Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(17): eabm3945, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35476441

ABSTRACT

The epigenetic process safeguards cell identity during cell division through the inheritance of appropriate gene expression profiles. We demonstrated previously that parental nucleosomes are inherited by the same chromatin domains during DNA replication only in the case of repressed chromatin. We now show that this specificity is conveyed by NPM1, a histone H3/H4 chaperone. Proteomic analyses of late S-phase chromatin revealed NPM1 in association with both H3K27me3, an integral component of facultative heterochromatin, and MCM2, an integral component of the DNA replication machinery; moreover, NPM1 interacts directly with PRC2 and with MCM2. Given that NPM1 is essential, the inheritance of repressed chromatin domains was examined anew using mESCs expressing an auxin-degradable version of endogenous NPM1. Upon NPM1 degradation, cells accumulated in the G1-S phase of the cell cycle and parental nucleosome inheritance from repressed chromatin domains was markedly compromised. NPM1 chaperone activity may contribute to the integrity of this process as appropriate inheritance required the NPM1 acidic patches.

2.
Nat Immunol ; 19(9): 973-985, 2018 09.
Article in English | MEDLINE | ID: mdl-30127434

ABSTRACT

Human inborn errors of IFN-γ immunity underlie mycobacterial diseases. We describe patients with Mycobacterium bovis (BCG) disease who are homozygous for loss-of-function mutations of SPPL2A. This gene encodes a transmembrane protease that degrades the N-terminal fragment (NTF) of CD74 (HLA invariant chain) in antigen-presenting cells. The CD74 NTF therefore accumulates in the HLA class II+ myeloid and lymphoid cells of SPPL2a-deficient patients. This toxic fragment selectively depletes IL-12- and IL-23-producing CD1c+ conventional dendritic cells (cDC2s) and their circulating progenitors. Moreover, SPPL2a-deficient memory TH1* cells selectively fail to produce IFN-γ when stimulated with mycobacterial antigens in vitro. Finally, Sppl2a-/- mice lack cDC2s, have CD4+ T cells that produce small amounts of IFN-γ after BCG infection, and are highly susceptible to infection with BCG or Mycobacterium tuberculosis. These findings suggest that inherited SPPL2a deficiency in humans underlies mycobacterial disease by decreasing the numbers of cDC2s and impairing IFN-γ production by mycobacterium-specific memory TH1* cells.


Subject(s)
Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Dendritic Cells/immunology , Membrane Proteins/metabolism , Mycobacterium Infections/immunology , Mycobacterium bovis/physiology , Mycobacterium tuberculosis/physiology , Th1 Cells/immunology , Tuberculosis/immunology , Animals , Antigens, Differentiation, B-Lymphocyte/metabolism , Cells, Cultured , HLA Antigens/metabolism , Histocompatibility Antigens Class II/metabolism , Humans , Immunity , Immunologic Memory , Infant , Interferon-gamma/metabolism , Lymphadenopathy , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation/genetics , Mycobacterium Infections/genetics , Vaccination
3.
Bio Protoc ; 8(10): e2851, 2018 May 20.
Article in English | MEDLINE | ID: mdl-34285968

ABSTRACT

The ability to conduct investigation of cellular transcription, signaling, and function at the single-cell level has opened opportunities to examine heterogeneous populations at unprecedented resolutions. Although methods have been developed to evaluate high-dimensional transcriptomic and proteomic data (relating to cellular mRNA and protein), there has not been a method to evaluate corresponding high-dimensional functionomic data (relating to cellular functions) from single cells. Here, we present a protocol to quantitatively measure the differentiation potentials of single human hematopoietic stem and progenitor cells, and then cluster the cells according to these measurements. High dimensional functionomic analysis of cell potential allows cell function to be linked to molecular mechanisms within the same progenitor population.

5.
Nat Immunol ; 18(8): 877-888, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28650480

ABSTRACT

The origin and specification of human dendritic cells (DCs) have not been investigated at the clonal level. Through the use of clonal assays, combined with statistical computation, to quantify the yield of granulocytes, monocytes, lymphocytes and three subsets of DCs from single human CD34+ progenitor cells, we found that specification to the DC lineage occurred in parallel with specification of hematopoietic stem cells (HSCs) to the myeloid and lymphoid lineages. This started as a lineage bias defined by specific transcriptional programs that correlated with the combinatorial 'dose' of the transcription factors IRF8 and PU.1, which was transmitted to most progeny cells and was reinforced by upregulation of IRF8 expression driven by the hematopoietic cytokine FLT3L during cell division. We propose a model in which specification to the DC lineage is driven by parallel and inheritable transcriptional programs in HSCs and is reinforced over cell division by recursive interactions between transcriptional programs and extrinsic signals.


Subject(s)
Cell Lineage , Dendritic Cells/cytology , Hematopoietic Stem Cells/cytology , Interferon Regulatory Factors/metabolism , Leukopoiesis , Multipotent Stem Cells/cytology , Animals , Cell Differentiation , Fetal Blood , Flow Cytometry , Humans , Interferon Regulatory Factors/genetics , Mice , Mice, Inbred NOD , Mice, Knockout , Principal Component Analysis , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...