Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 387: 129669, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37573985

ABSTRACT

Lignin-derived compounds (LDCs) bioconversion into lipids is a promising yet challenging task. This study focuses on the isolation of the ligninolytic bacterium Citricoccus sp. P2 and investigates its mechanism for producing lipids from LDCs. Although strain P2 exhibits a relatively low lignin degradation rate of 44.63%, it efficiently degrades various concentrations of LDCs. The highest degradation rate is observed when incubated with 0.6 g/L vanillic acid, 0.6 g/L syringic acid, 0.8 g/L p-coumaric acid, and 0.4 g/L phenol, resulting in respective lipid yields of 0.16 g/L, 0.13 g/L, 0.24 g/L, and 0.13 g/L. The genome of strain P2 provides insights into LDCs bioconversion into lipids and stress tolerance. Moreover, Citricoccus sp. P2 has been successfully developed a non-sterilized lipid production using its native alkali-halophilic characteristics, which significantly enhances the lipid yield. This study presents a promising platform for lipids production from LDCs and has potential to promote valorization of lignin.


Subject(s)
Coumaric Acids , Lignin , Lignin/metabolism , Coumaric Acids/metabolism , Vanillic Acid/metabolism , Lipids
2.
Int J Biol Macromol ; 249: 126079, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37536413

ABSTRACT

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a biopolyester with great potential, but its high production cost via the propionate-dependent pathway has hindered its development. Herein, we engineer Halomonas sp. Y3 to achieve efficient conversion of various LDCs into PHBV without propionate supplement. Initially, we successfully achieve PHBV production without propionate supplement by overexpressing threonine synthesis. The resulting biopolyester exhibits a 3 HV proportion of up to 7.89 mol%, comparable to commercial PHBV (8 mol%) available from Sigma Aldrich (403105). To further enhance PHBV production, we rationally design the reconstruction of aromatic compound catabolism. The engineered strain Y3_18 efficiently assimilates all LDCs containing syringyl (S), guaiacyl (G), and p-hydroxyphenyl-type (H) units. From 1 g/L of S-, G-, and H-type LDCs, Y3_18 produces PHBV at levels of 449 mg/L, 488 mg/L, and 716 mg/L, respectively, with yields of 44.9 % (g/g), 48.8 % (g/g), and 71.6 % (g/g). Moreover, to improve PHBV yield from lignin, we integrate laccase-secretion and PHBV production modules. This integration leads to the accumulation of 425.84 mg/L of PHBV with a yield of 21.29 % (g/g) and a 3 HV proportion of 6.38 mol%. By harnessing the capabilities of Halomonas sp. Y3, we demonstrate an efficient and sustainable approach for PHBV production from a variety of LDCs.


Subject(s)
Halomonas , Polyesters , Polyesters/metabolism , Lignin/metabolism , Halomonas/genetics , Halomonas/metabolism , Propionates/metabolism , Hydroxybutyrates/metabolism
3.
Int J Biol Macromol ; 243: 125200, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37271270

ABSTRACT

A one-pot route for the preparation of TiO2@carbon nanocomposite from Ti4+/polysaccharide coordination complex has been developed and shown advantages in operation, cost, environment, etc. However, the photodegradation rate of methylene blue (MB) needs to be improved. N-doping has been proven as an efficient means to enhance photodegradation performance. Thus, the present study upgraded the TiO2@carbon nanocomposite to N-doped TiO2@carbon nanocomposite (N-TiO2@C) from Ti4+-dopamine/sodium alginate multicomponent complex. The composites were characterized by FT-IR, XRD, XPS, UV-vis DRS, TG-DTA, and SEM-EDS. The obtained TiO2 was a typical rutile phase, and the carboxyl groups existed on N-TiO2@C. The photocatalyst consequently showed high removal efficiency of MB. The cycling experiment additionally indicated the high stability of N-TiO2@C. The present work provided a novel route for preparing N-TiO2@C. Moreover, it can be extended to prepare N-doped polyvalent metal oxides@carbon composites from all water-soluble polysaccharides such as cellulose derivatives, starch, and guar gum.


Subject(s)
Carbon , Nanocomposites , Methylene Blue , Titanium , Dopamine , Alginates , Spectroscopy, Fourier Transform Infrared , Catalysis
4.
Int J Biol Macromol ; 241: 124606, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37116849

ABSTRACT

Polyhydroxybutyrate (PHB) production from lignocellulosic biomass is challenging due to the need for whole components and energy-effective conversion. Herein, Halomonas sp. Y3, a ligninolytic bacterium with the capacity to produce PHB from lignin and cellulose- and hemicellulose-derived sugars, is employed to explore its feasibility. This strain shows high sugar tolerance up to 200 g/L of glucose and 120 g/L of xylose. A dual anti-microbial contamination system (DACS) containing alkali-halophilic system (AHS) and phosphite-urea system (PUS) is presented, successfully achieving a completely aseptic effect and resulting in a total of 8.2 g of PHB production from 100 g bamboo biomass. We further develop a stage-fed-batch fermentation to promote the complete utilization of xylose. Approximately 69.99 g of dry cell weight (DCW) and 46.45 g of PHB with 66.35 % are obtained from a total of 296.58 g of sugars and 5.70 g of lignin, showing a significant advancement for LCB bioconversion. We then delete the native phosphate transporters, rendering the strain unable to grow on phosphate-loaded media, effectively improving the strain biosafety without compromising its ability to produce PHB. Overall, our findings demonstrate the potential of Y3 as a classic bacterium strain for PHB production with potential uses in industry.


Subject(s)
Halomonas , Lignin , Lignin/metabolism , Xylose , Halomonas/metabolism , Sugars , Fermentation , Hydroxybutyrates
5.
Bioresour Technol ; 370: 128526, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36572161

ABSTRACT

Lignin degradation represents a significant challenge in biological valorization, but it is suffering from insufficiency, putting barriers to efficient lignin conversion. Herein, the study first develops a highly efficient laccase secretion apparatus, enabling high enzyme activity of 184 U/mL, complementing the biochemical limits on lignin depolymerization well in Halomonas sp. Y3. Further engineering of PHA biosynthesis produces a significantly high PHA titer of 286, 742, and 868 mg/L from alkaline lignin, catechol, and protocatechuate, respectively. The integration of laccase-secretion and PHA production modules enables a record titer of 693 and 1209 mg/L in converting lignin and lignin-containing stream to PHA, respectively. The titer is improved furtherly to 740 and 1314 mg/L by developing a non-sterilized fermentation. This study advances a cheaper and greener production of valuable chemicals from lignin by constructing a biosynthetic platform for PHA production and provides novel insight into the lignin conversion by extremophilic microbes.


Subject(s)
Halomonas , Polyhydroxyalkanoates , Lignin/metabolism , Halomonas/genetics , Halomonas/metabolism , Laccase , Metabolic Engineering
6.
Bioresour Technol ; 351: 126919, 2022 May.
Article in English | MEDLINE | ID: mdl-35240276

ABSTRACT

The alkali-halophilic Halomonas alkalicola M2 was isolated and developed for an open unsterile polyhydroxyalkanoate (PHA) fermentation from lignocellulose at pH 10.0 and NaCl 70 g/L. The alkaline pretreatment liquid (APL) was converted into PHA by the strain, which was significantly affected by the cultural conditions, including pH, NaCl concentration, nitrogen source, and APL concentration. The extracted PHA was composed of three monomers and similar in physicochemical properties to conventional short chain-length PHA. A record yield of 2.1 and 5.9 g of PHA was accumulated from 100 g dry bamboo powder (BP) by using APL and APL combined with hydrolysate during a 48-h open unsterile fermentation process, respectively. In summary, the alkali-halophilic H. alkalicola M2 achieved the open unsterile fermentation for lignocellulose efficient bioconversion into PHA under high alkalinity and salinity conditions and would be an ideal producer in the field.


Subject(s)
Halomonas , Polyhydroxyalkanoates , Alkalies , Lignin , Sodium Chloride
SELECTION OF CITATIONS
SEARCH DETAIL
...