Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 659
Filter
1.
Brain Stimul ; 17(4): 890-895, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39084519

ABSTRACT

Non-invasive ultrasound neuromodulation has experienced exponential growth in the neuroscientific literature, recently also including clinical studies and applications. However, clinical recommendations for the secure and effective application of ultrasound neuromodulation in pathological brains are currently lacking. Here, clinical experts with neuroscientific expertise in clinical brain stimulation and ultrasound neuromodulation present initial clinical recommendations for ultrasound neuromodulation with relevance for all ultrasound neuromodulation techniques. The recommendations start with methodological safety issues focusing on technical issues to avoid harm to the brain. This is followed by clinical safety issues focusing on important factors concerning pathological situations.

2.
Expert Rev Neurother ; 24(6): 597-605, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38713485

ABSTRACT

INTRODUCTION: Essential tremor (ET) is the most frequent movement disorder, affecting up to 5% of adults > 65 years old. In 30-50% of cases, optimal medical management provides insufficient tremor relief and surgical options are considered. Thalamotomy is a time-honored intervention, which can be performed using radiofrequency (RF), stereotactic radiosurgery (SRS), or magnetic resonance-guided focused ultrasounds (MRgFUS). While the latter has received considerable attention in the last decade, SRS has consistently been demonstrated as an effective and well-tolerated option. AREAS COVERED: This review discusses the evidence on SRS thalamotomy for ET. Modern workflows and emerging techniques are detailed. Current outcomes are analyzed, with a specific focus on tremor reduction, complications and radiological evolution of the lesions. Challenges for the field are highlighted. EXPERT OPINION: SRS thalamotomy improves tremor in > 80% patients. The efficacy appears comparable to other modalities, including DBS, RF and MRgFUS. Side effects result mostly from idiosyncratic hyper-responses to radiation, which occur in up to 10% of treatments, are usually self-resolving, and are symptomatic in < 4% of patients. Future research should focus on accumulating more data on bilateral treatments, collecting long-term outcomes, refining targeting, and improving lesion consistency.


Subject(s)
Essential Tremor , Radiosurgery , Thalamus , Essential Tremor/surgery , Essential Tremor/therapy , Humans , Radiosurgery/methods , Radiosurgery/trends , Thalamus/surgery
3.
Mov Disord ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787806

ABSTRACT

BACKGROUND: Low-intensity transcranial ultrasound stimulation (TUS) is a noninvasive brain stimulation (NIBS) technique with high spatial specificity. Previous studies showed that TUS delivered in a theta burst pattern (tbTUS) increased motor cortex (MI) excitability up to 30 minutes due to long-term potentiation (LTP)-like plasticity. Studies using other forms of NIBS suggested that cortical plasticity may be impaired in patients with Parkinson's disease (PD). OBJECTIVE: The aim was to investigate the neurophysiological effects of tbTUS in PD patients off and on dopaminergic medications compared to healthy controls. METHODS: We studied 20 moderately affected PD patients in on and off dopaminergic medication states (7 with and 13 without dyskinesia) and 17 age-matched healthy controls in a case-controlled study. tbTUS was applied for 80 seconds to the MI. Motor-evoked potentials (MEP), short-interval intracortical inhibition (SICI), and short-interval intracortical facilitation (SICF) were recorded at baseline, and at 5 minutes (T5), T30, and T60 after tbTUS. Motor Unified Parkinson's Disease Rating Scale (mUPDRS) was measured at baseline and T60. RESULTS: tbTUS significantly increased MEP amplitude at T30 compared to baseline in controls and in PD patients on but not in PD patients off medications. SICI was reduced in PD off medications compared to controls. tbTUS did not change in SICI or SICF. The bradykinesia subscore of mUPDRS was reduced at T60 compared to baseline in PD on but not in the off medication state. The presence of dyskinesia did not affect tbTUS-induced plasticity. CONCLUSIONS: tbTUS-induced LTP plasticity is impaired in PD patients off medications and is restored by dopaminergic medications. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

4.
Brain ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808482

ABSTRACT

Comprehensive understanding of the neural circuits involving the ventral tegmental area is essential for elucidating the anatomo-functional mechanisms governing human behaviour as well as the therapeutic and adverse effects of deep brain stimulation for neuropsychiatric diseases. While the ventral tegmental area has been successfully targeted with deep brain stimulation for different neuropsychiatric diseases, the axonal connectivity of the region has not been fully understood. Here using fiber micro-dissections in human cadaveric hemispheres, population-based high-definition fiber tractography, and previously reported deep brain stimulation hotspots, we find that the ventral tegmental area participates in an intricate network involving the serotonergic pontine nuclei, basal ganglia, limbic system, basal forebrain, and prefrontal cortex, which is implicated in the treatment of obsessive-compulsive disorder, major depressive disorder, Alzheimer's disease, cluster headaches, and aggressive behaviors.

5.
Expert Rev Med Devices ; 21(4): 285-292, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38573133

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) requires novel therapeutic approaches due to limited efficacy of current treatments. AREAS COVERED: This article explores AD as a manifestation of neurocircuit dysfunction and evaluates deep brain stimulation (DBS) as a potential intervention. Focusing on fornix-targeted stimulation (DBS-f), the article summarizes safety, feasibility, and outcomes observed in phase 1/2 trials, highlighting findings such as cognitive improvement, increased metabolism, and hippocampal growth. Topics for further study include optimization of electrode placement, and the role of stimulation-induced autobiographical-recall. Nucleus basalis of Meynert (DBS-NBM) DBS is also discussed and compared with DBS-f. Challenges with both DBS-f and DBS-NBM are identified, emphasizing the need for further research on optimal stimulation parameters. The article also reviews alternative DBS targets, including medial temporal lobe structures and the ventral capsule/ventral striatum. EXPERT OPINION: Looking ahead, a phase-3 DBS-f trial, and the prospect of closed-loop stimulation using EEG-derived biomarkers or hippocampal theta activity are highlighted. Recent FDA-approved therapies and other neuromodulation techniques like temporal interference and low-intensity ultrasound are considered. The article concludes by underscoring the importance of imaging-based diagnosis and staging to allow for circuit-targeted therapies, given the heterogeneity of AD and varied stages of neurocircuit dysfunction.

6.
Neurobiol Dis ; 195: 106490, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38561111

ABSTRACT

The auditory oddball is a mainstay in research on attention, novelty, and sensory prediction. How this task engages subcortical structures like the subthalamic nucleus and substantia nigra pars reticulata is unclear. We administered an auditory OB task while recording single unit activity (35 units) and local field potentials (57 recordings) from the subthalamic nucleus and substantia nigra pars reticulata of 30 patients with Parkinson's disease undergoing deep brain stimulation surgery. We found tone modulated and oddball modulated units in both regions. Population activity differentiated oddball from standard trials from 200 ms to 1000 ms after the tone in both regions. In the substantia nigra, beta band activity in the local field potential was decreased following oddball tones. The oddball related activity we observe may underlie attention, sensory prediction, or surprise-induced motor suppression.


Subject(s)
Acoustic Stimulation , Deep Brain Stimulation , Parkinson Disease , Pars Reticulata , Subthalamic Nucleus , Humans , Subthalamic Nucleus/physiology , Male , Middle Aged , Female , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Aged , Pars Reticulata/physiology , Deep Brain Stimulation/methods , Acoustic Stimulation/methods , Auditory Perception/physiology , Evoked Potentials, Auditory/physiology , Substantia Nigra/physiology , Adult
7.
Nat Commun ; 15(1): 3130, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605039

ABSTRACT

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) produces an electrophysiological signature called evoked resonant neural activity (ERNA); a high-frequency oscillation that has been linked to treatment efficacy. However, the single-neuron and synaptic bases of ERNA are unsubstantiated. This study proposes that ERNA is a subcortical neuronal circuit signature of DBS-mediated engagement of the basal ganglia indirect pathway network. In people with Parkinson's disease, we: (i) showed that each peak of the ERNA waveform is associated with temporally-locked neuronal inhibition in the STN; (ii) characterized the temporal dynamics of ERNA; (iii) identified a putative mesocircuit architecture, embedded with empirically-derived synaptic dynamics, that is necessary for the emergence of ERNA in silico; (iv) localized ERNA to the dorsal STN in electrophysiological and normative anatomical space; (v) used patient-wise hotspot locations to assess spatial relevance of ERNA with respect to DBS outcome; and (vi) characterized the local fiber activation profile associated with the derived group-level ERNA hotspot.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/therapy , Deep Brain Stimulation/methods , Subthalamic Nucleus/physiology , Basal Ganglia/physiology , Neurons/physiology
8.
Sci Data ; 11(1): 353, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589407

ABSTRACT

Diffusion-weighted MRI (dMRI) is a widely used neuroimaging modality that permits the in vivo exploration of white matter connections in the human brain. Normative structural connectomics - the application of large-scale, group-derived dMRI datasets to out-of-sample cohorts - have increasingly been leveraged to study the network correlates of focal brain interventions, insults, and other regions-of-interest (ROIs). Here, we provide a normative, whole-brain connectome in MNI space that enables researchers to interrogate fiber streamlines that are likely perturbed by given ROIs, even in the absence of subject-specific dMRI data. Assembled from multi-shell dMRI data of 985 healthy Human Connectome Project subjects using generalized Q-sampling imaging and multispectral normalization techniques, this connectome comprises ~12 million unique streamlines, the largest to date. It has already been utilized in at least 18 peer-reviewed publications, most frequently in the context of neuromodulatory interventions like deep brain stimulation and focused ultrasound. Now publicly available, this connectome will constitute a useful tool for understanding the wider impact of focal brain perturbations on white matter architecture going forward.


Subject(s)
Connectome , White Matter , Humans , Brain/diagnostic imaging , Connectome/methods , Diffusion Magnetic Resonance Imaging/methods , Neuroimaging , White Matter/diagnostic imaging
9.
J Neurosurg ; 141(2): 381-393, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38518284

ABSTRACT

OBJECTIVE: Deep brain stimulation (DBS) is an effective treatment for medically refractory movement disorders and other neurological conditions. To comprehensively characterize the prevalence, locations, timing of detection, clinical effects, and risk factors of DBS-related intracranial hemorrhage (ICH), the authors performed a systematic review of the published literature. METHODS: PubMed, EMBASE, and Web of Science were searched using 2 concepts: cerebral hemorrhage and brain stimulation, with filters for English, human studies, and publication dates 1980-2023. The inclusion criteria were the use of DBS intervention for any human neurological condition, with documentation of hemorrhagic complications by location and clinical effect. Studies with non-DBS interventions, no documentation of hemorrhage outcome, patient cohorts of ≤ 10, and pediatric patients were excluded. The risk of bias was assessed using Centre for Evidence-Based Medicine Levels of Evidence. The authors performed proportional meta-analysis for ICH prevalence. RESULTS: A total of 63 studies, with 13,056 patients, met the inclusion criteria. The prevalence of ICH was 2.9% (fixed-effects model, 95% CI 2.62%-3.2%) per patient and 1.6% (random-effects model, 95% CI 1.34%-1.87%) per DBS lead, with 49.6% being symptomatic. The ICH rates did not change with time. ICH most commonly occurred around the DBS lead, with 16% at the entry point, 31% along the track, and 7% at the target. Microelectrode recording (MER) during DBS was associated with increased ICH rate compared to DBS without MER (3.5 ± 2.2 vs 2.1 ± 1.4; p[T ≤ t] 1-tail = 0.038). Other reported ICH risk factors include intraoperative systolic blood pressure > 140 mm Hg, sulcal DBS trajectories, and multiple microelectrode insertions. Sixty percent of ICH was detected at 24 hours postoperatively and 27% intraoperatively. The all-cause mortality rate of DBS was 0.4%, with ICH accounting for 22% of deaths. Single-surgeon DBS experience showed a weak inverse correlation (r = -0.27, p = 0.2189) between the rate of ICH per lead and the number of leads implanted per year. CONCLUSIONS: This study provides level III evidence that MER during DBS is a risk factor for ICH. Other risk factors include intraoperative systolic blood pressure > 140 mm Hg, sulcal trajectories, and multiple microelectrode insertions. Avoidance of these risk factors may decrease the rate of ICH.


Subject(s)
Deep Brain Stimulation , Intracranial Hemorrhages , Deep Brain Stimulation/adverse effects , Humans , Intracranial Hemorrhages/epidemiology , Intracranial Hemorrhages/etiology , Risk Factors , Prevalence
10.
Neurotherapeutics ; 21(3): e00330, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38340524

ABSTRACT

Over the past 30 years, the field of neuromodulation has witnessed remarkable advancements. These developments encompass a spectrum of techniques, both non-invasive and invasive, that possess the ability to both probe and influence the central nervous system. In many cases neuromodulation therapies have been adopted into standard care treatments. Transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and transcranial ultrasound stimulation (TUS) are the most common non-invasive methods in use today. Deep brain stimulation (DBS), spinal cord stimulation (SCS), and vagus nerve stimulation (VNS), are leading surgical methods for neuromodulation. Ongoing active clinical trials using are uncovering novel applications and paradigms for these interventions.


Subject(s)
Deep Brain Stimulation , Transcranial Direct Current Stimulation , Transcranial Magnetic Stimulation , Humans , Deep Brain Stimulation/methods , Transcranial Magnetic Stimulation/methods , Transcranial Direct Current Stimulation/methods , Spinal Cord Stimulation/methods , Vagus Nerve Stimulation/methods , Vagus Nerve Stimulation/trends
12.
Brain Stimul ; 17(2): 166-175, 2024.
Article in English | MEDLINE | ID: mdl-38342364

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) has been widely used to manage debilitating neurological symptoms in movement disorders such as Parkinson's disease (PD). Despite its well-established symptomatic benefits, our understanding of the mechanisms underlying DBS and its possible effect on the accumulation of pathological proteins in neurodegeneration remains limited. Accumulation and oligomerization of the protein alpha-synuclein (α-Syn) are implicated in the loss of dopaminergic neurons in the substantia nigra in PD, making α-Syn a potential therapeutic target for disease modification. OBJECTIVE: We examined the effects of high frequency electrical stimulation on α-Syn levels and oligomerization in cell and rodent models. METHODS: High frequency stimulation, mimicking DBS parameters used for PD, was combined with viral-mediated overexpression of α-Syn in cultured rat primary cortical neurons or in substantia nigra of rats. Bimolecular protein complementation with split fluorescent protein reporters was used to detect and quantify α-Syn oligomers. RESULTS: High frequency electrical stimulation reduced the expression of PD-associated mutant α-Syn and mitigated α-Syn oligomerization in cultured neurons. Furthermore, DBS in the substantia nigra, but not the subthalamic nucleus, decreased overall levels of α-Syn, including oligomer levels, in the substantia nigra. CONCLUSIONS: Taken together, our results demonstrate that direct high frequency stimulation can reduce accumulation and pathological forms of α-Syn in cultured neurons in vitro and in substantia nigra in vivo. Thus, DBS therapy could have a role beyond symptomatic treatment, with potential disease-modifying properties that can be exploited to target pathological proteins in neurodegenerative diseases.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , alpha-Synuclein , Animals , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Deep Brain Stimulation/methods , Rats , Parkinson Disease/therapy , Parkinson Disease/metabolism , Rats, Sprague-Dawley , Disease Models, Animal , Substantia Nigra/metabolism , Cells, Cultured , Male , Neurons/metabolism , Neurons/physiology , Electric Stimulation/methods
13.
Biochem Biophys Rep ; 37: 101635, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38298208

ABSTRACT

Osteoarthritis causes progressive joint deterioration, severe morbidity, and reduced mobility in both humans and horses. Currently, osteoarthritis is diagnosed at late stages through clinical examination and radiographic imaging, hence it is challenging to address and provide timely therapeutic interventions to slow disease progression or ameliorate symptoms. Extracellular vesicles are cell-derived vesicles that play a key role in cell-to-cell communication and are potential sources for specific composite biomarker panel discovery. We here used a multi-omics strategy combining proteomics and phospholipidomics in an integral approach to identify composite biomarkers associated to purified extracellular vesicles from synovial fluid of healthy, mildly and severely osteoarthritic equine joints. Although the number of extracellular vesicles was unaffected by osteoarthritis, proteome profiling of extracellular vesicles by mass spectrometry identified 40 differentially expressed proteins (non-adjusted p < 0.05) in osteoarthritic joints associated with 7 significant canonical pathways in osteoarthritis. Moreover, pathway analysis unveiled changes in disease and molecular functions during osteoarthritis development. Phospholipidome profiling by mass spectrometry showed a relative increase in sphingomyelin and a decrease in phosphatidylcholine, phosphatidylinositol, and phosphatidylserine in extracellular vesicles derived from osteoarthritic joints compared to healthy joints. Unsupervised data integration revealed positive correlations between the proteome and the phospholipidome. Comprehensive analysis showed that some phospholipids and their related proteins increased as the severity of osteoarthritis progressed, while others decreased or remained stable. Altogether our data show interrelationships between synovial fluid extracellular vesicle-associated phospholipids and proteins responding to osteoarthritis pathology and which could be explored as potential composite diagnostic biomarkers of disease.

14.
Stereotact Funct Neurosurg ; 102(2): 74-82, 2024.
Article in English | MEDLINE | ID: mdl-38272011

ABSTRACT

INTRODUCTION: Aggressive disorders, in patients with intellectual disability, are satisfactorily managed with an educational, psychological, and pharmacological approach. Posterior hypothalamic region deep brain stimulation emerged in the last two decades as a promising treatment for patients with severe aggressive disorders. However, limited experiences are reported in the literature. METHODS: A systematic review was performed following PRISMA guidelines and recommendations by querying PubMed and Embase on August 24th, 2022, with the ensuing string parameters: ([deep brain stimulation] OR [DBS]) AND ([aggressiv*] OR disruptive). Cochrane Library, DynaMed, and ClinicalTrials.gov were consulted using the combination of keywords "deep brain stimulation" and "aggressive" or "aggression". The clinical outcome at the last follow-up and the rate of complications were considered primary and secondary outcomes of interest. RESULTS: The initial search identified 1,080 records, but only 10 studies met the inclusion criteria and were considered. The analysis of clinical outcome and complications was therefore performed on a total of 60 patients. Quality of all selected studies was classified as high, but one. Mean Overt Aggression Scale (OAS) improvement was 68%, while Inventory for Client Agency Planning (ICAP) improvement ranged between 38.3% and 80%. Complications occurred in 4 patients (6.7%). CONCLUSION: Posterior hypothalamic region deep brain stimulation may be considered a valuable option for patients with severe aggression disorders and ID. This review can represent a mainstay for those who will be engaged in the surgical treatment of these patients.

15.
Neurotherapeutics ; 21(1): e00295, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38237402

ABSTRACT

Essential tremor DBS targeting the ventral intermediate nucleus (Vim) of the thalamus and its input, the dentato-rubro-thalamic tract (DRTt), has proven to be an effective treatment strategy. We examined thalamo-cortical evoked potentials (TCEPs) and cortical dynamics during stimulation of the DRTt. We recorded TCEPs in primary motor cortex during clinical and supra-clinical stimulation of the DRTt in ten essential tremor patients. Stimulation was varied over pulse amplitude (2-10 â€‹mA) and pulse width (30-250 â€‹µs) to allow for strength-duration testing. Testing at clinical levels (3 â€‹mA, 60 â€‹µs) for stimulation frequencies of 1-160 â€‹Hz was performed and phase amplitude coupling (PAC) of beta phase and gamma power was calculated. Primary motor cortex TCEPs displayed two responses: early and all-or-none (<20 â€‹ms) or delayed and charge-dependent (>50 â€‹ms). Strength-duration curve approximation indicates that the chronaxie of the neural elements related to the TCEPs is <200 â€‹µs. At the range of clinical stimulation (amplitude 2-5 â€‹mA, pulse width 30-60 â€‹µs), TCEPs were not noted over primary motor cortex. Decreased pathophysiological phase-amplitude coupling was seen above 70 â€‹Hz stimulation without changes in power spectra and below the threshold of TCEPs. Our findings demonstrate that DRTt stimulation within normal clinical bounds does not excite fibers directly connected with primary motor cortex but that supra-clinical stimulation can excite a direct axonal tract. Both clinical efficacy and phase-amplitude coupling were frequency-dependent, favoring a synaptic filtering model as a possible mechanism of action.


Subject(s)
Deep Brain Stimulation , Essential Tremor , Humans , Essential Tremor/therapy , Neural Pathways , Thalamus , Evoked Potentials
16.
J Neurosurg ; 140(1): 218-230, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37382356

ABSTRACT

A major goal of modern neurosurgery is the personalization of treatment to optimize or predict individual outcomes. One strategy in this regard has been to create whole-brain models of individual patients. Whole-brain modeling is a subfield of computational neuroscience that focuses on simulations of large-scale neural activity patterns across distributed brain networks. Recent advances allow for the personalization of these models by incorporating distinct connectivity architecture obtained from noninvasive neuroimaging of individual patients. Local dynamics of each brain region are simulated with neural mass models and subsequently coupled together, considering the subject's empirical structural connectome. The parameters of the model can be optimized by comparing model-generated and empirical data. The resulting personalized whole-brain models have translational potential in neurosurgery, allowing investigators to simulate the effects of virtual therapies (such as resections or brain stimulations), assess the effect of brain pathology on network dynamics, or discern epileptic networks and predict seizure propagation in silico. The information gained from these simulations can be used as clinical decision support, guiding patient-specific treatment plans. Here the authors provide an overview of the rapidly advancing field of whole-brain modeling and review the literature on neurosurgical applications of this technology.


Subject(s)
Connectome , Epilepsy , Humans , Brain/diagnostic imaging , Brain/surgery , Brain/pathology , Computer Simulation , Connectome/methods , Neuroimaging , Nerve Net
17.
J Neurol Neurosurg Psychiatry ; 95(2): 180-183, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37722831

ABSTRACT

BACKGROUND: Given high rates of early complications and non-reversibility, refined targeting is necessitated for magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy for essential tremor (ET). Selection of lesion location can be informed by considering optimal stimulation area from deep brain stimulation (DBS). METHODS: 118 patients with ET who received DBS (39) or MRgFUS (79) of the ventral intermediate nucleus (VIM) underwent stimulation/lesion mapping, probabilistic mapping of clinical efficacy and normative structural connectivity analysis. The efficacy maps were compared, which depict the relationship between stimulation/lesion location and clinical outcome. RESULTS: Efficacy maps overlap around the VIM ventral border and encompass the dentato-rubro-thalamic tract. While the MRgFUS map extends inferiorly into the posterior subthalamic area, the DBS map spreads inside the VIM antero-superiorly. CONCLUSION: Comparing the efficacy maps of DBS and MRgFUS suggests a potential alternative location for lesioning, more antero-superiorly. This may reduce complications, without sacrificing efficacy, and individualise targeting. TRIAL REGISTRATION NUMBER: NCT02252380.


Subject(s)
Deep Brain Stimulation , Essential Tremor , Humans , Essential Tremor/therapy , Magnetic Resonance Imaging , Thalamus/diagnostic imaging , Thalamus/surgery , Treatment Outcome , Tremor
19.
Nanomedicine ; 56: 102720, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38007067

ABSTRACT

Flow cytometry allows to characterize nanoparticles (NPs) and extracellular vesicles (EVs) but results are often expressed in arbitrary units of fluorescence. We evaluated the precision and accuracy of molecules of equivalent soluble fluorophores (MESF) beads for calibration of NPs and EVs. Firstly, two FITC-MESF bead sets, 2 and 6 um in size, were measured on three flow cytometers. We showed that arbitrary units could not be compared between instruments but after calibration, comparable FITC MESF units were achieved. However, the two calibration bead sets displayed varying slopes that were consistent across platforms. Further investigation revealed that the intrinsic uncertainty related to the MESF beads impacts the robust assignment of values to NPs and EVs based on extrapolation into the dim fluorescence range. Similar variations were found with PE MESF calibration. Therefore, the same calibration materials and numbers of calibration points should be used for reliable comparison of submicron sized particles.


Subject(s)
Extracellular Vesicles , Nanoparticles , Calibration , Fluorescein-5-isothiocyanate , Flow Cytometry/methods , Fluorescent Dyes
20.
J Neurol Neurosurg Psychiatry ; 95(2): 167-170, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37438098

ABSTRACT

BACKGROUND: The loss of the ability to swim following deep brain stimulation (DBS), although rare, poses a worrisome risk of drowning. It is unclear what anatomic substrate and neural circuitry underlie this phenomenon. We report a case of cervical dystonia with lost ability to swim and dance during active stimulation of globus pallidus internus. We investigated the anatomical underpinning of this phenomenon using unique functional and structural imaging analysis. METHODS: Tesla (3T) functional MRI (fMRI) of the patient was used during active DBS and compared with a cohort of four matched patients without this side effect. Structural connectivity mapping was used to identify brain network engagement by stimulation. RESULTS: fMRI during stimulation revealed significant (Pbonferroni<0.0001) stimulation-evoked responses (DBS ON

Subject(s)
Deep Brain Stimulation , Globus Pallidus , Humans , Globus Pallidus/diagnostic imaging , Globus Pallidus/physiology , Deep Brain Stimulation/adverse effects , Deep Brain Stimulation/methods , Treatment Outcome , Magnetic Resonance Imaging
SELECTION OF CITATIONS
SEARCH DETAIL