Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Med Chem ; 67(12): 10464-10489, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38866424

ABSTRACT

The bromodomain and extra terminal (BET) family of bromodomain-containing proteins are important epigenetic regulators that elicit their effect through binding histone tail N-acetyl lysine (KAc) post-translational modifications. Recognition of such markers has been implicated in a range of oncology and immune diseases and, as such, small-molecule inhibition of the BET family bromodomain-KAc protein-protein interaction has received significant interest as a therapeutic strategy, with several potential medicines under clinical evaluation. This work describes the structure- and property-based optimization of a ligand and lipophilic efficient pan-BET bromodomain inhibitor series to deliver candidate I-BET787 (70) that demonstrates efficacy in a mouse model of inflammation and suitable properties for both oral and intravenous (IV) administration. This focused two-phase explore-exploit medicinal chemistry effort delivered the candidate molecule in 3 months with less than 100 final compounds synthesized.


Subject(s)
Administration, Intravenous , Animals , Administration, Oral , Mice , Structure-Activity Relationship , Humans , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Molecular Structure
2.
J Med Chem ; 65(3): 2262-2287, 2022 02 10.
Article in English | MEDLINE | ID: mdl-34995458

ABSTRACT

Through regulation of the epigenome, the bromodomain and extra terminal (BET) family of proteins represent important therapeutic targets for the treatment of human disease. Through mimicking the endogenous N-acetyl-lysine group and disrupting the protein-protein interaction between histone tails and the bromodomain, several small molecule pan-BET inhibitors have progressed to oncology clinical trials. This work describes the medicinal chemistry strategy and execution to deliver an orally bioavailable tetrahydroquinoline (THQ) pan-BET candidate. Critical to the success of this endeavor was a potency agnostic analysis of a data set of 1999 THQ BET inhibitors within the GSK collection which enabled identification of appropriate lipophilicity space to deliver compounds with a higher probability of desired oral candidate quality properties. SAR knowledge was leveraged via Free-Wilson analysis within this design space to identify a small group of targets which ultimately delivered I-BET567 (27), a pan-BET candidate inhibitor that demonstrated efficacy in mouse models of oncology and inflammation.


Subject(s)
Aminoquinolines/chemistry , Drug Design , Proteins/metabolism , Administration, Oral , Aminoquinolines/metabolism , Aminoquinolines/pharmacokinetics , Aminoquinolines/therapeutic use , Animals , Benzoates/chemistry , Benzoates/metabolism , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Dogs , Half-Life , Humans , Male , Mice , Molecular Conformation , Molecular Dynamics Simulation , Neoplasms/drug therapy , Proteins/antagonists & inhibitors , Rats , Structure-Activity Relationship
3.
Nat Rev Drug Discov ; 19(2): 131-148, 2020 02.
Article in English | MEDLINE | ID: mdl-31748707

ABSTRACT

Drug-induced liver injury (DILI) is a patient-specific, temporal, multifactorial pathophysiological process that cannot yet be recapitulated in a single in vitro model. Current preclinical testing regimes for the detection of human DILI thus remain inadequate. A systematic and concerted research effort is required to address the deficiencies in current models and to present a defined approach towards the development of new or adapted model systems for DILI prediction. This Perspective defines the current status of available models and the mechanistic understanding of DILI, and proposes our vision of a roadmap for the development of predictive preclinical models of human DILI.


Subject(s)
Chemical and Drug Induced Liver Injury/diagnosis , Disease Models, Animal , Drug-Related Side Effects and Adverse Reactions/prevention & control , Animals , Chemical and Drug Induced Liver Injury/etiology , Humans , Predictive Value of Tests
4.
Arch Toxicol ; 91(3): 1385-1400, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27344343

ABSTRACT

Assessing the potential of a new drug to cause drug-induced liver injury (DILI) is a challenge for the pharmaceutical industry. We therefore determined whether cell models currently used in safety assessment (HepG2, HepaRG, Upcyte and primary human hepatocytes in conjunction with basic but commonly used endpoints) are actually able to distinguish between novel chemical entities (NCEs) with respect to their potential to cause DILI. A panel of thirteen compounds (nine DILI implicated and four non-DILI implicated in man) were selected for our study, which was conducted, for the first time, across multiple laboratories. None of the cell models could distinguish faithfully between DILI and non-DILI compounds. Only when nominal in vitro concentrations were adjusted for in vivo exposure levels were primary human hepatocytes (PHH) found to be the most accurate cell model, closely followed by HepG2. From a practical perspective, this study revealed significant inter-laboratory variation in the response of PHH, HepG2 and Upcyte cells, but not HepaRG cells. This variation was also observed to be compound dependent. Interestingly, differences between donors (hepatocytes), clones (HepG2) and the effect of cryopreservation (HepaRG and hepatocytes) were less important than differences between the cell models per se. In summary, these results demonstrate that basic cell health endpoints will not predict hepatotoxic risk in simple hepatic cells in the absence of pharmacokinetic data and that a multicenter assessment of more sophisticated signals of molecular initiating events is required to determine whether these cells can be incorporated in early safety assessment.


Subject(s)
Chemical and Drug Induced Liver Injury/etiology , Toxicity Tests, Acute/methods , Cells, Cultured , Cryopreservation , Hep G2 Cells/drug effects , Hepatocytes/drug effects , Humans , Reproducibility of Results , Toxicity Tests, Acute/standards
5.
NPJ Regen Med ; 2: 28, 2017.
Article in English | MEDLINE | ID: mdl-29302362

ABSTRACT

Regenerative medicine therapies hold enormous potential for a variety of currently incurable conditions with high unmet clinical need. Most progress in this field to date has been achieved with cell-based regenerative medicine therapies, with over a thousand clinical trials performed up to 2015. However, lack of adequate safety and efficacy data is currently limiting wider uptake of these therapies. To facilitate clinical translation, non-invasive in vivo imaging technologies that enable careful evaluation and characterisation of the administered cells and their effects on host tissues are critically required to evaluate their safety and efficacy in relevant preclinical models. This article reviews the most common imaging technologies available and how they can be applied to regenerative medicine research. We cover details of how each technology works, which cell labels are most appropriate for different applications, and the value of multi-modal imaging approaches to gain a comprehensive understanding of the responses to cell therapy in vivo.

6.
Toxicol Lett ; 258: 207-215, 2016 Sep 06.
Article in English | MEDLINE | ID: mdl-27363785

ABSTRACT

Sixteen training compounds selected in the IMI MIP-DILI consortium, 12 drug-induced liver injury (DILI) positive compounds and 4 non-DILI compounds, were assessed in cryopreserved primary human hepatocytes. When a ten-fold safety margin threshold was applied, the non-DILI-compounds were correctly identified 2h following a single exposure to pooled human hepatocytes (n=13 donors) in suspension and 14-days following repeat dose exposure (3 treatments) to an established 3D-microtissue co-culture (3D-MT co-culture, n=1 donor) consisting of human hepatocytes co-cultured with non-parenchymal cells (NPC). In contrast, only 5/12 DILI-compounds were correctly identified 2h following a single exposure to pooled human hepatocytes in suspension. Exposure of the 2D-sandwich culture human hepatocyte monocultures (2D-sw) for 3days resulted in the correct identification of 11/12 DILI-positive compounds, whereas exposure of the human 3D-MT co-cultures for 14days resulted in identification of 9/12 DILI-compounds; in addition to ximelagatran (also not identified by 2D-sw monocultures, Sison-Young et al., 2016), the 3D-MT co-cultures failed to detect amiodarone and bosentan. The sensitivity of the 2D human hepatocytes co-cultured with NPC to ximelagatran was increased in the presence of lipopolysaccharide (LPS), but only at high concentrations, therefore preventing its classification as a DILI positive compound. In conclusion (1) despite suspension human hepatocytes having the greatest metabolic capacity in the short term, they are the least predictive of clinical DILI across the MIP-DILI test compounds, (2) longer exposure periods than 72h of human hepatocytes do not allow to increase DILI-prediction rate, (3) co-cultures of human hepatocytes with NPC, in the presence of LPS during the 72h exposure period allow the assessment of innate immune system involvement of a given drug.


Subject(s)
Cellular Microenvironment/drug effects , Cryopreservation , Drug Evaluation, Preclinical/methods , Drugs, Investigational/adverse effects , Hepatocytes/drug effects , 3T3 Cells , Animals , Batch Cell Culture Techniques , Cell Survival/drug effects , Cells, Cultured , Chemical and Drug Induced Liver Injury/etiology , Coculture Techniques , Drugs, Investigational/metabolism , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Immunity, Innate/drug effects , Kinetics , Kupffer Cells/cytology , Kupffer Cells/drug effects , Kupffer Cells/immunology , Lipopolysaccharides/agonists , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/toxicity , Mice , Models, Molecular , Stromal Cells/cytology , Stromal Cells/drug effects , Stromal Cells/physiology
7.
Chem Res Toxicol ; 25(10): 2067-82, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22931300

ABSTRACT

Drug-induced liver injury is the most common cause of market withdrawal of pharmaceuticals, and thus, there is considerable need for better prediction models for DILI early in drug discovery. We present a study involving 223 marketed drugs (51% associated with clinical hepatotoxicity; 49% non-hepatotoxic) to assess the concordance of in vitro bioactivation data with clinical hepatotoxicity and have used these data to develop a decision tree to help reduce late-stage candidate attrition. Data to assess P450 metabolism-dependent inhibition (MDI) for all common drug-metabolizing P450 enzymes were generated for 179 of these compounds, GSH adduct data generated for 190 compounds, covalent binding data obtained for 53 compounds, and clinical dose data obtained for all compounds. Individual data for all 223 compounds are presented here and interrogated to determine what level of an alert to consider termination of a compound. The analysis showed that 76% of drugs with a daily dose of <100 mg were non-hepatotoxic (p < 0.0001). Drugs with a daily dose of ≥100 mg or with GSH adduct formation, marked P450 MDI, or covalent binding ≥200 pmol eq/mg protein tended to be hepatotoxic (∼ 65% in each case). Combining dose with each bioactivation assay increased this association significantly (80-100%, p < 0.0001). These analyses were then used to develop the decision tree and the tree tested using 196 of the compounds with sufficient data (49% hepatotoxic; 51% non-hepatotoxic). The results of these outcome analyses demonstrated the utility of the tree in selectively terminating hepatotoxic compounds early; 45% of the hepatotoxic compounds evaluated using the tree were recommended for termination before candidate selection, whereas only 10% of the non-hepatotoxic compounds were recommended for termination. An independent set of 10 GSK compounds with known clinical hepatotoxicity status were also assessed using the tree, with similar results.


Subject(s)
Chemical and Drug Induced Liver Injury/metabolism , Drug Evaluation, Preclinical/methods , Drug-Related Side Effects and Adverse Reactions/metabolism , Liver/drug effects , Pharmaceutical Preparations/metabolism , Cytochrome P-450 Enzyme Inhibitors , Cytochrome P-450 Enzyme System/metabolism , Decision Trees , Glutathione/metabolism , Humans , Liver/metabolism , Protein Binding
8.
Lab Anim ; 45(2): 109-13, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21444352

ABSTRACT

Dried bloodspot (DBS) technology has been available for many decades but only in the last five years has it been considered for routine bioanalysis of blood samples collected on preclinical and clinical studies as part of a drug development programme. Advantages of using DBS versus typical plasma samples include smaller blood volumes, less processing of the samples (e.g. no centrifugation) and no requirement for storing or shipping of the samples at frozen temperatures. The current study compared blood concentrations (AUC(0-t) and C(max)) from rats given an oral dose of acetaminophen (APAP) using two different sampling sites (caudal venepuncture versus tail snip), two different collection methods (3 separate 15 µL ethylenediaminetetraacetic acid [EDTA]-coated capillary tubes versus an EDTA integrated capillary blood collection system) and variability between blood spots on one card. There were no noteworthy differences (i.e. two-fold or greater) in blood concentrations of APAP using the different sites or methods. Furthermore, comparisons of the APAP blood concentrations in the original spot to a duplicate bloodspot from the same bloodspot card were within 12% of the original concentration.


Subject(s)
Acetaminophen , Blood Specimen Collection , Acetaminophen/blood , Acetaminophen/pharmacokinetics , Animals , Area Under Curve , Blood Specimen Collection/instrumentation , Blood Specimen Collection/methods , Edetic Acid/chemistry , Male , Pharmaceutical Preparations/blood , Rats , Rats, Inbred Strains
9.
Am J Physiol Cell Physiol ; 290(1): C104-15, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16135546

ABSTRACT

Precise control of the level of protein expression in cells can yield quantitative and temporal information on the role of a given gene in normal cellular physiology and on exposure to chemicals and drugs. This is particularly relevant to liver cells, in which the expression of many proteins, such as phase I and phase II drug-metabolizing enzymes, vary widely between species, among individual humans, and on exposure to xenobiotics. The most widely used gene regulatory system has been the tet-on/off approach. Although a second-generation tet-on transactivator was recently described, it has not been widely investigated for its potential as a tool for regulating genes in cells and particularly in cells previously recalcitrant to the first-generation tet-on approach, such as hepatocyte-derived cells. Here we demonstrate the development of two human (HepG2 and HuH7) and one mouse (Hepa1c1c7) hepatoma-derived cell lines incorporating a second-generation doxycycline-inducible gene expression system and the application of the human lines to control the expression of different transgenes. The two human cell lines were tested for transient or stable inducibility of five transgenes relevant to liver biology, namely phase I (cytochrome P-450 2E1; CYP2E1) and phase II (glutathione S-transferase P1; GSTP1) drug metabolism, and three transcription factors that respond to chemical stress [nuclear factor erythroid 2 p45-related factors (NRF)1 and 2 and NFKB1 subunit of NF-kappaB]. High levels of functional expression were obtained in a time- and dose-dependent manner. Importantly, doxycycline did not cause obvious changes in the cellular proteome. In conclusion, we have generated hepatocyte-derived cell lines in which expression of genes is fully controllable.


Subject(s)
Carcinoma, Hepatocellular/genetics , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/physiology , Liver Neoplasms/genetics , Xenobiotics , Amino Acid Sequence , Animals , Anti-Bacterial Agents , Cell Line, Tumor , Cytochrome P-450 CYP2E1/genetics , Doxycycline , Glutathione Transferase/genetics , Hepatocytes/physiology , Humans , Liver/cytology , Liver/physiology , Mice , Molecular Sequence Data , NF-E2-Related Factor 1/genetics , NF-E2-Related Factor 2/genetics , NF-kappa B p50 Subunit/genetics , Protein Synthesis Inhibitors , Tetracycline , Transgenes/drug effects , Transgenes/physiology
10.
J Biol Chem ; 278(25): 22243-9, 2003 Jun 20.
Article in English | MEDLINE | ID: mdl-12646564

ABSTRACT

Glutathione S-transferase Pi (GSTP) detoxifies electrophiles by catalyzing their conjugation with reduced glutathione. A second function of this protein in cell defense has recently been proposed that is related to its ability to interact with c-Jun N-terminal kinase (JNK). The present study aimed to determine whether this interaction results in increased constitutive JNK activity in the absence of GSTP in GstP1/P2(-/-) mice and whether such a phenomenon leads to the up-regulation of genes that are relevant to cell defense. We found a significant increase in constitutive JNK activity in the liver and lung of GstP1/P2-/- compared with GstP1/P2(+/+) mice. The greatest increase in constitutive JNK activity was observed in null liver and was accompanied by a significant increase in activator protein-1 DNA binding activity (8-fold) and in the mRNA levels for the antioxidant protein heme oxygenase-1 compared with wild type. Furthermore UDP-glucuronosyltransferase 1A6 mRNA levels were significantly higher in the livers of GstP1/P2(-/-) compared with GstP1/P2(+/+) mice, which correlated to a 2-fold increase in constitutive activity both in vitro and in vivo. There was no difference in the gene expression of other UDP-glucuronosyltransferase isoforms, manganese superoxide dismutase, microsomal epoxide hydrolase, or GSTA1 between GstP1/P2(-/-) and GstP1/P2(+/+) mice. Additionally there was no phenotypic difference in the induction of heme oxygenase-1 mRNA after acetaminophen administration. This study not only demonstrates the role of GSTP as a direct inhibitor of JNK in vivo but also its role in regulating the constitutive expression of specific downstream molecular targets of the JNK signaling pathway.


Subject(s)
Gene Expression Regulation , Glutathione Transferase/deficiency , Isoenzymes/deficiency , MAP Kinase Signaling System/physiology , Mitogen-Activated Protein Kinases/metabolism , Animals , DNA-Binding Proteins/metabolism , Gene Expression Regulation/genetics , Glucuronosyltransferase/genetics , Glutathione S-Transferase pi , Glutathione Transferase/genetics , Heme Oxygenase (Decyclizing)/genetics , Heme Oxygenase-1 , Isoenzymes/genetics , JNK Mitogen-Activated Protein Kinases , Liver/enzymology , Lung/enzymology , Membrane Proteins , Mice , Mice, Knockout , RNA, Messenger/genetics , Superoxide Dismutase/genetics , Transcription Factor AP-1/genetics
11.
Proteomics ; 3(2): 191-207, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12601812

ABSTRACT

GST pi (GSTP) is a member of the glutathione S-transferase (EC 2.5.1.18; GST) family of enzymes that catalyse the conjugation of electrophilic species with reduced glutathione and thus play an important role in the detoxification of electrophilic metabolites. Deletion of GSTP in mice has previously been shown to lead to enhanced susceptibility to chemical-induced skin carcinoma, consistent with its known metabolic functions. A decreased susceptibility to paracetamol hepatotoxicity has also been observed, which has not been fully explained. One possibility is that deletion of the GSTP gene locus results in compensatory changes in other proteins involved in defence against chemical stress. We have therefore used complementary protein expression profiling techniques to perform a systematic comparison of the protein expression profiles of livers from GSTP null and wild-type mice. Analysis of liver proteins by two-dimensional electrophoresis confirmed the absence of GSTP in null mice whereas GSTP represented 3-5% of soluble protein in livers from wild-type animals. There was a high degree of quantitative and qualitative similarity in other liver proteins between GSTP null and wild-type mice. There was no evidence that the absence of GSTP in null animals resulted in enhanced expression of other GST isoforms in the null mice (GST alpha, 1.48%, GST mu, 1.68% of resolved proteins) compared with the wild-type animals (GST alpha, 1.50%, GST mu, 1.40%). In contrast, some members of the thiol specific antioxidant family of proteins, notably antioxidant protein 2 and thioredoxin peroxidases, were expressed at a higher level in the GSTP null mouse livers. These changes presumably reflect the recently described role of GSTP in cell signalling and may underlie the protection against paracetamol toxicity seen in these animals.


Subject(s)
Glutathione Transferase/biosynthesis , Glutathione Transferase/chemistry , Peroxidases , Amino Acid Sequence , Animals , Antioxidants/chemistry , Antioxidants/metabolism , Chromatography, High Pressure Liquid , Electrophoresis, Gel, Two-Dimensional , Glutathione Transferase/metabolism , Image Processing, Computer-Assisted , Liver/metabolism , Mice , Mice, Transgenic , Molecular Sequence Data , Peptides/chemistry , Peroxiredoxin VI , Peroxiredoxins , Polymorphism, Genetic , Protein Array Analysis , Protein Isoforms , Proteins/chemistry , Proteins/genetics , Sequence Homology, Amino Acid , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...