calcium imaging and whole-cell patch clamp were used to record the excitability of ACC glutamatergic neurons. RESULTS: Compared to the vehicle control, the branch endpoints and the length of ACC microglial processes decreased in nicotine-treated mice, coinciding with the hyperactivity of glutamatergic neurons in the ACC. Inhibition of ACC glutamatergic neurons alleviated nicotine-induced allodynia and reduced microglial activation. On the other hand, reactive microglia sustain ACC neuronal excitability in response to chronic nicotine, and pharmacological inhibition of microglia by minocycline or liposome-clodronate reduces nicotine-induced allodynia. The neuron-microglia interaction in chronic nicotine-induced allodynia is mediated by increased expression of neuronal CX3CL1, which activates microglia by acting on CX3CR1 receptors on microglial cells. CONCLUSION: Together, these findings underlie a critical role of ACC microglia in the maintenance of ACC neuronal hyperactivity and resulting nociceptive hypersensitivity in chronic nicotine-treated mice.


Subject(s)
Hyperalgesia , Neuralgia , Nicotine , Animals , Mice , Gyrus Cinguli/metabolism , Hyperalgesia/chemically induced , Microglia/metabolism , Neuralgia/metabolism , Neurons/metabolism , Nicotine/toxicity
11.
J Neuroimmune Pharmacol ; 18(1-2): 41-57, 2023 06.
Article in English | MEDLINE | ID: mdl-36464726

ABSTRACT

Mechanically ventilated patients suffering critical illness are at high risk of developing neurocognitive impairments. Angiotensin type 2 receptor (AGTR2) has been demonstrated to be anti-inflammatory and neuroprotective. The present study thus aimed to investigate whether AGTR2 can alleviate cerebral dysfunction in mice subjected to cochallenge with lipopolysaccharide (LPS) and mechanical ventilation (MV), and to reveal the underlying mechanism. We utilized a mice model that received a single injection of LPS (1 mg/kg, intraperitoneally) followed 2 h later by MV (10 ml/kg, lasting for 2 h). Pretreatment with the AGTR2 pharmacological agonist C21 (0.03, 0.3, and 3 mg/kg, intraperitoneally, once daily, lasting for 10 days). Locomotor activity and behavioral deficits were evaluated 24 h post-MV by open-field and fear-condition tests. Brain hippocampus and prefrontal cortex tissues were collected for immunofluorescence staining and western blotting to evaluate the resulting impacts on microglia, including morphological traits, functional markers, synaptic engulfment, superoxide production, and signaling molecules. Compared with vehicle-control, pre-administrated C21 reduced the branch endpoints and length of microglia processes in a dose-dependent manner in mice subjected to LPS/MV. The neuroprotective effect of AGTR2 was behaviorally confirmed by the improvement of memory decline in LPS/MV-treated mice following C21 pretreatment. In addition to morphological alterations, C21 reduced microglial functional markers and reduced microglial-dendrite contact and microglial engulfment of synaptic protein markers. In terms of the underlying molecular mechanism, AGTR2 stimulation by C21 leads to activation of protein phosphatase 2A, which subsequently mitigates microglial PKCδ and NF-κB activation, and inhibites NOX2-derived ROS production. The AGTR2 agonist C21 alleviates behavioral deficits in those mice subjected to LPS/MV, via mechanisms that involve reactive microglia and abnormal synaptic plasticity in NOX2-derived ROS and the PKCδ-NFκB pathway.


Subject(s)
Microglia , Receptor, Angiotensin, Type 2 , Mice , Animals , Receptor, Angiotensin, Type 2/metabolism , Receptor, Angiotensin, Type 2/therapeutic use , Neuroinflammatory Diseases , Reactive Oxygen Species/metabolism , Lipopolysaccharides/toxicity , Dendritic Spines/metabolism , Mice, Inbred C57BL , Inflammation/drug therapy , Inflammation/metabolism
12.
Phytomedicine ; 105: 154376, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35963193

ABSTRACT

BACKGROUND: The high sensitivity of droplet digital PCR (ddPCR) contributes to its excellent performance in animal and microorganism identification, but the utilization of ddPCR is limited in plant adulterant identification of highly processed products for which effective methods are lacking. PURPOSE: This study investigated the feasibility of ddPCR in the identification of plant adulterants in Chinese patent medicine (CPM) as groundwork to develop ddPCR assays for other highly processed goods. METHODS: The original plant, processed and highly processed products of Mutong (Akebiae Caulis) and its two adulterants were used to analyze the specificity, sensitivity, and practical performance of the developed singleplex and triplex ddPCR assays. RESULTS: The results revealed that the limit of detection (LOD) and limit of quantification (LOQ) for the selective ddPCR assays developed to identify Mutong and its adulterants were 0.00002 ng/µl and 0.00016 ng/µl, respectively, and that the regression equations representing the relationships between DNA concentration and target copy number all exhibited good linearity. Furthermore, the common adulterant of Mutong in three samples of Longdan Xiegan pills was successfully identified through ddPCR assays and confirmed by Sanger sequencing. CONCLUSION: This work comprehensively revealed the great ability of ddPCR technology in detecting plant adulterants in traditional Chinese medicine (TCM), providing a method for the quality control of highly processed plant products with complex components for commonly used goods.


Subject(s)
Medicine, Chinese Traditional , Animals , Limit of Detection , Polymerase Chain Reaction , Quality Control
13.
Phytomedicine ; 105: 154375, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35952576

ABSTRACT

BACKGROUND: Safety concerns, caused by complex and unpredictable adulterants, run through the entire industrial chain of traditional Chinese medicines (TCMs). However, the conventional circulation traceability system only focuses on a certain end or link at the back end of the TCM industrial chain, ignoring the integrity of the links cross the entire industrial chain and lacking traceability. In consequence, a strict and rational supervision system is urgently required for the entire industrial chain. HYPOTHESIS/PURPOSE: We hypothesize that DNA barcoding would be a suitable measure for the traceability of adulterants in the entire TCM industrial chain. METHODS: In this study, Rhei Radix et Rhizoma was selected as a model to establish a traceability system for the entire TCM industrial chain. A total of 110 samples, including leaves, seeds, roots, decoction pieces, and traditional Chinese patent medicines (TCPMs), were collected upstream, midstream, and downstream of the entire industrial chain of Rhei Radix et Rhizoma. The ndhF-rpl32 fragment rather than the universal DNA barcodes, which could not distinguish the three original species of Rhei Radix et Rhizoma, was selected as a specific DNA barcode to evaluate the practical application of DNA barcoding in the chain. RESULTS: The results showed that the ndhF-rpl32 fragment in all samples could be amplified and bi-directionally sequenced. Based on the standard operating procedures of DNA barcoding, the ndhF-rpl32 fragment clearly distinguished the seven Rheum species collected upstream of the entire industrial chain. For the samples collected midstream and downstream of the entire industrial chain, 25% of the 36 commercial decoction pieces samples were identified as adulterants, whereas the eight TCPM samples were all derived from genuine Rhei Radix et Rhizoma. CONCLUSIONS: This study shows that DNA barcoding is a powerful and suitable technology that can be applied to trace TCMs in the entire industrial chain, thereby assuring clinical medication safety.


Subject(s)
Drugs, Chinese Herbal , Rheum , DNA Barcoding, Taxonomic , Medicine, Chinese Traditional , Rhizome
14.
Front Pharmacol ; 13: 828948, 2022.
Article in English | MEDLINE | ID: mdl-35685641

ABSTRACT

Background: There has been global concern about the safety and accuracy of traditional Chinese patent medicines (TCPMs). Panax notoginseng, also known as sanqi, is an important constituent of TCPMs. However, identifying the species contained in TCPMs is challenging due to the presence of multiple ingredients and the use of various preparation processes. Objective: To detect P. notoginseng in TCPMs. Methods: A TaqMan probe-based qPCR assay was constructed and validated with DNA extracted from P. notoginseng and adulterants. In total, 75 samples derived from 25 batches of TCPMs were tested using the constructed qPCR method. Results: A TaqMan probe-based qPCR assay targeting P. notoginseng was established. The constructed qPCR assay could specifically discriminate P. notoginseng from Panax ginseng, Panax quinquefolium and Curcuma aromatica Salisb. cv. Wenyujin. The sensitivity study showed that the detectable DNA template concentration of P. notoginseng for this qPCR assay was 0.001 ng/µl. All 75 samples from TCPMs were confirmed to contain P. notoginseng by the qPCR assay. Conclusions: The qPCR method can accurately identify P. notoginseng in TCPMs and is promising as a powerful tool for quality control and market regulation.

15.
J Hazard Mater ; 432: 128647, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35305412

ABSTRACT

As a new type of environmental pollutant, environmental antibiotic residues have attracted widespread attention, and the degradation and removal of antibiotics has become an engaging topic for scholars. In this paper, Novozym 51003 industrialized laccase and syringaldehyde were combined to degrade sulfonamides in aquaculture wastewater. Design Expert10 software was used for multiple regression analysis, and a response surface regression model was established to obtain the optimal degradation parameters. In the actual application, the degradation system could maintain a stable performance within 9 h, and timely supplement of the mediator could achieve a better continuous degradation effect. Low concentrations of heavy metals and organic matter would not significantly affect the degradation performance of the laccase-mediator system, making the degradation system suitable for a wide range of water quality. Enzymatic reaction kinetics demonstrated a strong affinity of sulfadiazine to the substrate. Ten degradation products were speculated using high-resolution mass spectrum based on the mass/charge ratios and the publication results. Four types of possible degradation pathways of sulfadiazine were deduced. This work provides a practical method for the degradation and removal of sulfonamide antibiotics in actual sewage.


Subject(s)
Laccase , Wastewater , Anti-Bacterial Agents/chemistry , Aquaculture , Benzaldehydes , Kinetics , Laccase/metabolism , Sulfadiazine , Sulfanilamide , Sulfonamides/chemistry
16.
Huan Jing Ke Xue ; 43(2): 1089-1096, 2022 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-35075883

ABSTRACT

Environmental antibiotic resistance genes (ARGs) are a type of emerging pollutant that has been widely concerning. However, investigations into the contamination of ARGs in mining areas have been scarce. Here, the types, abundances, and influencing factors of ARGs and mobile genetic elements (MGEs) were investigated in soil/sediment of the Dexing copper mine area in June 2019 by using high-throughput quantitative polymerase chain reaction (HT-qPCR). Furthermore, the influence of heavy metals and MGEs factors on ARGs was studied using the multivariate statistical analysis method. The results showed that there were a variety of ARGs in the Dexing copper mining area, and the maximum detected number of ARGs was 70. At the relative abundance level, the relative abundance of individual sites reached 0.085. In the Dexing copper mine, multidrug, MLSB, ß-lactamases, tetracycline, and aminoglycoside resistance genes were the dominant ARG classes based on their numbers. The efflux pump was the most dominant resistance mechanism, followed by antibiotic deactivation and cellular protection. There was a significant positive correlation between the abundance of ARGs and MGEs (P<0.05), and TnpA04 and Inti1 were the most important MEGs in Dexing copper mine samples, indicating that horizontal gene transfer might be an important mechanism for the spread of environmental ARGs. The results of Pearson correlation analysis and RDA analysis showed that the content of Cu was significantly positively correlated with the detected numbers and abundance of ARGs (P<0.05), suggesting that the high content of Cu in the Dexing copper mining area might be an important driving factor for the formation of ARGs.


Subject(s)
Anti-Bacterial Agents , Copper , Anti-Bacterial Agents/pharmacology , Copper/toxicity , Drug Resistance, Microbial/genetics , Genes, Bacterial/genetics , Soil
17.
Plant J ; 109(5): 1305-1318, 2022 03.
Article in English | MEDLINE | ID: mdl-34907610

ABSTRACT

Distant species producing the same secondary metabolites is an interesting and common phenomenon in nature. A classic example of this is scutellarein whose derivatives have been used clinically for more than 30 years. Scutellarein occurs in significant amounts in species of two different orders, Scutellaria baicalensis and Erigeron breviscapus, which diverged more than 100 million years ago. Here, according to the genome-wide selection and functional identification of 39 CYP450 genes from various angiosperms, we confirmed that only seven Scutellaria-specific CYP82D genes and one Erigeron CYP706X gene could perform the catalytic activity of flavone 6-hydroxylase (F6H), suggesting that the convergent evolution of scutellarein production in these two distant species was caused by two independently evolved CYP450 families. We also identified seven Scutellaria-specific CYP82D genes encoding flavone 8-hydroxylase (F8H). The evolutionary patterns of CYP82 and CYP706 families via kingdom-wide comparative genomics highlighted the evolutionary diversity of CYP82D and the specificity of CYP706X in angiosperms. Multi-collinearity and phylogenetic analysis of CYP82D in Scutellaria confirmed that the function of F6H evolved from F8H. Furthermore, the SbaiCYP82D1A319D , EbreCYP706XR130A , EbreCYP706XF312D and EbreCYP706XA318D mutants can significantly decrease the catalytic activity of F6H, revealing the contribution of crucial F6H amino acids to the scutellarein biosynthesis of distant species. This study provides important insights into the multi-origin evolution of the same secondary metabolite biosynthesis in the plant kingdom.


Subject(s)
Asteraceae , Erigeron , Lamiaceae , Asteraceae/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Erigeron/chemistry , Erigeron/genetics , Erigeron/metabolism , Flavones , Genomics , Humans , Lamiaceae/metabolism , Phylogeny
18.
Foods ; 10(11)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34828962

ABSTRACT

The loss of volatiles results in the deterioration of flavor in tomatoes. Volatiles are mainly derived from fatty acid, carotenoid, phenylpropane, and branched chain amino acids. In this study, the tomato accession CI1005 with a strong odor and accession TI4001 with a weak odor were analyzed. The volatile contents were measured in tomato fruits using gas chromatography-mass spectrometry. The scores of tomato taste and odor characteristics were evaluated according to hedonistic taste and olfaction. It was found that the content of fatty acid-derived volatiles accounted for more than half of the total volatiles that had grassy and fatty aromas. Phenylpropane-derived volatiles had irritation and floral aromas. Branched-chain amino acid-derived volatiles had a caramel aroma. Carotenoid-derived volatiles had floral, fruity, fatty, and sweet-like aromas, preferred by consumers. A lack of carotenoid-derived volatiles affected the flavor quality of tomato fruits. The accumulation of carotenoid-derived volatiles is regulated by carotenoid cleavage oxygenases (CCDs). A tissue-specific expression analysis of the SlCCD genes revealed that the expression levels of SlCCD1A and SlCCD1B were higher in tomato fruits than in other tissues. The expression levels of SlCCD1A and SlCCD1B were consistent with the trend of the carotenoid-derived volatile contents. The expression of SlCCD1A was higher than that for SlCCD1B. A bioinformatics analysis revealed that SlCCD1A was more closely linked to carotenoid metabolism than SlCCD1B. The overexpression of SlCCD1A indicated that it could cleave lycopene, α-carotene, and ß-carotene to produce 6-methyl-5-hepten-2-one, geranylacetone, α-ionone, and ß-ionone, increasing the floral, fruity, fatty, and sweet-like aromas of tomato fruits. The flavor quality of tomato fruits could be improved by overexpressing SlCCD1A.

19.
Plant Methods ; 17(1): 94, 2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34530873

ABSTRACT

BACKGROUND: Grape hyacinth (Muscari spp.) is one of the most important ornamental bulbous plants. However, its lengthy juvenile period and time-consuming transformation approaches under the available protocols impedes the functional characterisation of its genes in flower tissues. In vitro flower organogenesis has long been used to hasten the breeding cycle of plants but has not been exploited for shortening the period of gene transformation and characterisation in flowers. RESULTS: A petal regeneration system was established for stable transformation and function identification of colour gene in grape hyacinth. By culturing on Murashige and Skoog medium (MS) with 0.45 µM 2,4-dichlorophenoxyacetic acid (2,4-D) and 8.88 µM 6-benzyladenine (6-BA), during the colour-changing period, the flower bud explants gave rise to regeneration petals in less than 3 months, instead of the 3 years required in field-grown plants. By combining this system with Agrobacterium-mediated transformation, a glucuronidase reporter gene (GUS) was delivered into grape hyacinth petals. Ultimately, 214 transgenic petals were regenerated from 24 resistant explants. PCR and GUS quantitative analyses confirmed that these putative transgenic petals have stably overexpressed GUS genes. Furthermore, an RNAi vector of the anthocyanidin 3-O-glucosyltransferase gene (MaGT) was integrated into grape hyacinth petals using the same strategy. Compared with the non-transgenic controls, reduced expression of the MaGT occurred in all transgenic petals, which caused pigmentation loss by repressing anthocyanin accumulation. CONCLUSION: The Agrobacterium transformation method via petal organogenesis of grape hyacinth took only 3-4 months to implement, and was faster and easier to perform than other gene-overexpressing or -silencing techniques that are currently available.

20.
Sheng Wu Gong Cheng Xue Bao ; 37(6): 1986-1997, 2021 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-34227289

ABSTRACT

Since synthetic pigments are potentially harmful to human health, natural ones such as bixin, one of the carotenoids, are favored. As the second widely used natural pigment in the world, there is significant interest in the biosynthetic pathway of bixin which has not been fully elucidated. This review summarizes the chemical properties, extraction methods, biosynthetic pathway and application of bixin. In addition, we compared the difference between traditional extraction methods and new extraction techniques. Moreover, we described the genes involved in the biosynthetic pathway of bixin and the effects of abiotic stress on the biosynthesis of bixin, and discussed the application of bixin in food, pharmaceutical and chemical industries. However, the researches on bixin biosynthesis pathway are mostly carried out at the transcriptome level and most of the gene functions have not been elucidated. Therefore, we propose to characterize the entire bixin biosynthetic pathway using techniques of genomics, bioinformatics, and phytochemistry. This will help facilitate the synthetic biology research of bixin and development of bixin into new drugs.


Subject(s)
Bixaceae , Carotenoids , Bixaceae/genetics , Humans , Pigmentation , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL