Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Control Release ; 360: 687-704, 2023 08.
Article in English | MEDLINE | ID: mdl-37442203

ABSTRACT

Microneedles (MNs) are micron-sized protrusions attached to a range of devices that are used in therapeutic delivery and diagnosis. Because MNs can be self-applied, are painless, and can carry multiple therapeutic agents, they have received extensive attention, and have been widely investigated, for local and systemic therapy. Many researchers are currently working to extend the use of MNs to clinical applications. In this review, we provide an update and analysis on MN-based clinical trials since their inception in 2007. The MNs in clinical trials are classified into five types based on their appearance and properties, including: hollow MNs, MN patches, radiofrequency MNs, MN rollers, and other MNs. The various aspects of MN trials are summarized, such as MN types, clinical trial time, and trial regions. This review aims to present an overview of MN development and provide insights for future research in this field. To our knowledge, this is the first review focused on MN clinical trials which showcases the latest applications of this advanced technology in medicine.


Subject(s)
Drug Delivery Systems , Skin , Administration, Cutaneous , Microinjections , Needles
2.
Int J Nanomedicine ; 18: 1031-1045, 2023.
Article in English | MEDLINE | ID: mdl-36855540

ABSTRACT

Background: Curcumin (CUR) is a functional ingredient from the spice turmeric. It has attracted considerable attention recently, owing to its diverse biological activities. However, curcumin has low water solubility, which limited its applications. Some sugar molecules were found to be able to solubilise poorly water-soluble compounds by forming micelles in aqueous solutions. Purpose: To improve the water solubility and oral absorption of CUR, using a non-nutritive natural sweetener, namely, Mogroside V (Mog-V). Methods: A solid dispersion of CUR in Mog-V was prepared using a solvent evaporation method. The solid dispersion was characterised by using X-ray diffraction and differential scanning calorimetry. The solid dispersion can dissolve in water to form micelles with a diameter of ~160 nm, which were characterised by using dynamic light scattering. To find out the mechanism of solubilisation, the aggregation behaviour of Mog-V molecules in aqueous solution was investigated using nuclear magnetic resonance spectroscopy. Finally, oral absorption of CUR in the solid dispersion was evaluated using a rodent model. Results: A solid dispersion was formed in a ratio of 1 CUR to 10 Mog-V by weight. Upon dissolution into water, CUR laden micelles formed via self-assembly of Mog-V molecules, which increased the solubility of CUR by nearly 6000 times compared with pure CUR crystals. In rats, the solid dispersion increased the oral absorption of CUR by 29 folds, compared with CUR crystals. In terms of solubilisation mechanism, it was found that Mog-V self-assembled into micelles with a core-shell structure and CUR molecules were incorporated into the hydrophobic core of the Mog-V micelles. Conclusion: Mog-V can form a solid dispersion with CUR. Upon dissolution in water, the Mog-V in the solid dispersion can self-assemble into micelles, which solubilise CUR and increase its oral absorption.


Subject(s)
Curcumin , Non-Nutritive Sweeteners , Animals , Rats , Sweetening Agents , Micelles , Excipients , Water
SELECTION OF CITATIONS
SEARCH DETAIL