Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Front Surg ; 11: 1265360, 2024.
Article in English | MEDLINE | ID: mdl-38464666

ABSTRACT

Diabetic foot ulcers (DFUs) are common chronic wounds and a common complication of diabetes. The foot is the main site of diabetic ulcers, which involve small and medium-sized arteries, peripheral nerves, and microcirculation, among others. DFUs are prone to coinfections and affect many diabetic patients. In recent years, interdisciplinary research combining medicine and material science has been increasing and has achieved significant clinical therapeutic effects, and the application of vacuum sealing drainage (VSD) in the treatment of DFUs is a typical representative of this progress, but the mechanism of action remains unclear. In this review, we integrated bioinformatics and literature and found that ferroptosis is an important signaling pathway through which VSD promotes the healing of DFUs and that System Xc-GSH-GPX4 and NAD(P)H-CoQ10-FSP1 are important axes in this signaling pathway, and we speculate that VSD is most likely to inhibit ferroptosis to promote DFU healing through the above axes. In addition, we found that some classical pathways, such as the TNF, NF-κB, and Wnt/ß-catenin pathways, are also involved in the VSD-mediated promotion of DFU healing. We also compiled and reviewed the progress from clinical studies on VSD, and this information provides a reference for the study of VSD in the treatment of DFUs.

2.
Heliyon ; 10(2): e24602, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38298641

ABSTRACT

The impaired healing of chronic wounds is often attributed to the ischemic and hypoxic microenvironment, leading to increased cell death. Ferroptosis, a novel form of cell death unveiled in recent years, could potentially be linked with the process of wound healing. In this study, we explored the significance and mechanism of ferroptosis in ischemic wounds. Using transmission electron microscopy, Western blot, flow cytometry, immunofluorescence, and glutathione (GSH) assay, we observed that the death of primary mouse skin fibroblasts induced by oxygen and glucose deprivation (OGD) was associated with ferroptosis. Specifically, we observed elevated intracellular Fe2+ and lipid peroxidation levels and decreased GSH levels in vitro, indicative of ferroptosis. Importantly, we found that ferroptosis in OGD-treated skin fibroblasts was dependent on autophagy, as the autophagy inhibitor chloroquine phosphate (CHQ) significantly reduced ferroptosis induced by OGD. Moreover, our study revealed that NCOA4-mediated ferritinophagy significantly contributed to the occurrence of ferroptosis induced by OGD in skin fibroblasts. Additionally, we identified the involvement of YAP in the regulation of ferritinophagy, with YAP suppressing NCOA4 expression in OGD-treated skin fibroblasts, thereby reducing ferroptosis. Furthermore, in ischemic wound models in mice, both inhibitors of ferroptosis and autophagy promoted wound healing, while a YAP inhibitor, verteporfin, delayed wound healing. In conclusion, these findings indicate that ferroptosis, regulated by YAP through ferritinophagy inhibition, presents a novel mechanism responsible for the delayed healing of ischemic wounds. Understanding this process could offer promising therapeutic targets to improve wound healing in ischemic conditions.

3.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167012, 2024 03.
Article in English | MEDLINE | ID: mdl-38176461

ABSTRACT

Wound healing is delayed in diabetic patients. Increased autophagy and dysfunction of interfollicular epidermal (IFE) cells are closely associated with delayed healing of diabetic wounds. Autophagy plays an important role in all stages of wound healing, but its role in diabetic wound healing and the underlying molecular mechanisms are not clear. Here, we found that diabetic mice had delayed wound healing and increased autophagy in wounds compared with normal mice and that chloroquine, an inhibitor of autophagy, decreased the level of autophagy, improved the function of IFE cells, and accelerated wound healing in diabetic mice. Treatment of IFE cells with advanced glycosylation end products (AGEs) resulted in increased microtubule-associated protein chain (LC3) expression and decreased prostacyclin-62 (P62) expression, indicating increased autophagy in AGE-treated IFE cells. Moreover, P75NTR reduced autophagy in IFE cells in the presence of AGEs and significantly increased the proliferation of IFE cells. In addition, P75NTR participated in regulating autophagy in IFE cells and in wounds in diabetic mice through the YAP-mTOR signalling pathway, which increased the functional activity of the cells and the healing rate of wounds in diabetic mice. Thus, our study suggests that P75NTR protects IFE cells against AGEs by affecting autophagy and accelerating wound healing in diabetic mice, providing a basis for understanding the role of autophagy in diabetic wound healing.


Subject(s)
Diabetes Mellitus, Experimental , Animals , Humans , Mice , Autophagy , Cell Proliferation , Diabetes Mellitus, Experimental/complications , Epidermal Cells/metabolism , TOR Serine-Threonine Kinases/metabolism , Wound Healing/physiology
4.
Sci Rep ; 13(1): 18978, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37923899

ABSTRACT

The heterogeneity of hepatocellular carcinoma (HCC) poses a challenge for accurate prognosis prediction. DNA damage repair genes (DDRGs) have an impact on a wide range of malignancies. However, the relevance of these genes in HCC prognosis has received little attention. In this study, we aimed to develop a prognostic signature to identify novel therapy options for HCC. We acquired mRNA expression profiles and clinical data for HCC patients from The Cancer Genome Atlas (TCGA) database. A polygenic prognostic model for HCC was constructed using selection operator Cox analysis and least absolute shrinkage. The model was validated using International Cancer Genome Consortium (ICGC) data. Overall survival (OS) between the high-risk and low-risk groups was compared using Kaplan‒Meier analysis. Independent predictors of OS were identified through both univariate and multivariate Cox analyses. To determine immune cell infiltration scores and activity in immune-related pathways, a single-sample gene set enrichment analysis was performed. The protein and mRNA expression levels of the prognostic genes between HCC and normal liver tissues were also examined by immunohistochemistry (IHC), immunofluorescence (IF) and quantitative real-time PCR (qRT-PCR). A novel ten-gene signature (CHD1L, HDAC1, KPNA2, MUTYH, PPP2R5B, NEIL3, POLR2L, RAD54B, RUVBL1 and SPP1) was established for HCC prognosis prediction. Patients in the high-risk group had worse OS than those in the low-risk group. Receiver operating characteristic curve analysis confirmed the predictive ability of this prognostic gene signature. Multivariate Cox analysis showed that the risk score was an independent predictor of OS. Functional analysis revealed a strong association with cell cycle and antigen binding pathways, and the risk score was highly correlated with tumor grade, tumor stage, and types of immune infiltrate. High expression levels of the prognostic genes were significantly correlated with increased sensitivity of cancer cells to antitumor drugs. IHC, IF and qRT-PCR all indicated that the prognostic genes were highly expressed in HCC relative to normal liver tissue, consistent with the results of bioinformatics analysis. Ten DDRGs were utilized to create a new signature for identifying the immunological state of HCC and predicting prognosis. In addition, blocking these genes could represent a promising treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Prognosis , DNA Damage , RNA, Messenger/genetics , ATPases Associated with Diverse Cellular Activities , Carrier Proteins , DNA Helicases/genetics , DNA-Binding Proteins
5.
Immun Inflamm Dis ; 11(10): e1036, 2023 10.
Article in English | MEDLINE | ID: mdl-37904700

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM), which has a high incidence and several harmful consequences, poses a severe danger to human health. Research on the function of ferroptosis in T2DM is increasing. This study uses bioinformatics techniques identify new diagnostic T2DM biomarkers associated with ferroptosis. METHODS: To identify ferroptosis-related genes (FRGs) that are differentially expressed between T2DM patients and healthy individuals, we first obtained T2DM sequencing data and FRGs from the Gene Expression Omnibus (GEO) database and FerrDb database. Then, drug-gene interaction networks and competitive endogenous RNA (ceRNA) networks linked to the marker genes were built after marker genes were filtered by two machine learning algorithms (LASSO and SVM-RFE algorithms). Finally, to confirm the expression of marker genes, the GSE76895 dataset was utilized. The protein and RNA expression of some marker genes in T2DM and nondiabetic tissues was also examined by Western blotting, immunohistochemistry (IHC), immunofluorescence (IF) and quantitative real-time PCR (qRT-PCR). RESULTS: We obtained 58 differentially expressed genes (DEGs) associated with ferroptosis. GO and KEGG enrichment analyses showed that these DEGs were significantly enriched in hypoxia and ferroptosis. Subsequently, eight marker genes (SCD, CD44, HIF1A, BCAT2, MTF1, HILPDA, NR1D2, and MYCN) were screened by LASSO and SVM-RFE machine learning algorithms, and a model was constructed based on these eight genes. This model also has high diagnostic power. In addition, based on these eight genes, we obtained 48 drugs and constructed a complex ceRNA network map. Finally, Western blotting, IHC, IF, and qRT-PCR results of clinical samples further confirmed the results of public databases. CONCLUSIONS: The diagnosis and aetiology of T2DM can be greatly aided by eight FRGs, providing novel therapeutic avenues.


Subject(s)
Diabetes Mellitus, Type 2 , Ferroptosis , Humans , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Ferroptosis/genetics , Algorithms , Machine Learning , RNA
6.
Sci Rep ; 13(1): 132, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36599852

ABSTRACT

Naringenin is a citrus flavonoid with various biological functions and a potential therapeutic agent for skin diseases, such as UV radiation and atopic dermatitis. The present study investigates the therapeutic effect and pharmacological mechanism of naringenin on chronic wounds. Using network pharmacology, we identified 163 potential targets and 12 key targets of naringenin. Oxidative stress was confirmed to be the main biological process modulated by naringenin. The transcription factor p65 (RELA), alpha serine/threonine-protein kinase (AKT1), mitogen-activated protein kinase 1 (MAPK1) and mitogen-activated protein kinase 3 (MAPK3) were identified as common targets of multiple pathways involved in treating chronic wounds. Molecular docking verified that these four targets stably bound naringenin. Naringenin promoted wound healing in mice in vivo by inhibiting wound inflammation. Furthermore, in vitro experiments showed that a low naringenin concentration did not significantly affect normal skin cell viability and cell apoptosis; a high naringenin concentration was cytotoxic and reduced cell survival by promoting apoptosis. Meanwhile, comprehensive network pharmacology, molecular docking and in vivo and in vitro experiments revealed that naringenin could treat chronic wounds by alleviating oxidative stress and reducing the inflammatory response. The underlying mechanism of naringenin in chronic wound therapy involved modulating the RELA, AKT1 and MAPK1/3 signalling pathways to inhibit ROS production and inflammatory cytokine expression.


Subject(s)
Flavanones , Network Pharmacology , Wound Healing , Animals , Mice , Flavanones/pharmacology , Flavanones/therapeutic use , Molecular Docking Simulation , Network Pharmacology/methods , Oxidative Stress/drug effects , Wound Healing/drug effects
7.
Front Pharmacol ; 14: 1291099, 2023.
Article in English | MEDLINE | ID: mdl-38161691

ABSTRACT

Objective: Gongying-Jiedu-Xiji recipe (DDL, batch number Z01080175) reduces body temperature, detoxifies, activates the blood circulation, reduces swelling, and dispels decay and pus. The aim of this study was to investigate the mechanism of action by which DDL functions in the treatment of venous ulcers (VUs). Methods: Normal tissues as well as VU tissues before and after DDL treatment were collected from nine VU patients in the hospital with ethical approval. These three tissues were subjected to Prussian blue iron staining, immunoblotting, immunohistochemistry, immunofluorescence, and quantitative real-time PCR to detect the expression of ferroptosis suppressor protein 1 (FSP1), coenzyme Q (CoQ), 4-hydroxynonenal (4-HNE), and glutathione peroxidase 4 (GPX4). After successful validation of the heme-induced human foreskin fibroblast (HFF) ferroptosis model, lyophilized DDL powder was added to the cells, and the cells were subjected to viability assays, immunoblotting, flow cytometry, glutathione (GSH) and malonaldehyde (MDA) assays, electron microscopy and qPCR assays. Results: Ferroptosis in VU tissues was stronger than that in normal tissues, and ferroptosis in VU tissues after DDL treatment was weaker than that before treatment. Inhibition of CoQ and FSP1 and transfection of FSP1 influenced the effects of DDL. Conclusion: Our results suggest that DDL may promote healing by attenuating ferroptosis in VUs and that DDL may promote VU healing by modulating the CoQ-FSP1 axis.

8.
Front Surg ; 9: 966375, 2022.
Article in English | MEDLINE | ID: mdl-36303853

ABSTRACT

Background: Skin innervation plays an important role in wound healing by either direct contact with or indirect secretions that impact skin cells. Many studies in this field have been published; however, there is a lack of bibliometric analyses focusing on the effect of skin innervation on skin wound healing. In this study, we aimed to analyse the research trends, status, and hotspots in this field. Methods: Reviews and articles published in English were extracted from the Web of Science Core Collection (WoSCC) database based on subject term searches. Microsoft Office Excel, VOSviewer, and CiteSpace were used to analyse publication date, country or region, institution, author, and author keywords. Results: A total of 368 papers published between 1959 and 2022 were included in the analysis. Although there was a pulsation during this period, there was an overall upward trend in studies related to the effect of skin innervation on wound healing. The United States, particularly the University of Washington, and Gibran, Nicole S. from the University of Washington, was the most active in this field. Wound Repair and Regeneration published the most relevant literature, and "Calcitonin gene-related peptide: physiology and pathophysiology" had the highest total number of citations. "Diabetic foot ulcer," "epidermal stem cells," "mesenchymal stem cells," and "mast cells" are current and potential future research hotspots. Conclusion: This bibliometric analysis will inform the overall trends in research related to the effect of skin innervation on wound healing, summarise relevant research hotspots, and guide future work.

SELECTION OF CITATIONS
SEARCH DETAIL