Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Neurosci Bull ; 2024 May 28.
Article En | MEDLINE | ID: mdl-38807019

Alcohol abuse induces various neurological disorders including motor learning deficits, possibly by affecting neuronal and astrocytic activity. Physical exercise is one effective approach to remediate synaptic loss and motor deficits as shown by our previous works. In this study, we unrevealed the role of exercise training in the recovery of cortical neuronal and astrocytic functions. Using a chronic alcohol injection mouse model, we found the hyperreactivity of astrocytes along with dendritic spine loss plus lower neuronal activity in the primary motor cortex. Persistent treadmill exercise training, on the other hand, improved neural spine formation and inhibited reactive astrocytes, alleviating motor learning deficits induced by alcohol exposure. These data collectively support the potency of endurance exercise in the rehabilitation of motor functions under alcohol abuse.

2.
Cell Rep Med ; 5(4): 101489, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38554705

Lung adenocarcinoma is a type of cancer that exhibits a wide range of clinical radiological manifestations, from ground-glass opacity (GGO) to pure solid nodules, which vary greatly in terms of their biological characteristics. Our current understanding of this heterogeneity is limited. To address this gap, we analyze 58 lung adenocarcinoma patients via machine learning, single-cell RNA sequencing (scRNA-seq), and whole-exome sequencing, and we identify six lung multicellular ecotypes (LMEs) correlating with distinct radiological patterns and cancer cell states. Notably, GGO-associated neoantigens in early-stage cancers are recognized by CD8+ T cells, indicating an immune-active environment, while solid nodules feature an immune-suppressive LME with exhausted CD8+ T cells, driven by specific stromal cells such as CTHCR1+ fibroblasts. This study also highlights EGFR(L858R) neoantigens in GGO samples, suggesting potential CD8+ T cell activation. Our findings offer valuable insights into lung adenocarcinoma heterogeneity, suggesting avenues for targeted therapies in early-stage disease.


Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Humans , Lung Neoplasms/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , CD8-Positive T-Lymphocytes/pathology , Ecotype , Retrospective Studies
3.
Cell Rep ; 42(3): 112240, 2023 03 28.
Article En | MEDLINE | ID: mdl-36924491

The aggregation of TAR DNA binding protein 43 kDa (TDP-43) is related to different neurodegenerative diseases, which leads to microglial activation and neuronal loss. The molecular mechanism driving neuronal death by reactive microglia, however, has not been completely resolved. In this study, we generated a mouse model by overexpressing mutant human TDP-43 (M337V) in the primary motor cortex, leading to prominent motor-learning deficits. In vivo 2-photon imaging shows an active approach of microglia toward parvalbumin interneurons, resulting in disrupted cortical excitatory-inhibitory balance. Proteomics studies suggest that activation of the complement pathway induces microglial activity. To develop an early interventional strategy, treadmill exercise successfully prevents the deterioration of motor dysfunction under enhanced adipocytic release of clusterin to block the complement pathway. These results demonstrate a previously unrecognized pathway by which TDP-43 induces cortical deficits and provide additional insights for the mechanistic explanation of exercise training in disease intervention.


Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Mice, Transgenic , Microglia/metabolism , Neurodegenerative Diseases/metabolism , Physical Conditioning, Animal
...