Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 61(27): e202201969, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35467801

ABSTRACT

Oxides composed of an oxygen framework and interstitial cations are promising cathode materials for lithium-ion batteries. However, the instability of the oxygen framework under harsh operating conditions results in fast battery capacity decay, due to the weak orbital interactions between cations and oxygen (mainly 3d-2p interaction). Here, a robust and endurable oxygen framework is created by introducing strong 4s-2p orbital hybridization into the structure using LiNi0.5 Mn1.5 O4 oxide as an example. The modified oxide delivers extraordinarily stable battery performance, achieving 71.4 % capacity retention after 2000 cycles at 1 C. This work shows that an orbital-level understanding can be leveraged to engineer high structural stability of the anion oxygen framework of oxides. Moreover, the similarity of the oxygen lattice between oxide electrodes makes this approach extendable to other electrodes, with orbital-focused engineering a new avenue for the fundamental modification of battery materials.

2.
Polymers (Basel) ; 14(3)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35160564

ABSTRACT

In this article, hierarchical porous carbon (HPC) with high surface area of 1604.9 m2/g is prepared by the pyrolysis of rubberwood sawdust using CaCO3 as a hard template. The bio-oil pyrolyzed from the rubber sawdust, followed by the polymerization reaction to form resole phenolic resin, can be used as a carbon source to prepare HPC. The biomass-derived HPC shows a three-dimensionally interconnected morphology which can offer a continuous pathway for ionic transport. The symmetrical supercapacitors based on the as-prepared HPC were tested in 1.0 M tetraethylammonium tetrafluoroborate/propylene carbonate electrolyte. The results of electrochemical analysis show that the HPC-based supercapacitor exhibits a high specific capacitance of 113.3 F/g at 0.5 A/g with superior rate capability and cycling stability up to 5000 cycles. Hybrid lithium-ion capacitors (LICs) based on the HPC and Li4Ti5O12 (LTO) were also fabricated. The LICs have a maximum energy density of 113.3 Wh/kg at a power density of 281 W/kg. Moreover, the LIC also displays a remarkable cycling performance with a retention of 92.8% after 3000 cycles at a large current density of 0.75 A/g, suggesting great potential application in the energy storage of the LIC.

3.
Adv Mater ; 33(44): e2101413, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34480499

ABSTRACT

The development of reliable and safe high-energy-density lithium-ion batteries is hindered by the structural instability of cathode materials during cycling, arising as a result of detrimental phase transformations occurring at high operating voltages alongside the loss of active materials induced by transition metal dissolution. Originating from the fundamental structure/function relation of battery materials, the authors purposefully perform crystallographic-site-specific structural engineering on electrode material structure, using the high-voltage LiNi0.5 Mn1.5 O4 (LNMO) cathode as a representative, which directly addresses the root source of structural instability of the Fd 3 ¯ m structure. By employing Sb as a dopant to modify the specific issue-involved 16c and 16d sites simultaneously, the authors successfully transform the detrimental two-phase reaction occurring at high-voltage into a preferential solid-solution reaction and significantly suppress the loss of Mn from the LNMO structure. The modified LNMO material delivers an impressive 99% of its theoretical specific capacity at 1 C, and maintains 87.6% and 72.4% of initial capacity after 1500 and 3000 cycles, respectively. The issue-tracing site-specific structural tailoring demonstrated for this material will facilitate the rapid development of high-energy-density materials for lithium-ion batteries.

4.
Polymers (Basel) ; 13(11)2021 May 21.
Article in English | MEDLINE | ID: mdl-34063791

ABSTRACT

Carbon-coated Li4Ti5O12 (LTO) has been prepared using polyimide (PI) as a carbon source via the thermal imidization of polyamic acid (PAA) followed by a carbonization process. In this study, the PI with different structures based on pyromellitic dianhydride (PMDA), 4,4'-oxydianiline (ODA), and p-phenylenediamine (p-PDA) moieties have been synthesized. The effect of the PI structure on the electrochemical performance of the carbon-coated LTO has been investigated. The results indicate that the molecular arrangement of PI can be improved when the rigid p-PDA units are introduced into the PI backbone. The carbons derived from the p-PDA-based PI show a more regular graphite structure with fewer defects and higher conductivity. As a result, the carbon-coated LTO exhibits a better rate performance with a discharge capacity of 137.5 mAh/g at 20 C, which is almost 1.5 times larger than that of bare LTO (94.4 mAh/g).

5.
Angew Chem Int Ed Engl ; 59(26): 10594-10602, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32207203

ABSTRACT

Spinel LiNi0.5 Mn1.5 O4 (LNMO) is a promising cathode candidate for the next-generation high energy-density lithium-ion batteries (LIBs). Unfortunately, the application of LNMO is hindered by its poor cycle stability. Now, site-selectively doped LNMO electrode is prepared with exceptional durability. In this work, Mg is selectively doped onto both tetrahedral (8a) and octahedral (16c) sites in the Fd 3 ‾ m structure. This site-selective doping not only suppresses unfavorable two-phase reactions and stabilizes the LNMO structure against structural deformation, but also mitigates the dissolution of Mn during cycling. Mg-doped LNMOs exhibit extraordinarily stable electrochemical performance in both half-cells and prototype full-batteries with novel TiNb2 O7 counter-electrodes. This work pioneers an atomic-doping engineering strategy for electrode materials that could be extended to other energy materials to create high-performance devices.

6.
Phys Chem Chem Phys ; 18(26): 17183-9, 2016 Jun 29.
Article in English | MEDLINE | ID: mdl-26961230

ABSTRACT

High-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is considered a potential high-power-density positive electrode for lithium-ion batteries, however, it suffers from capacity decay after extended charge-discharge cycling, severely hindering commercial application. Capacity fade is thought to occur through the significant volume change of the LNMO electrode occurring on cycling, and in this work we use operando neutron powder diffraction to compare the structural evolution of the LNMO electrode in an as-assembled 18650-type battery containing a Li4Ti5O12 negative electrode with that in an identical battery following 1000 cycles at high-current. We reveal that the capacity reduction in the battery post cycling is directly proportional to the reduction in the maximum change of the LNMO lattice parameter during its evolution. This is correlated to a corresponding reduction in the MnO6 octahedral distortion in the spinel structure in the cycled battery. Further, we find that the rate of lattice evolution, which reflects the rate of lithium insertion and removal, is ∼9 and ∼10% slower in the cycled than in the as-assembled battery during the Ni(2+)/Ni(3+) and Ni(3+)/Ni(4+) transitions, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...