Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Front Immunol ; 14: 1264323, 2023.
Article in English | MEDLINE | ID: mdl-38155964

ABSTRACT

The constant appearance of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VoCs) has jeopardized the protective capacity of approved vaccines against coronavirus disease-19 (COVID-19). For this reason, the generation of new vaccine candidates adapted to the emerging VoCs is of special importance. Here, we developed an optimized COVID-19 vaccine candidate using the modified vaccinia virus Ankara (MVA) vector to express a full-length prefusion-stabilized SARS-CoV-2 spike (S) protein, containing 3 proline (3P) substitutions in the S protein derived from the beta (B.1.351) variant, termed MVA-S(3Pbeta). Preclinical evaluation of MVA-S(3Pbeta) in head-to-head comparison to the previously generated MVA-S(3P) vaccine candidate, expressing a full-length prefusion-stabilized Wuhan S protein (with also 3P substitutions), demonstrated that two intramuscular doses of both vaccine candidates fully protected transgenic K18-hACE2 mice from a lethal challenge with SARS-CoV-2 beta variant, reducing mRNA and infectious viral loads in the lungs and in bronchoalveolar lavages, decreasing lung histopathological lesions and levels of proinflammatory cytokines in the lungs. Vaccination also elicited high titers of anti-S Th1-biased IgGs and neutralizing antibodies against ancestral SARS-CoV-2 Wuhan strain and VoCs alpha, beta, gamma, delta, and omicron. In addition, similar systemic and local SARS-CoV-2 S-specific CD4+ and CD8+ T-cell immune responses were elicited by both vaccine candidates after a single intranasal immunization in C57BL/6 mice. These preclinical data support clinical evaluation of MVA-S(3Pbeta) and MVA-S(3P), to explore whether they can diversify and potentially increase recognition and protection of SARS-CoV-2 VoCs.


Subject(s)
COVID-19 , Vaccines , Mice , Animals , Humans , SARS-CoV-2/genetics , Vaccinia virus/genetics , COVID-19 Vaccines , Antibodies, Viral , COVID-19/prevention & control , Mice, Inbred C57BL
2.
JCI Insight ; 8(24)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-37917179

ABSTRACT

Monocyte-derived macrophages, the major source of pathogenic macrophages in COVID-19, are oppositely instructed by macrophage CSF (M-CSF) or granulocyte macrophage CSF (GM-CSF), which promote the generation of antiinflammatory/immunosuppressive MAFB+ (M-MØ) or proinflammatory macrophages (GM-MØ), respectively. The transcriptional profile of prevailing macrophage subsets in severe COVID-19 led us to hypothesize that MAFB shapes the transcriptome of pulmonary macrophages driving severe COVID-19 pathogenesis. We have now assessed the role of MAFB in the response of monocyte-derived macrophages to SARS-CoV-2 through genetic and pharmacological approaches, and we demonstrate that MAFB regulated the expression of the genes that define pulmonary pathogenic macrophages in severe COVID-19. Indeed, SARS-CoV-2 potentiated the expression of MAFB and MAFB-regulated genes in M-MØ and GM-MØ, where MAFB upregulated the expression of profibrotic and neutrophil-attracting factors. Thus, MAFB determines the transcriptome and functions of the monocyte-derived macrophage subsets that underlie pulmonary pathogenesis in severe COVID-19 and controls the expression of potentially useful biomarkers for COVID-19 severity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , COVID-19/metabolism , Macrophages/metabolism , Macrophages, Alveolar/metabolism , Biomarkers/metabolism , MafB Transcription Factor/genetics , MafB Transcription Factor/metabolism
3.
J Med Virol ; 95(11): e29225, 2023 11.
Article in English | MEDLINE | ID: mdl-37971751

ABSTRACT

Currently, the majority of the population has been vaccinated against COVID-19 and/or has experienced SARS-CoV-2 infection either before or after vaccination. The immunological response to repeated episodes of infections is not completely clear. We measured SARS-CoV-2 specific neutralization titers by a pseudovirus assay after BA.1 infection and RBD-specific immunoglobulin G (IgG), immunoglobulin A (IgA), and immunoglobulin M (IgM) in a cohort of COVID-19 uninfected and triple vaccinated individuals (breakthrough infection group, BTI) as compared with those previously infected by SARS-CoV-2 (reinfection group, REI) who underwent identical vaccination schedule. SARS-CoV-2 specific neutralizing response after BA.1 infection was significantly higher in the BTI group as compared with the REI. Furthermore, neutralization titers in REI were not significant different from convalescent non reinfected controls. RBD-specific IgG and IgA, but not IgM, were also significantly higher in BTI as compared with REI. Our results show that the first episode of SARS-CoV-2 infection induces a significant increase in neutralizing titers in triple vaccinated individuals and that previous SARS-CoV-2 infection compromise significantly the neutralization response induced by reinfection, even by divergent SARS-CoV-2 variants and at least up to 2 years postinfection, suggesting a fundamental limitation in inducing effective booster through the intranasal route in previously infected individuals.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Reinfection , Immunoglobulin A , Immunoglobulin G , Immunoglobulin M , Vaccination , Antibodies, Neutralizing , Antibodies, Viral
4.
Front Cell Infect Microbiol ; 13: 1177270, 2023.
Article in English | MEDLINE | ID: mdl-37808906

ABSTRACT

DC-SIGN is a C-type lectin expressed in myeloid cells such as immature dendritic cells and macrophages. Through glycan recognition in viral envelope glycoproteins, DC-SIGN has been shown to act as a receptor for a number of viral agents such as HIV, Ebola virus, SARS-CoV, and SARS-CoV-2. Using a system of Vesicular Stomatitis Virus pseudotyped with MERS-CoV spike protein, here, we show that DC-SIGN is partially responsible for MERS-CoV infection of dendritic cells and that DC-SIGN efficiently mediates trans-infection of MERS-CoV from dendritic cells to susceptible cells, indicating a potential role of DC-SIGN in MERS-CoV dissemination and pathogenesis.


Subject(s)
Middle East Respiratory Syndrome Coronavirus , Middle East Respiratory Syndrome Coronavirus/metabolism , Receptors, Cell Surface/metabolism , Cell Adhesion Molecules/metabolism , Lectins, C-Type/metabolism , Dendritic Cells/metabolism
5.
Adv Sci (Weinh) ; 10(34): e2304818, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37863812

ABSTRACT

Administration of neutralizing antibodies (nAbs) has proved to be effective by providing immediate protection against SARS-CoV-2. However, dual strategies combining virus neutralization and immune response stimulation to enhance specific cytotoxic T cell responses, such as dendritic cell (DC) cross-priming, represent a promising field but have not yet been explored. Here, a broadly nAb, TNT , are first generated by grafting an anti-RBD biparatopic tandem nanobody onto a trimerbody scaffold. Cryo-EM data show that the TNT structure allows simultaneous binding to all six RBD epitopes, demonstrating a high-avidity neutralizing interaction. Then, by C-terminal fusion of an anti-DNGR-1 scFv to TNT , the bispecific trimerbody TNT DNGR-1 is generated to target neutralized virions to type 1 conventional DCs (cDC1s) and promote T cell cross-priming. Therapeutic administration of TNT DNGR-1, but not TNT , protects K18-hACE2 mice from a lethal SARS-CoV-2 infection, boosting virus-specific humoral responses and CD8+ T cell responses. These results further strengthen the central role of interactions with immune cells in the virus-neutralizing antibody activity and demonstrate the therapeutic potential of the Fc-free strategy that can be used advantageously to provide both immediate and long-term protection against SARS-CoV-2 and other viral infections.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Mice , Animals , Antibodies, Neutralizing/therapeutic use , T-Lymphocytes, Cytotoxic , SARS-CoV-2 , Cross-Priming , Dendritic Cells
7.
J Innate Immun ; 15(1): 517-530, 2023.
Article in English | MEDLINE | ID: mdl-37040733

ABSTRACT

Toll-like receptor 7 (TLR7) is an endosomal pathogen-associated molecular pattern (PAMP) receptor that senses single-stranded RNA (ssRNA) and whose engagement results in the production of type I IFN and pro-inflammatory cytokines upon viral exposure. Recent genetic studies have established that a dysfunctional TLR7-initiated signaling is directly linked to the development of inflammatory responses. We present evidence that TLR7 is preferentially expressed by monocyte-derived macrophages generated in the presence of M-CSF (M-MØ). We now show that TLR7 activation in M-MØ triggers a weak MAPK, NFκB, and STAT1 activation and results in low production of type I IFN. Of note, TLR7 engagement reprograms MAFB+ M-MØ towards a pro-inflammatory transcriptional profile characterized by the expression of neutrophil-attracting chemokines (CXCL1-3, CXCL5, CXCL8), whose expression is dependent on the transcription factors MAFB and AhR. Moreover, TLR7-activated M-MØ display enhanced pro-inflammatory responses and a stronger production of neutrophil-attracting chemokines upon secondary stimulation. As aberrant TLR7 signaling and enhanced pulmonary neutrophil/lymphocyte ratio associate with impaired resolution of virus-induced inflammatory responses, these results suggest that targeting macrophage TLR7 might be a therapeutic strategy for viral infections where monocyte-derived macrophages exhibit a pathogenic role.


Subject(s)
Monocytes , Toll-Like Receptor 7 , Humans , Toll-Like Receptor 7/metabolism , Monocytes/metabolism , Macrophage Colony-Stimulating Factor/metabolism , Neutrophil Infiltration , Cytokines/metabolism , Macrophages/metabolism , Chemokines/metabolism
8.
J Med Virol ; 95(1): e28268, 2023 01.
Article in English | MEDLINE | ID: mdl-36319593

ABSTRACT

We have measured the humoral response to messenger RNA (mRNA) vaccines in COVID-19 naïve and convalescent individuals. Third doses of mRNA COVID-19 vaccines induced a significant increase in potency and breadth of neutralization against SARS-CoV-2 variants of concern (VoC) including Omicron subvariants BA.1, BA.2, and BA.2.12.1, that were cross-neutralized at comparable levels and less for BA.4/5. This booster effect was especially important in naïve individuals that only after the third dose achieved a level that was comparable with that of vaccinated COVID-19 convalescents except for BA.4/5. Avidity of RBD-binding antibodies was also significantly increased in naïve individuals after the third dose, indicating an association between affinity maturation and cross neutralization of VoC. These results suggest that at least three antigenic stimuli by infection or vaccination with ancestral SARS-CoV-2 sequences are required to induce high avidity cross-neutralizing antibodies. Nevertheless, the circulation of new subvariants such as BA.4/5 with partial resistance to neutralization will have to be closely monitored and eventually consider for future vaccine developments.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2/genetics , RNA, Messenger/genetics , mRNA Vaccines , Antibodies, Neutralizing , Antibodies, Viral , Spike Glycoprotein, Coronavirus
9.
Front Immunol ; 13: 981350, 2022.
Article in English | MEDLINE | ID: mdl-36059485

ABSTRACT

Background: SARS-CoV-2 vaccination has proven the most effective measure to control the COVID-19 pandemic. Booster doses are being administered with limited knowledge on their need and effect on immunity. Objective: To determine the duration of specific T cells, antibodies and neutralization after 2-dose vaccination, to assess the effect of a third dose on adaptive immunity and to explore correlates of protection against breakthrough infection. Methods: 12-month longitudinal assessment of SARS-CoV-2-specific T cells, IgG and neutralizing antibodies triggered by 2 BNT162b2 doses followed by a third mRNA-1273 dose in a cohort of 77 healthcare workers: 17 with SARS-CoV-2 infection prior to vaccination (recovered) and 60 naïve. Results: Peak levels of cellular and humoral response were achieved 2 weeks after the second dose. Antibodies declined thereafter while T cells reached a plateau 3 months after vaccination. The decline in neutralization was specially marked in naïve individuals and it was this group who benefited most from the third dose, which resulted in a 20.9-fold increase in neutralization. Overall, recovered individuals maintained higher levels of T cells, antibodies and neutralization 1 to 6 months post-vaccination than naïve. Seventeen asymptomatic or mild SARS-CoV-2 breakthrough infections were reported during follow-up, only in naïve individuals. This viral exposure boosted adaptive immunity. High peak levels of T cells and neutralizing antibodies 15 days post-vaccination associated with protection from breakthrough infections. Conclusion: Booster vaccination in naïve individuals and the inclusion of viral antigens other than spike in future vaccine formulations could be useful strategies to prevent SARS-CoV-2 breakthrough infections.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity, Humoral , Pandemics , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
10.
Front Immunol ; 13: 995235, 2022.
Article in English | MEDLINE | ID: mdl-36172368

ABSTRACT

Current coronavirus disease-19 (COVID-19) vaccines are administered by the intramuscular route, but this vaccine administration failed to prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infection in the upper respiratory tract, mainly due to the absence of virus-specific mucosal immune responses. It is hypothesized that intranasal (IN) vaccination could induce both mucosal and systemic immune responses that blocked SARS-CoV-2 transmission and COVID-19 progression. Here, we evaluated in mice IN administration of three modified vaccinia virus Ankara (MVA)-based vaccine candidates expressing the SARS-CoV-2 spike (S) protein, either the full-length native S or a prefusion-stabilized [S(3P)] protein; SARS-CoV-2-specific immune responses and efficacy were determined after a single IN vaccine application. Results showed that in C57BL/6 mice, MVA-based vaccine candidates elicited S-specific IgG and IgA antibodies in serum and bronchoalveolar lavages, respectively, and neutralizing antibodies against parental and SARS-CoV-2 variants of concern (VoC), with MVA-S(3P) being the most immunogenic vaccine candidate. IN vaccine administration also induced polyfunctional S-specific Th1-skewed CD4+ and cytotoxic CD8+ T-cell immune responses locally (in lungs and bronchoalveolar lymph nodes) or systemically (in spleen). Remarkably, a single IN vaccine dose protected susceptible K18-hACE2 transgenic mice from morbidity and mortality caused by SARS-CoV-2 infection, with MVA-S(3P) being the most effective candidate. Infectious SARS-CoV-2 viruses were undetectable in lungs and nasal washes, correlating with high titers of S-specific IgGs and neutralizing antibodies against parental SARS-CoV-2 and several VoC. Moreover, low histopathological lung lesions and low levels of pro-inflammatory cytokines in lungs and nasal washes were detected in vaccinated animals. These results demonstrated that a single IN inoculation of our MVA-based vaccine candidates induced potent immune responses, either locally or systemically, and protected animal models from COVID-19. These results also identified an effective vaccine administration route to induce mucosal immunity that should prevent SARS-CoV-2 host-to-host transmission.


Subject(s)
COVID-19 , Viral Vaccines , Administration, Intranasal , Animals , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , COVID-19 Vaccines , Cytokines , Immunoglobulin A , Immunoglobulin G , Mice , Mice, Inbred C57BL , SARS-CoV-2 , Vaccinia virus/genetics
11.
J Infect Dis ; 227(1): 35-39, 2022 12 28.
Article in English | MEDLINE | ID: mdl-35921532

ABSTRACT

Several anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monoclonal antibodies (mAbs) have received emergency authorization for coronavirus disease 2019 (COVID-19) treatment. However, most of these mAbs are not active against the highly mutated Omicron SARS-CoV-2 subvariants. We have tested a polyclonal approach of equine anti-SARS-CoV-2 F(ab')2 antibodies that achieved a high level of neutralizing potency against all SARS-CoV-2 variants of concern tested including Omicron BA.1, BA.2, BA.2.12 and BA.4/5. A repertoire of antibodies targeting conserved epitopes in different regions of the spike protein could plausibly account for this remarkable breadth of neutralization. These results warrant the clinical investigation of equine polyclonal F(ab')2 antibodies as a novel therapeutic strategy against COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Horses , Humans , SARS-CoV-2/genetics , Antibodies, Monoclonal , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing
12.
Front Immunol ; 13: 845887, 2022.
Article in English | MEDLINE | ID: mdl-35371043

ABSTRACT

Novel safe, immunogenic, and effective vaccines are needed to control the COVID-19 pandemic, caused by SARS-CoV-2. Here, we describe the safety, robust immunogenicity, and potent efficacy elicited in rhesus macaques by a modified vaccinia virus Ankara (MVA) vector expressing a full-length SARS-CoV-2 spike (S) protein (MVA-S). MVA-S vaccination was well tolerated and induced S and receptor-binding domain (RBD)-binding IgG antibodies and neutralizing antibodies against SARS-CoV-2 and several variants of concern. S-specific IFNγ, but not IL-4, -producing cells were also elicited. After SARS-CoV-2 challenge, vaccinated animals showed a significant strong reduction of virus loads in bronchoalveolar lavages (BAL) and decreased levels in throat and nasal mucosa. Remarkably, MVA-S also protected macaques from fever and infection-induced cytokine storm. Computed tomography and histological examination of the lungs showed reduced lung pathology in MVA-S-vaccinated animals. These findings favor the use of MVA-S as a potential vaccine for SARS-CoV-2 in clinical trials.


Subject(s)
COVID-19 , Vaccinia virus , Animals , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Macaca mulatta , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Vaccinia virus/genetics
13.
NPJ Vaccines ; 7(1): 17, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35140227

ABSTRACT

Two doses of the MVA-CoV2-S vaccine candidate expressing the SARS-CoV-2 spike (S) protein protected K18-hACE2 transgenic mice from a lethal dose of SARS-CoV-2. This vaccination regimen prevented virus replication in the lungs, reduced lung pathology, and diminished levels of pro-inflammatory cytokines. High titers of IgG antibodies against S and receptor-binding domain (RBD) proteins and of neutralizing antibodies were induced against parental virus and variants of concern, markers that correlated with protection. Similar SARS-CoV-2-specific antibody responses were observed at prechallenge and postchallenge in the two-dose regimen, while the single-dose treatment does not avoid vaccine breakthrough infection. All vaccinated animals survived infection and were also protected to SARS-CoV-2 reinfection. Furthermore, two MVA-CoV2-S doses induced long-term memory S-specific humoral and cellular immune responses in C57BL/6 mice, 6 months after immunization. The efficacy and immunological benefits of the MVA-CoV2-S vaccine candidate against COVID-19 supports its consideration for human clinical trials.

14.
J Mol Biol ; 434(7): 167507, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35217069

ABSTRACT

In retroviruses, strand displacement DNA-dependent DNA polymerization catalyzed by the viral reverse transcriptase (RT) is required to synthesize double-stranded proviral DNA. In addition, strand displacement during RNA-dependent DNA synthesis is critical to generate high-quality cDNA for use in molecular biology and biotechnology. In this work, we show that the loss of RNase H activity due to inactivating mutations in HIV-1 RT (e.g. D443N or E478Q) has no significant effect on strand displacement while copying DNA templates, but has a large impact on DNA polymerization in reactions carried out with RNA templates. Similar effects were observed with ß-thujaplicinol and other RNase H active site inhibitors, including compounds with dual activity (i.e., characterized also as inhibitors of HIV-1 integrase and/or the RT DNA polymerase). Among them, dual inhibitors of HIV-1 RT DNA polymerase/RNase H activities, containing a 7-hydroxy-6-nitro-2H-chromen-2-one pharmacophore were found to be very potent and effective strand displacement inhibitors in RNA-dependent DNA polymerization reactions. These findings might be helpful in the development of transcriptomics technologies to obtain more uniform read coverages when copying long RNAs and for the construction of more representative libraries avoiding biases towards 5' and 3' ends, while providing valuable information for the development of novel antiretroviral agents.


Subject(s)
DNA, Viral , HIV Reverse Transcriptase , Ribonuclease H, Human Immunodeficiency Virus , Anti-Retroviral Agents/chemistry , Anti-Retroviral Agents/pharmacology , DNA, Viral/biosynthesis , Drug Development , HIV Reverse Transcriptase/genetics , HIV Reverse Transcriptase/metabolism , Humans , Reverse Transcriptase Inhibitors/pharmacology , Ribonuclease H, Human Immunodeficiency Virus/antagonists & inhibitors , Ribonuclease H, Human Immunodeficiency Virus/metabolism , Tropolone/analogs & derivatives , Tropolone/pharmacology
15.
J Infect Dis ; 225(11): 1905-1908, 2022 06 01.
Article in English | MEDLINE | ID: mdl-34963008

ABSTRACT

We have investigated the evolution of the neutralizing response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants at 8 months after Pfizer-BNT162b2 vaccination in coronavirus disease 2019 (COVID-19)-naive (n = 21) and COVID-19-convalescent (n = 21) individuals. Neutralizing levels declined for all variants (range 2- to 3.7-fold). Eight months after vaccination, a significant proportion (4/21) of naive individuals lacked detectable neutralizing activity against the highly transmissible SARS-CoV-2 delta variant. In the convalescent group, the impressive high initial humoral response resulted in detectable neutralizing antibody levels against all variants throughout this period.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Vaccination
16.
Open Forum Infect Dis ; 8(10): ofab468, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34642637

ABSTRACT

BACKGROUND: The objective of this study was to investigate the neutralizing response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VoC) during coronavirus disease 2019 (COVID-19) convalescence and after vaccination. METHODS: COVID-19-convalescent and -naïve individuals were tested for neutralizing activity against SARS-CoV-2 VoC Alpha, Beta, Gamma, and Delta at 1 and 7 months postinfection and 4-6 weeks after BNT162b2 vaccination. RESULTS: Vaccination induced a high neutralizing response in naïve individuals. Interestingly, vaccination of convalescent patients induced a boosted response that was able to neutralize all VoC at high titers. CONCLUSIONS: Vaccination with BNT162b2 induced high levels of neutralization against SARS-CoV-2 VoC in most patients; this is especially beneficial in COVID-19-convalescent individuals.

17.
J Med Chem ; 64(19): 14332-14343, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34524803

ABSTRACT

In addition to a variety of viral-glycoprotein receptors (e.g., heparan sulfate, Niemann-Pick C1, etc.), dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), from the C-type lectin receptor family, plays one of the most important pathogenic functions for a wide range of viruses (e.g., Ebola, human cytomegalovirus (HCMV), HIV-1, severe acute respiratory syndrome coronavirus 2, etc.) that invade host cells before replication; thus, its inhibition represents a relevant extracellular antiviral therapy. We report two novel p-tBu-calixarene glycoclusters 1 and 2, bearing tetrahydroxamic acid groups, which exhibit micromolar inhibition of soluble DC-SIGN binding and provide nanomolar IC50 inhibition of both DC-SIGN-dependent Jurkat cis-cell infection by viral particle pseudotyped with Ebola virus glycoprotein and the HCMV-gB-recombinant glycoprotein interaction with monocyte-derived dendritic cells expressing DC-SIGN. A unique cooperative involvement of sugar, linker, and calixarene core is likely behind the strong avidity of DC-SIGN for these low-valent systems. We claim herein new promising candidates for the rational development of a large spectrum of antiviral therapeutics.


Subject(s)
Calixarenes/chemistry , Cell Adhesion Molecules/antagonists & inhibitors , Glycoconjugates/metabolism , Glycoproteins/antagonists & inhibitors , Hydroxamic Acids/chemistry , Lectins, C-Type/antagonists & inhibitors , Phenols/chemistry , Receptors, Cell Surface/antagonists & inhibitors , Viral Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Cell Adhesion Molecules/metabolism , Cell Line , Cytomegalovirus/metabolism , Dendritic Cells/cytology , Dendritic Cells/metabolism , Ebolavirus/physiology , Glycoconjugates/chemistry , Glycoconjugates/pharmacology , Glycoproteins/genetics , Glycoproteins/metabolism , Humans , Jurkat Cells , Lectins, C-Type/metabolism , Models, Biological , Protein Binding , Receptors, Cell Surface/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Viral Proteins/genetics , Viral Proteins/metabolism
18.
PLoS Pathog ; 17(5): e1009576, 2021 05.
Article in English | MEDLINE | ID: mdl-34015061

ABSTRACT

The efficient spread of SARS-CoV-2 resulted in a unique pandemic in modern history. Despite early identification of ACE2 as the receptor for viral spike protein, much remains to be understood about the molecular events behind viral dissemination. We evaluated the contribution of C-type lectin receptors (CLRS) of antigen-presenting cells, widely present in respiratory mucosa and lung tissue. DC-SIGN, L-SIGN, Langerin and MGL bind to diverse glycans of the spike using multiple interaction areas. Using pseudovirus and cells derived from monocytes or T-lymphocytes, we demonstrate that while virus capture by the CLRs examined does not allow direct cell infection, DC/L-SIGN, among these receptors, promote virus transfer to permissive ACE2+ Vero E6 cells. A glycomimetic compound designed against DC-SIGN, enable inhibition of this process. These data have been then confirmed using authentic SARS-CoV-2 virus and human respiratory cell lines. Thus, we described a mechanism potentiating viral spreading of infection.


Subject(s)
COVID-19/transmission , Lectins, C-Type/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Animals , Antigens, CD/metabolism , COVID-19/prevention & control , Cell Adhesion Molecules/metabolism , Cell Line , Chlorocebus aethiops , Humans , Jurkat Cells , Lung/metabolism , Mannose-Binding Lectins/metabolism , Mannosides/pharmacology , Protein Binding/drug effects , Receptors, Cell Surface/metabolism , Respiratory Mucosa/metabolism , Vero Cells
19.
Clin Microbiol Infect ; 27(6): 886-891, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33631334

ABSTRACT

OBJECTIVES: This study compares the infectivity of SARS-CoV-2 in respiratory samples from patients with mild COVID-19 with those from hospitalized patients with severe bilateral pneumonia. In severe COVID-19, we also analysed the presence of neutralizing activity in paired sera. METHODS: We performed cell cultures on 193 real-time reverse transcription polymerase chain reaction respiratory samples, positive for SARS-CoV-2, obtained from 189 patients at various times, from clinical diagnosis to follow-up. Eleven samples were obtained from asymptomatic individuals, 91 samples from 91 outpatients with mild forms of COVID-19 and 91 samples from 87 inpatients with severe pneumonia. In these patients, neutralizing activity was analysed in 30 paired sera collected after symptom onset >10 days. RESULTS: We detected a cytopathic effect (CPE) in 91/193 (47%) samples. Viral viability was maintained for up to 10 days in patients with mild COVID-19. In patients with severe COVID-19, the virus remained viable for up to 32 days after the onset of symptoms. Patients with severe COVID-19 presented infectious virus at a significantly higher rate in the samples with moderate to low viral load (cycle threshold value ≥ 26): 32/75 (43%) versus 14/63 (22%) for mild cases (p < 0.01). We observed a positive CPE despite the presence of clear neutralizing activity (NT50 > 1:1024 in 10% (3/30) of samples. DISCUSSION: Patients with severe COVID-19 might shed viable virus during prolonged periods of up to 4 weeks after symptom onset, even when presenting high cycle threshold values in their respiratory samples and despite having developed high neutralizing antibody titres.


Subject(s)
COVID-19/immunology , COVID-19/virology , SARS-CoV-2/growth & development , Virus Cultivation , Adult , Aged , Animals , Antibodies, Viral/blood , COVID-19 Nucleic Acid Testing , Cell Culture Techniques , Chlorocebus aethiops , Cytopathogenic Effect, Viral , Female , Hospitalization , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Microbial Viability , Middle Aged , Pneumonia, Viral , SARS-CoV-2/pathogenicity , Serologic Tests , Severity of Illness Index , Time Factors , Vero Cells , Viral Load , Virus Shedding , Young Adult
20.
Viruses ; 13(1)2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33477685

ABSTRACT

HIV reverse transcriptases (RTs) convert viral genomic RNA into double-stranded DNA. During reverse transcription, polypurine tracts (PPTs) resilient to RNase H cleavage are used as primers for plus-strand DNA synthesis. Nonnucleoside RT inhibitors (NNRTIs) can interfere with the initiation of plus-strand DNA synthesis by enhancing PPT removal, while HIV RT connection subdomain mutations N348I and N348I/T369I mitigate this effect by altering RNase H cleavage specificity. Now, we demonstrate that among approved nonnucleoside RT inhibitors (NNRTIs), nevirapine and doravirine show the largest effects. The combination N348I/T369I in HIV-1BH10 RT has a dominant effect on the RNase H cleavage specificity at the PPT/U3 site. Biochemical studies showed that wild-type HIV-1 and HIV-2 RTs were able to process efficiently and accurately all tested HIV PPT sequences. However, the cleavage accuracy at the PPT/U3 junction shown by the HIV-2EHO RT was further improved after substituting the sequence YQEPFKNLKT of HIV-1BH10 RT (positions 342-351) for the equivalent residues of the HIV-2 enzyme (HQGDKILKV). Our results highlight the role of ß-sheets 17 and 18 and their connecting loop (residues 342-350) in the connection subdomain of the large subunit, in determining the RNase H cleavage window of HIV RTs.


Subject(s)
Genome, Viral , HIV Infections/virology , HIV Long Terminal Repeat , HIV-1/physiology , RNA, Viral , Ribonuclease H, Human Immunodeficiency Virus/metabolism , Base Sequence , HIV Infections/drug therapy , HIV-1/drug effects , Humans , Models, Molecular , Molecular Conformation , Mutagenesis , Protein Binding , Proteolysis , RNA, Viral/chemistry , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/therapeutic use , Ribonuclease H, Human Immunodeficiency Virus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL