Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Chem Biol Interact ; 308: 317-322, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31170385

ABSTRACT

Acetylcholinesterase (AChE) hydrolyzes acetylcholine at cholinergic synapses, and which has various isoforms of AChE, i.e. AChER, AChEH and AChET, deriving from single gene. AChEH exists as a glycophosphatidylinositol (GPI)-linked dimer (G2), presents mainly in plasma membrane of mammalian erythrocyte. Transgenic mice with ACHE gene depletion were employed here to investigate the possible role of AChE in blood cell formation. ACHE knock-out mice were found to suffer normocytic anemia. In erythrocyte of ACHE-/- mice, the amount of hemoglobin, especially α-globin, was found to be markedly reduced. In addition, the number of erythrocyte and hematocrit of ACHE-/- mice were significantly lowered. To probe the role of AChE isoforms in erythroid differentiation, erythroblast-like cells (TF-1) over-expressed with different AChE isoforms were induced to differentiate by erythropoietin (EPO): this differentiation induced the expression of each AChE isoform. Only in the TF-1 cells over-expressed with AChEH, the EPO-induced transcriptions and protein expressions of α- and ß-globins could be significantly enhanced, which therefore suggested that AChEH might regulate the responsiveness of TF-1 cells to EPO. The alternation of EPO-induced downstream signaling might be accounted by association of AChE with EPO receptor in cell surface. The findings indicated the significance of AChE in erythroblast maturation, which provided an insight in elucidating possible mechanisms in regulating erythropoiesis.


Subject(s)
Acetylcholinesterase/metabolism , Receptors, Erythropoietin/metabolism , Acetylcholinesterase/chemistry , Acetylcholinesterase/immunology , Animals , Antibodies/immunology , Cell Differentiation , Cell Line , Dimerization , Erythroblasts/cytology , Erythroblasts/metabolism , Erythropoietin/pharmacology , Gene Expression/drug effects , Hemoglobins/metabolism , Humans , Mice , Mice, Knockout , Receptors, Erythropoietin/immunology
2.
J Neurochem ; 146(4): 390-402, 2018 08.
Article in English | MEDLINE | ID: mdl-29675901

ABSTRACT

Acetylcholinesterase (AChE; EC 3.1.1.7) is known to hydrolyze acetylcholine at cholinergic synapses. In mammalian erythrocyte, AChE exists as a dimer (G2 ) and is proposed to play role in erythropoiesis. To reveal the regulation of AChE during differentiation of erythroblast, erythroblast-like cells (TF-1) were induced to differentiate by application of erythropoietin (EPO). The expression of AChE was increased in parallel to the stages of differentiation. Application of EPO in cultured TF-1 cells induced transcriptional activity of ACHE gene, as well as its protein product. This EPO-induced event was in parallel with erythrocytic proteins, for example, α- and ß-globins. The EPO-induced AChE expression was mediated by phosphorylations of Akt and GATA-1; because the application of Akt kinase inhibitor blocked the gene activation. Erythroid transcription factor also known as GATA-1, a downstream transcription factor of EPO signaling, was proposed here to account for regulation of AChE in TF-1 cell. A binding sequence of GATA-1 was identified in ACHE gene promoter, which was further confirmed by chromatin immunoprecipitation (ChIP) assay. Over-expression of GATA-1 in TF-1 cultures induced AChE expression, as well as activity of ACHE promoter tagged with luciferase gene (pAChE-Luc). The deletion of GATA-1 sequence on the ACHE promoter, pAChEΔGATA-1 -Luc, reduced the promoter activity during erythroblastic differentiation. On the contrary, the knock-down of AChE in TF-1 cultures could lead to a reduction in EPO-induced expression of erythrocytic proteins. These findings indicated specific regulation of AChE during maturation of erythroblast, which provided an insight into elucidating possible mechanisms in regulating erythropoiesis.


Subject(s)
Acetylcholinesterase/metabolism , Cell Differentiation/drug effects , Erythroblasts/drug effects , Erythroblasts/enzymology , Erythropoietin/pharmacology , Acetylcholinesterase/genetics , Benzenaminium, 4,4'-(3-oxo-1,5-pentanediyl)bis(N,N-dimethyl-N-2-propenyl-), Dibromide/pharmacology , Cell Line , Chromatin Immunoprecipitation , Chromones/pharmacology , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , GATA1 Transcription Factor/genetics , GATA1 Transcription Factor/metabolism , Gene Expression/drug effects , Gene Expression Regulation , Humans , Membrane Lipids/metabolism , Morpholines/pharmacology , Phosphorylation/drug effects , Phosphorylation/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Time Factors , Transfection
3.
J Mol Neurosci ; 57(4): 486-91, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26231935

ABSTRACT

Acetylcholinesterase (AChE; EC 3.1.1.7) is a glycoprotein possessing three conserved N-linked glycosylation sites in mammalian species, locating at 296, 381, and 495 residues of the human sequence. Several lines of evidence demonstrated that N-glycosylation of AChE affected the enzymatic activity, as well as its biosynthesis. In order to determine the role of three N-glycosylation sites in AChE activity and glycan composition, the site-directed mutagenesis of N-glycosylation sites in wild-type human AChE(T) sequence was employed to generate the single-site mutants (i.e., AChE(T) (N296Q), AChET (N381Q), and AChE(T) (N495Q)) and all site mutant (i.e., AChE(T) (3N→3Q)). The mutation did not affect AChE protein expression in the transfected cells. The mutants, AChE(T) (3N→3Q) and AChE(T) (N381Q), showed very minimal enzymatic activity, while the other mutants showed reduced activity. By binding to lectins, Con A, and SNA, the glycosylation profile was revealed in those mutated AChE. The binding affinity with lectins showed no significant difference between various N-glycosylation mutants, which suggested that similar glycan composition should be resulted from different N-glycosylation sites. Although the three glycosylation sites within AChE sequence have different extent in affecting the enzymatic activity, their glycan compositions are very similar.


Subject(s)
Acetylcholinesterase/chemistry , Polysaccharides/chemistry , Protein Processing, Post-Translational , Acetylcholinesterase/genetics , Acetylcholinesterase/metabolism , Amino Acid Substitution , Glycosylation , HEK293 Cells , Humans , Lectins/metabolism , Protein Binding
4.
J Mol Neurosci ; 57(3): 446-51, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26036470

ABSTRACT

ATP is co-stored and co-released with acetylcholine (ACh) at the pre-synaptic vesicles in vertebrate neuromuscular junction (nmj). Several lines of studies demonstrated that binding of ATP to its corresponding P2Y1 and P2Y2 receptors in the muscle regulated post-synaptic gene expressions. To further support the notion that P2Y receptors are playing indispensable role in formation of post-synaptic specifications at the nmj, the knock-out mice of P2Y1 receptor (P2Y1R (-/-)) were employed here for analyses. In P2Y1R (-/-) mice, the expression of P2Y2 receptor in muscle was reduced by over 50 %, as compared to P2Y1R (+/+) mice. In parallel, the expression of acetylcholinesterase (AChE) in muscle was markedly decreased. In the analysis of the expression of anchoring subunits of AChE in P2Y1R (-/-) mice, the proline-rich membrane anchor (PRiMA) subunit was reduced by 60 %; while the collagen tail (ColQ) subunit was reduced by 50 %. AChE molecular forms in the muscle were not changed, except the amount of enzyme was reduced. Immuno-staining of P2Y1R (-/-) mice nmj, both AChE and AChR were still co-localized at the nmj, and the staining was diminished. Taken together our data demonstrated that P2Y1 receptor regulated the nmj gene expression.


Subject(s)
Acetylcholinesterase/biosynthesis , Gene Expression Regulation/physiology , Neuromuscular Junction/metabolism , Receptors, Purinergic P2Y1/deficiency , Receptors, Purinergic P2Y2/biosynthesis , Acetylcholinesterase/chemistry , Acetylcholinesterase/genetics , Adenosine Triphosphate/metabolism , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/metabolism , Protein Subunits , Receptors, Cholinergic/metabolism , Receptors, Purinergic P2Y1/genetics , Receptors, Purinergic P2Y1/physiology , Receptors, Purinergic P2Y2/genetics
5.
J Mol Neurosci ; 53(3): 461-8, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24385197

ABSTRACT

Acetylcholinesterase (AChE) is encoded by a single gene, and the alternative splicing at the 3' end produces different isoforms, including tailed (AChET), read-through (AChER), and hydrophobic (AChEH). Different forms of this enzyme exist in different cell types. Each AChE form has been proposed to have unique function, and all of them could be found in same cell type. Thus, the splicing process of different AChE forms remains unclear. Here, we aimed to establish a quantification method in measuring the absolute amount of each AChE splicing variants within a cell type. By using real-time PCR coupled with standard curves of defined copy of AChE variants, the copies of AChET transcript per 100 ng of total RNA were 5.7 × 10(4) in PC12 (rat neuronal cell), 1.3 × 10(4) in Caco-2 (human intestinal cell), 0.67 × 10(4) in TF-1 (human erythropoietic precursor), 133.3 in SH-SY5Y (human neuronal cell), and 56.7 in human umbilical vein endothelial cells (human endothelial cells). The copies of AChEH in these cell types were 0.3 × 10(4), 3.3 × 10(4), 2.7 × 10(4), 133.3, and 46.7, respectively, and AChER were 0.07 × 10(4), 0.13 × 10(4), 890, 3.3, and 2.7, respectively. Furthermore, PC12 and TF-1 cells were chosen for the analysis of AChE splicing pattern during differentiation. The results demonstrated a selective increase in AChET mRNA but not AChER or AChEH mRNAs in PC12 upon nerve growth factor-induced neuronal differentiation. PC12 cells could therefore act as a good cell model for the study on alternative splicing mechanism and regulation of AChET.


Subject(s)
Acetylcholinesterase/metabolism , RNA, Messenger/metabolism , Acetylcholinesterase/genetics , Animals , Caco-2 Cells , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Neurogenesis , Neurons/cytology , Neurons/metabolism , Organ Specificity , PC12 Cells , RNA, Messenger/genetics , Rats , Real-Time Polymerase Chain Reaction
6.
J Mol Neurosci ; 53(3): 446-53, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24318838

ABSTRACT

Acetylcholinesterase (AChE) is a key enzyme in the cholinergic nervous system and is one of the most studied proteins in the field of Alzheimer's disease (AD). Moreover, alternative functions of AChE unrelated with the hydrolysis of acetylcholine are suspected. Until now, the majority of investigations on AChE in AD pathology have been focused on the determination of its enzymatic activity level, which is depleted in the AD brain. Despite this overall decrease, AChE activity increases at the vicinity of the two hallmarks of AD, the amyloid plaques and the neurofibrillary tangles (NFT). In fact, AChE may directly interact with Aß in a manner that increases the deposition of Aß to form plaques. In the context of protein-protein interactions, we have recently reported that AChE can interact with presenilin-1, the catalytic component of γ-secretase, influencing its expression level and also its activity. However, the alteration of AChE protein in the AD brain has not been determined. Here, we demonstrated by Western blotting and immunohistochemistry that a prominent pool of enzymatically inactive AChE protein existed in the AD brain. The potential significance of these unexpected levels of inactive AChE protein in the AD brain was discussed, especially in the context of protein-protein interactions with ß-amyloid and presenilin-1.


Subject(s)
Acetylcholinesterase/metabolism , Alzheimer Disease/enzymology , Brain/enzymology , Aged , Aged, 80 and over , Case-Control Studies , Female , Humans , Male , Middle Aged , Presenilin-1/metabolism
7.
Chem Biol Interact ; 203(1): 277-81, 2013 Mar 25.
Article in English | MEDLINE | ID: mdl-23000449

ABSTRACT

Acetylcholinesterase (AChE) activity has been used to evaluate the exposure of mollusk bivalves to organophosphates, carbamate pesticides, and heavy metals. Crassostrea hongkongensis is a Hong Kong endemic oyster, and has a high commercial value along the coastal area of South China. The use of this species as a bio-indicator of the marine environment, and the use of AChE activity measurements in tissues of C. hongkongensis require prior characterization of AChE in this species. Here, we report that gill tissue contains the highest AChE activity in C. hongkongensis, and that the molecular form of AChE is most likely to be a dimeric form. In addition, the effect of the pesticide acephate on AChE activity in the gill of C. hongkongensis was analyzed, and the mean inhibition concentration (IC50) value was determined. This study suggests that AChE activity in the gill tissue of C. hongkongensis might be used as a biomarker in monitoring organophosphate contamination in the marine fauna of South China.


Subject(s)
Acetylcholinesterase/metabolism , Crassostrea/enzymology , Acetylcholinesterase/chemistry , Animals , Biomarkers/metabolism , China , Cholinesterase Inhibitors/toxicity , Crassostrea/drug effects , Environmental Monitoring , Gills/enzymology , Hong Kong , Organothiophosphorus Compounds/toxicity , Pesticides/toxicity , Phosphoramides/toxicity , Protein Multimerization , Tissue Distribution
8.
Chem Biol Interact ; 203(1): 282-6, 2013 Mar 25.
Article in English | MEDLINE | ID: mdl-23159887

ABSTRACT

The gene encoding the collagen-tailed subunit (ColQ) of acetylcholinesterase (AChE) contains two distinct promoters that drive the production of two ColQ mRNAs, ColQ-1 and ColQ-1a, in slow- and fast-twitch muscles, respectively. ColQ-1a is expressed at the neuromuscular junction (NMJ) in fast-twitch muscle, and this expression depends on trophic factors supplied by motor neurons signaling via a cAMP-dependent pathway in muscle. To further elucidate the molecular basis of ColQ-1a's synaptic expression, here we investigated the expression and localization of cAMP-responsive element binding protein (CREB) at the synaptic and extra-synaptic regions of fast- and slow-twitch muscles from adult rats. The total amount of active, phosphorylated CREB (P-CREB) present in slow-twitch soleus muscle was higher than that in fast-twitch tibialis muscle, but P-CREB was predominantly expressed in the fast-twitch muscle at NMJs. In contrast, P-CREB was detected in both synaptic and extra-synaptic regions of slow-twitch muscle. These results reveal, for the first time, the differential distribution of P-CREB in fast- and slow-twitch muscles, which might support the crucial role of cAMP-dependent signaling in controlling the synapse-specific expression of ColQ-1a in fast-twitch muscles.


Subject(s)
Acetylcholinesterase/metabolism , Collagen/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Neuromuscular Junction/metabolism , Acetylcholinesterase/chemistry , Acetylcholinesterase/genetics , Animals , Collagen/chemistry , Collagen/genetics , Cyclic AMP Response Element-Binding Protein/chemistry , Cyclic AMP Response Element-Binding Protein/genetics , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Gene Expression , Motor Neurons/metabolism , Phosphorylation , Protein Subunits , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction
9.
FEBS J ; 279(17): 3229-39, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22805525

ABSTRACT

Acetylcholinesterase (AChE) is well-known for its cholinergic functions in the nervous system; however, this enzyme is also found in other tissues where its function is still not understood. AChE is synthesized through alternative splicing as splicing variants, with isoforms including read-through (AChE(R)), tailed (AChE(T)) and hydrophobic (AChE(H)). In human erythrocytes, AChE(H) is a glycophosphatidylinositol-linked dimer on the plasma membrane. Three N-linked glycosylation sites have been identified in the catalytic domain of human AChE. Here, we investigate the roles of glycosylation in assembly and trafficking of human AChE(H). In transfected fibroblasts, expression of AChE(H) was able to mimic the function of the dimeric form of AChE on the erythrocyte membrane. A glycan-depleted form was constructed by site-directed mutagenesis. By comparison with the wild-type AChE(H), the mutant had a much lower enzymatic activity and a much higher K(m) value. In addition, the mutant was dimerized in the endoplasmic reticulum, but was not trafficked to the Golgi apparatus. The results suggest that the glycosylation may affect AChE(H) enzymatic activity and trafficking, but not dimer formation. The present findings indicate the significance of N-glycosylation in controlling the biosynthesis of the AChE(H) dimer form.


Subject(s)
Acetylcholinesterase/blood , Erythrocytes/enzymology , Acetylcholinesterase/genetics , Blotting, Western , Cell Line , Dimerization , Fluorescent Antibody Technique , Glycosylation , Humans , Mutagenesis, Site-Directed , Protein Transport , Subcellular Fractions/enzymology
10.
Neurosci Lett ; 523(1): 71-5, 2012 Aug 08.
Article in English | MEDLINE | ID: mdl-22750213

ABSTRACT

Acetylcholinesterase (AChE) is organized into globular tetramers (G(4)) by a structural protein called proline-rich membrane anchor (PRiMA), anchoring it into the cell membrane of neurons in the brain. The assembly of AChE tetramers with PRiMA requires the presence of a C-terminal "t-peptide" in the AChE catalytic subunit (AChE(T)). The glycosylation of AChE(T) is known to be required for its proper assembly and trafficking; however, the role of PRiMA glycosylation in the oligomer assembly has not been revealed. PRiMA is a glycoprotein containing two putative N-linked glycosylation sites. By using site-directed mutagenesis, the asparagine-43 was identified to be the N-linked glycosylation site of PRiMA. Abolishing glycosylation on mouse PRiMA appeared not to affect its assembly with AChE(T), the enzymatic properties of AChE, and the membrane trafficking of PRiMA-linked AChE tetramers. This result is contrary to the reports that glycosylation is essential for conformation and trafficking of membrane glycoproteins.


Subject(s)
Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Animals , Dimerization , Glycosylation , HEK293 Cells , Humans , Mice , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Protein Binding/physiology , Protein Transport
11.
Front Mol Neurosci ; 4: 36, 2011.
Article in English | MEDLINE | ID: mdl-22046147

ABSTRACT

Acetylcholinesterase (AChE) is responsible for the hydrolysis of the neurotransmitter, acetylcholine, in the nervous system. The functional localization and oligomerization of AChE T variant are depending primarily on the association of their anchoring partners, either collagen tail (ColQ) or proline-rich membrane anchor (PRiMA). Complexes with ColQ represent the asymmetric forms (A(12)) in muscle, while complexes with PRiMA represent tetrameric globular forms (G(4)) mainly found in brain and muscle. Apart from these traditional molecular forms, a ColQ-linked asymmetric form and a PRiMA-linked globular form of hybrid cholinesterases (ChEs), having both AChE and BChE catalytic subunits, were revealed in chicken brain and muscle. The similarity of various molecular forms of AChE and BChE raises interesting question regarding to their possible relationship in enzyme assembly and localization. The focus of this review is to provide current findings about the biosynthesis of different forms of ChEs together with their anchoring proteins.

12.
J Biol Chem ; 286(38): 32948-61, 2011 Sep 23.
Article in English | MEDLINE | ID: mdl-21795704

ABSTRACT

Acetylcholinesterase (AChE) anchors onto cell membranes by a transmembrane protein PRiMA (proline-rich membrane anchor) as a tetrameric form in vertebrate brain. The assembly of AChE tetramer with PRiMA requires the C-terminal "t-peptide" in AChE catalytic subunit (AChE(T)). Although mature AChE is well known N-glycosylated, the role of glycosylation in forming the physiologically active PRiMA-linked AChE tetramer has not been studied. Here, several lines of evidence indicate that the N-linked glycosylation of AChE(T) plays a major role for acquisition of AChE full enzymatic activity but does not affect its oligomerization. The expression of the AChE(T) mutant, in which all N-glycosylation sites were deleted, together with PRiMA in HEK293T cells produced a glycan-depleted PRiMA-linked AChE tetramer but with a much higher K(m) value as compared with the wild type. This glycan-depleted enzyme was assembled in endoplasmic reticulum but was not transported to Golgi apparatus or plasma membrane.


Subject(s)
Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Animals , Biocatalysis , Chickens , Enzyme Stability , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/metabolism , Glycosylation , HEK293 Cells , Humans , Mice , Polysaccharides/metabolism , Protein Binding , Protein Multimerization , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Transport , Recombinant Proteins/metabolism
13.
J Sep Sci ; 33(23-24): 3666-74, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21077129

ABSTRACT

Kaixinsan is an ancient Chinese herbal decoction mainly prescribed for patients suffering from mental depression. This decoction was created by Sun Si-miao of Tang Dynasty (A.D. 600) in ancient China, and was composed of four herbs: Radix and Rhizome Ginseng, Radix Polygalae, Rhizoma Acori Tatarinowii and Poria. Historically, this decoction has three different formulations, each recorded at a different point in time. In this study, the chemical compositions of all three Kaixinsan formulae were analyzed. By using rapid resolution LC coupled with a diode-array detector and an ESI triple quadrupole tandem MS (QQQ-MS/MS), the Radix and Rhizome Ginseng-derived ginsenosides including Rb(1), Rd, Re, Rg(1), the Radix Polygalae-derived 3,6'-disinapoyl sucrose, the Rhizoma Acori Tatarinowii-derived α- and ß-asarone and the Poria-derived pachymic acid were compared among the three different formulations. The results showed variations in the solubility of different chemicals between one formula and the others. This systematic method developed could be used for the quality assessment of this herbal decoction.


Subject(s)
Chromatography, Liquid/methods , Drugs, Chinese Herbal , Quality Control , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL