Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 145(6): 3408-3418, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36724435

ABSTRACT

A mixed-valence oxotrimer metal-organic framework (MOF), Ni-MIL-127, with a fully coordinated nickel atom and two iron atoms in the inorganic node, generates a missing linker defect upon thermal treatment in helium (>473 K) to engender an open coordination site on nickel which catalyzes propylene oligomerization devoid of any cocatalysts or initiators. This catalyst is stable for ∼20 h on stream at 500 kPa and 473 K, unprecedented for this chemistry. The number of missing linkers on synthesized and activated Ni-MIL-127 MOFs is quantified using temperature-programmed oxidation, 1H nuclear magnetic resonance spectroscopy, and X-ray absorption spectroscopy to be ∼0.7 missing linkers per nickel; thus, a majority of Ni species in the MOF framework catalyze propylene oligomerization. In situ NO titrations under reaction conditions enumerate ∼62% of the nickel atoms as catalytically relevant to validate the defect density upon thermal treatment. Propylene oligomerization rates on Ni-MIL-127 measured at steady state have activation energies of 55-67 kJ mol-1 from 448 to 493 K and are first-order in propylene pressures from 5 to 550 kPa. Density functional theory calculations on cluster models of Ni-MIL-127 are employed to validate the plausibility of the missing linker defect and the Cossee-Arlman mechanism for propylene oligomerization through comparisons between apparent activation energies from steady-state kinetics and computation. This study illustrates how MOF precatalysts engender defective Ni species which exhibit reactivity and stability characteristics that are distinct and can be engineered to improve catalytic activity for olefin oligomerization.

2.
Angew Chem Int Ed Engl ; 61(42): e202205575, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36017770

ABSTRACT

An anionic Rh-Ga complex catalyzed the hydrodefluorination of challenging C-F bonds in electron-rich aryl fluorides and trifluoromethylarenes when irradiated with violet light in the presence of H2 , a stoichiometric alkoxide base, and a crown-ether additive. Based on theoretical calculations, the lowest unoccupied molecular orbital (LUMO), which is delocalized across both the Rh and Ga atoms, becomes singly occupied upon excitation, thereby poising the Rh-Ga complex for photoinduced single-electron transfer (SET). Stoichiometric and control reactions support that the C-F activation is mediated by the excited anionic Rh-Ga complex. After SET, the proposed neutral Rh0 intermediate was detected by EPR spectroscopy, which matched the spectrum of an independently synthesized sample. Deuterium-labeling studies corroborate the generation of aryl radicals during catalysis and their subsequent hydrogen-atom abstraction from the THF solvent to generate the hydrodefluorinated arene products. Altogether, the combined experimental and theoretical data support an unconventional bimetallic excitation that achieves the activation of strong C-F bonds and uses H2 and base as the terminal reductant.

3.
Chem Commun (Camb) ; 58(63): 8798-8801, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35838123

ABSTRACT

Completing a series of nickel-group 13 complexes, a coordinatively unsaturated nickel-boron complex and its derivatives with a H2, N2, or hydride ligand were synthesized and characterized. The toggling "on" of a Ni(0)-B(III) inverse-dative bond enabled the stabilization of a nickel-bound anionic hydride with a remarkably low thermodynamic hydricity of kcal mol-1 in THF. The flexible topology of the boron metalloligand confers both favorable hydrogen binding affinity and strong hydride donicity, albeit at the cost of high H2 basicity during deprotonation to form the hydride.

4.
Chem Sci ; 13(22): 6525-6531, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35756529

ABSTRACT

Odd-electron bonds have unique electronic structures and are often encountered as transiently stable, homonuclear species. In this study, a pair of copper complexes supported by Group 13 metalloligands, M[N((o-C6H4)NCH2PiPr2)3] (M = Al or Ga), featuring two-center/one-electron (2c/1e) σ-bonds were synthesized by one-electron reduction of the corresponding Cu(i) ⇢ M(III) counterparts. The copper bimetallic complexes were investigated by X-ray diffraction, cyclic voltammetry, electron paramagnetic spectroscopy, and density functional theory calculations. The combined experimental and theoretical data corroborate that the unpaired spin is delocalized across Cu, M, and ancillary atoms, and the singly occupied molecular orbital (SOMO) corresponds to a σ-(Cu-M) bond involving the Cu 4pz and M ns/npz atomic orbitals. Collectively, the data suggest the covalent nature of these interactions, which represent the first examples of odd-electron σ-bonds for the heavier Group 13 elements Al and Ga.

5.
J Am Chem Soc ; 143(48): 20274-20280, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34817993

ABSTRACT

Nickel-functionalized UiO-66 metal organic frameworks (MOFs) oligomerize ethylene in the absence of cocatalysts or initiators after undergoing ethylene-pressure-dependent transients and maintain stable oligomerization rates for >15 days on stream. Higher ethylene pressures shorten induction periods and engender more active sites for ethylene oligomerization; these sites exhibit invariant selectivity-conversion characteristics to justify that only one type of catalytic center is relevant for oligomerization. The number of active sites is estimated using in situ NO titration to disambiguate the effect of increased reaction rates upon exposure to increasing ethylene pressures. After accounting for augmented site densities with increasing ethylene pressures, ethylene oligomerization is first order in ethylene pressure from 100 to 1800 kPa with an activation energy of 81 kJ mol-1 at temperatures from 443-503 K on Ni/UiO-66. A representative Ni/UiO-66 cluster model that mimics high ethylene pressure process conditions is validated with ab initio thermodynamic analysis, and the Cossee-Arlman mechanism is posited based on comparisons between experimental and computed activation enthalpies from density functional theory calculations on these cluster models of Ni/UiO-66. The insights gained from experiment and theory help rationalize evolution in structure and stability for ethylene oligomerization Ni/UiO-66 MOF catalysts.

6.
J Phys Chem Lett ; 12(40): 9812-9820, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34597514

ABSTRACT

We demonstrate an alternative, data-driven approach to uncovering structure-property relationships for the rational design of heterobimetallic transition-metal complexes that exhibit metal-metal bonding. We tailor graph-based representations of the metal-local environment for these complexes for use in multiple linear regression and kernel ridge regression (KRR) models. We curate a set of 28 experimentally characterized complexes to develop a multiple linear regression model for oxidation potentials. We achieve good accuracy (mean absolute error of 0.25 V) and preserve transferability to unseen experimental data with a new ligand structure. We also train a KRR model on a subset of 330 structurally characterized heterobimetallics to predict the degree of metal-metal bonding. This KRR model predicts relative metal-metal bond lengths in the test set to within 5%, and analysis of key features reveals the fundamental atomic contributions (e.g., the valence electron configuration) that most strongly influence the behavior of these complexes. Our work provides guidance for rational bimetallic design, suggesting that properties, including the formal shortness ratio, should be transferable from one period to another.

7.
J Am Chem Soc ; 143(31): 12165-12174, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34314584

ABSTRACT

Recent work has exploited the ability of metal-organic frameworks (MOFs) to isolate Fe sites that mimic the structures of sites in enzymes that catalyze selective oxidations at low temperatures, opening new pathways for the valorization of underutilized feedstocks such as methane. Questions remain as to whether the radical-rebound mechanism commonly invoked in enzymatic and homogeneous systems also applies in these rigid-framework materials, in which resisting the overoxidation of desired products is a major challenge. We demonstrate that MOFs bearing Fe(II) sites within Fe3-µ3-oxo nodes active for conversion of CH4 + N2O mixtures (368-408 K) require steps beyond the radical-rebound mechanism to protect the desired CH3OH product. Infrared spectra and density functional theory show that CH3OH(g) is stabilized as Fe(III)-OCH3 groups on the MOF via hydrogen atom transfer with Fe(III)-OH groups, eliminating water. Consequently, upon addition of a protonic zeolite in inter- and intrapellet mixtures with the MOF, we observed increases in CH3OH selectivity with increasing ratio and proximity of zeolitic H+ to MOF-based Fe(II) sites, as methanol is protected within the zeolite. We infer from the data that CH3OH(g) is formed via the radical-rebound mechanism on Fe(II) sites but that subsequent transport and dehydration steps are required to protect CH3OH(g) from overoxidation. The results demonstrate that the radical-rebound mechanism commonly invoked in this chemistry is insufficient to explain the reactivity of these systems, that the selectivity-controlling steps involve both chemical and physical rate phenomena, as well as offering a strategy to mitigate overoxidation in these and similar systems.

8.
Angew Chem Int Ed Engl ; 60(27): 15087-15094, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-33871130

ABSTRACT

Pincer-type nickel-aluminum complexes were synthesized using two equivalents of the phosphinoamide, [PhNCH2 Pi Pr2 ]- . The Ni0 -AlIII complexes, {(Mes PAlP)Ni}2 (µ-N2 ) and {(Mes PAlP)Ni}2 (µ-COD), where Mes PAlP is (Mes)Al(NPhCH2 Pi Pr2 )2 , were structurally characterized. The (PAlP)Ni system exhibited cooperative bond cleavage mediated by the two-site Ni-Al unit, including oxidative addition of aryl halides, H2 activation, and ortho-directed C-H bond activation of pyridine N-oxide. One intriguing reaction is the reversible intramolecular transfer of the mesityl ring from the Al to the Ni site, which is evocative of the transmetalation step during cross-coupling catalysis. The aryl-transfer product,(THF)Al(NPhCH2 Pi Pr2 )2 Ni(Mes), is the first example of a first-row transition metal-aluminyl pincer complex. The addition of a judicious donor enables the Al metalloligand to convert reversibly between the alane and aluminyl forms via aryl group transfer to and from Ni, respectively. Theoretical calculations support a zwitterionic Niδ- -Alδ+ electronic structure in the nickel-aluminyl complex.

9.
Chem Sci ; 12(6): 1961-1963, 2021 Feb 14.
Article in English | MEDLINE | ID: mdl-35340399

ABSTRACT

François Gabbaï, Cameron Jones and Connie Lu introduce the Chemical Science themed collection on the topic of main group elements in polynuclear complexes.

10.
Inorg Chem ; 59(19): 14251-14262, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32954721

ABSTRACT

Nature utilizes multimetallic sites in metalloenzymes to enable multielectron chemical transformations at ambient conditions and low overpotentials. One such example of multimetallic cooperativity can be found in the C-cluster of Ni-carbon monoxide dehydrogenase (CODH), which interconverts CO and CO2. Toward a potential functional model of the C-cluster, a family of Ni-Fe bimetallic complexes was synthesized that contain direct metal-metal bonding interactions. The complexes were characterized by X-ray crystallography, various spectroscopies (NMR, EPR, UV-vis, Mössbauer), and theoretical calculations. The Ni-Fe bimetallic system has a reversible Fe(III)/Fe(II) redox couple at -2.10 V (vs Fc+/Fc). The Fe-based "redox switch" can turn on CO2 reactivity at the Ni(0) center by leveraging the Ni→Fe dative interaction to attenuate the Ni(0) electron density. The reduced Ni(0)Fe(II) species mediated the formal two-electron reduction of CO2 to CO, providing a Ni-CO adduct and CO32- as products. During the reaction, an intermediate was observed that is proposed to be a Ni-CO2 species.


Subject(s)
Biomimetic Materials/chemistry , Coordination Complexes/chemistry , Iron/chemistry , Nickel/chemistry , Carbon Dioxide/chemistry , Ligands
11.
Chem Commun (Camb) ; 56(75): 11030-11033, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32808961

ABSTRACT

A tin-supported iron catalyst produces 5.9 turnovers of NH3 from N2, using [Ph2NH2]OTf as the acid and CoCp2* as the reductant. Two redox states of the Fe(N2) adduct and an Fe silyldiazenido complex were characterized using X-ray crystallography along with NMR and Mössbauer spectroscopies. Density functional theory calculations reveal that the charge on the Sn center correlates strongly with both the polarization of the N2 moiety and the charge on the distal N atom.

12.
J Am Chem Soc ; 142(27): 11641-11646, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32551625

ABSTRACT

A homogeneous rhodium-indium catalyst hydrodefluorinates substrates bearing strong aryl C-F bonds, including difluoro- and fluorobenzene, using 1 atm of H2, alkoxide bases, and moderate temperatures (70-90 °C). Characterization of catalytic intermediates establishes a formal Rh-I/RhI redox cycle. The Rh → In interaction is proposed to enable catalysis by stabilizing the reactive Rh-I species, which is responsible for cleaving the Ar-F bond and is ultimately regenerated using H2 and base.

13.
J Am Chem Soc ; 142(11): 5396-5407, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32091218

ABSTRACT

Bimetallic catalysts of nickel(0) with a trivalent rare-earth ion or Ga(III), NiML3 (where L is [iPr2PCH2NPh]-, and M is Sc, Y, La, Lu, or Ga), were investigated for the selective hydrogenation of diphenylacetylene (DPA) to (E)-stilbene. Each bimetallic complex features a relatively short Ni-M bond length, ranging from 2.3395(8) Å (Ni-Ga) to 2.5732(4) Å (Ni-La). The anodic peak potentials of the NiML3 complexes vary from -0.48 V to -1.23 V, where the potentials are negatively correlated with the Lewis acidity of the M(III) ion. Three catalysts, Ni-Y, Ni-Lu, and Ni-Ga, showed nearly quantitative conversions in the semihydrogenation of DPA, with NiYL3 giving the highest selectivity for (E)-stilbene. Initial rate studies were performed on the two tandem catalytic reactions: DPA hydrogenation and (Z)-stilbene isomerization. The catalytic activity in DPA hydrogenation follows the order Ni-Ga > Ni-La > Ni-Y > Ni-Lu > Ni-Sc. The ranking of catalysts by (Z)-stilbene isomerization initial rates is Ni-Ga ≫ Ni-Sc > Ni-Lu > Ni-Y > Ni-La. In operando 31P and 1H NMR studies revealed that in the presence of DPA, the Ni bimetallic complexes supported by Y, Lu, and La form the Ni(η2-alkyne) intermediate, (η2-PhC≡CPh)Ni(iPr2PCH2NPh)2M(κ2-iPr2PCH2NPh). In contrast, the Ni-Ga resting state is the Ni(η2-H2) species, and Ni-Sc showed no detectable binding of either substrate. Hence, the mechanism of Ni-catalyzed diphenylacetylene semihydrogenation adheres to two different kinetics: an autotandem pathway (Ni-Ga, Ni-Sc) versus temporally separated tandem reactions (Ni-Y, Ni-Lu, Ni-La). Collectively, the experimental results demonstrate that modulating a base-metal center via a covalently appended Lewis acidic support is viable for promoting selective alkyne semihydrogenation.

14.
J Am Chem Soc ; 141(45): 18142-18151, 2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31670511

ABSTRACT

Metal organic frameworks (MOFs), with their crystalline, porous structures, can be synthesized to incorporate a wide range of catalytically active metals in tailored surroundings. These materials have potential as catalysts for conversion of light alkanes, feedstocks available in large quantities from shale gas that are changing the economics of manufacturing commodity chemicals. Mononuclear high-spin (S = 2) Fe(II) sites situated in the nodes of the MOF MIL-100(Fe) convert propane via dehydrogenation, hydroxylation, and overoxidation pathways in reactions with the atomic oxidant N2O. Pair distribution function analysis, N2 adsorption isotherms, X-ray diffraction patterns, and infrared and Raman spectra confirm the single-phase crystallinity and stability of MIL-100(Fe) under reaction conditions (523 K in vacuo, 378-408 K C3H8 + N2O). Density functional theory (DFT) calculations illustrate a reaction mechanism for the formation of 2-propanol, propylene, and 1-propanol involving the oxidation of Fe(II) to Fe(III) via a high-spin Fe(IV)═O intermediate. The speciation of Fe(II) and Fe(III) in the nodes and their dynamic interchange was characterized by in situ X-ray absorption spectroscopy and ex situ Mössbauer spectroscopy. The catalytic relevance of Fe(II) sites and the number of such sites were determined using in situ chemical titrations with NO. N2 and C3H6 production rates were found to be first-order in N2O partial pressure and zero-order in C3H8 partial pressure, consistent with DFT calculations that predict the reaction of Fe(II) with N2O to be rate determining. DFT calculations using a broken symmetry method show that Fe-trimer nodes affecting reaction contain antiferromagnetically coupled iron species, and  highlight the importance of stabilizing high-spin (S = 2) Fe(II) species for effecting alkane oxidation at low temperatures (<408 K).

15.
Chem Sci ; 10(29): 7029-7042, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31588270

ABSTRACT

Understanding H2 binding and activation is important in the context of designing transition metal catalysts for many processes, including hydrogenation and the interconversion of H2 with protons and electrons. This work reports the first thermodynamic and kinetic H2 binding studies for an isostructural series of first-row metal complexes: NiML, where M = Al (1), Ga (2), and In (3), and L = [N(o-(NCH2PiPr2)C6H4)3]3-. Thermodynamic free energies (ΔG°) and free energies of activation (ΔG ‡) for binding equilibria were obtained via variable-temperature 31P NMR studies and lineshape analysis. The supporting metal exerts a large influence on the thermodynamic favorability of both H2 and N2 binding to Ni, with ΔG° values for H2 binding found to span nearly the entire range of previous reports. The non-classical H2 adduct, (η2-H2)NiInL (3-H2), was structurally characterized by single-crystal neutron diffraction-the first such study for a Ni(η2-H2) complex or any d10 M(η2-H2) complex. UV-Vis studies and TD-DFT calculations identified specific electronic structure perturbations of the supporting metal which poise NiML complexes for small-molecule binding. ETS-NOCV calculations indicate that H2 binding primarily occurs via H-H σ-donation to the Ni 4p z -based LUMO, which is proposed to become energetically accessible as the Ni(0)→M(iii) dative interaction increases for the larger M(iii) ions. Linear free-energy relationships are discussed, with the activation barrier for H2 binding (ΔG ‡) found to decrease proportionally for more thermodynamically favorable equilibria. The ΔG° values for H2 and N2 binding to NiML complexes were also found to be more exergonic for the larger M(iii) ions.

16.
Inorg Chem ; 58(15): 10139-10147, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31329432

ABSTRACT

Novel heterobimetallic complexes featuring a uranium atom paired with a first-row transition metal have been computationally predicted and analyzed using density functional theory and multireference wave function based methods. The synthetically inspired metalloligands U{(iPr2PCH2NAr)3tacn} (1) and U(iPr2PCH2NPh)3 (2) are explored in this study. We report the presence of multiple bonds between uranium and chromium, uranium and manganese, and uranium and iron. The calculations predict a 5-fold bonding between uranium and manganese in the UMn(iPr2PCH2NPh)3 complex, which is unprecedented in the literature.

17.
Inorg Chem ; 58(9): 6199-6214, 2019 May 06.
Article in English | MEDLINE | ID: mdl-30957996

ABSTRACT

Previously, we reported the synthesis of Ti[N( o-(NCH2P( iPr)2)C6H4)3] and the Fe-Ti complex, FeTi[N( o-(NCH2P( iPr)2)C6H4)3], abbreviated as TiL (1), and FeTiL (2), respectively. Herein, we describe the synthesis and characterization of the complete redox families of the monometallic Ti and Fe-Ti compounds. Cyclic voltammetry studies on FeTiL reveal both reduction and oxidation processes at -2.16 and -1.36 V (versus Fc/Fc+), respectively. Two isostructural redox members, [FeTiL]+ and [FeTiL]- (2ox and 2red, respectively) were synthesized and characterized, along with BrFeTiL (2-Br) and the monometallic [TiL]+ complex (1ox). The solid-state structures of the [FeTiL]+/0/- series feature short metal-metal bonds, ranging from 1.94-2.38 Å, which are all shorter than the sum of the Ti and Fe single-bond metallic radii (cf. 2.49 Å). To elucidate the bonding and electronic structures, the complexes were characterized with a host of spectroscopic methods, including NMR, EPR, and 57Fe Mössbauer, as well as Ti and Fe K-edge X-ray absorption spectroscopy (XAS). These studies, along with hybrid density functional theory (DFT) and time-dependent DFT calculations, suggest that the redox processes in the isostructural [FeTiL]+,0,- series are primarily Fe-based and that the polarized Fe-Ti π-bonds play a role in delocalizing some of the additional electron density from Fe to Ti (net 13%).

18.
Chem Sci ; 10(11): 3375-3384, 2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30996926

ABSTRACT

We present three heterobimetallic complexes containing an isostructural nickel center and a lutetium ion in varying coordination environments. The bidentate iPr2PCH2NHPh and nonadentate (iPr2PCH2NHAr)3tacn ligands were used to prepare the Lu metalloligands, Lu(iPr2PCH2NPh)3 (1) and Lu{(iPr2PCH2NAr)3tacn} (2), respectively. Reaction of Ni(COD)2 (where COD is 1,5-cyclooctadiene) and 1 afforded NiLu(iPr2PCH2NPh)3 (3), with a Lu coordination number (CN) of 4 and a Ni-Lu distance, d(Ni-Lu), of 2.4644(2) Å. Complex 3 can further bind THF to form 3-THF, increasing both the Lu CN to 5 and d(Ni-Lu) to 2.5989(4) Å. On the other hand, incorporation of Ni(0) into 2 provides NiLu{(iPr2PCH2NAr)3tacn} (4), in which the Lu coordination environment is more saturated (CN = 6), and the d(Ni-Lu) is substantially elongated at 2.9771(5) Å. Cyclic voltammetry of the three Ni-Lu complexes shows an overall ∼410 mV shift in the Ni(0/I) redox couple, suggesting tunability of the Ni electronics across the series. Computational studies reveal polarized bonding interactions between the Ni 3d z 2 (major) and the Lu 5d z 2 (minor) orbitals, where the percentage of Lu character increases in the order: 4 (6.0% Lu 5d z 2 ) < 3-THF (8.5%) < 3 (9.3%). All three Ni-Lu complexes bind H2 at low temperatures (-30 to -80 °C) and are competent catalysts for styrene hydrogenation. Complex 3 outperforms 4 with a four-fold faster rate. Additionally, adding increasing THF equivalents to 3, which would favor build-up of 3-THF, decreases the rate. We propose that altering the coordination sphere of the Lu support can influence the resulting properties and catalytic activity of the active Ni(0) metal center.

19.
J Am Chem Soc ; 140(45): 15309-15318, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30352506

ABSTRACT

Promoters are ubiquitous in industrial heterogeneous catalysts. The wider roles of promoters in accelerating catalysis and/or controlling selectivity are, however, not well understood. A model system has been developed where a heterobimetallic active site comprising an active metal (Rh) and a promoter ion (Ga) is preassembled and delivered onto a metal-organic framework (MOF) support, NU-1000. The Rh-Ga sites in NU-1000 selectively catalyze the hydrogenation of acyclic alkynes to E-alkenes. The overall stereoselectivity is complementary to the well-known Lindlar's catalyst, which generates Z-alkenes. The role of the Ga in promoting this unusual selectivity is evidenced by the lack of semihydrogenation selectivity when Ga is absent and only Rh is present in the active site.

20.
Angew Chem Int Ed Engl ; 57(26): 7815-7819, 2018 06 25.
Article in English | MEDLINE | ID: mdl-29719097

ABSTRACT

Formal nickelate(-I) complexes bearing Group 13 metalloligands (M=Al and Ga) were isolated. These 17 e- complexes were synthesized by one-electron reduction of the corresponding Ni0 →MIII precursors, and were investigated by single-crystal X-ray diffraction, EPR spectroscopy, and quantum chemical calculations. Collectively, the experimental and computational data support: 1) the strengthening of the Ni-M bond upon one-electron reduction, and 2) the delocalization of the unpaired spin across the Ni and M atoms. An intriguing electronic configuration is revealed where three valence electrons occupy two σ-type bonding interactions: Ni(3dz2 )2 →M and σ-(Ni-M)1 . The latter is an unusual Ni-M σ-bonding molecular orbital that comprises primarily the Ni 4pz and M npz /ns atomic orbitals.

SELECTION OF CITATIONS
SEARCH DETAIL
...