Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 531
Filter
1.
Elife ; 132024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949655

ABSTRACT

Secreted chemokines form concentration gradients in target tissues to control migratory directions and patterns of immune cells in response to inflammatory stimulation; however, how the gradients are formed is much debated. Heparan sulfate (HS) binds to chemokines and modulates their activities. In this study, we investigated the roles of HS in the gradient formation and chemoattractant activity of CCL5 that is known to bind to HS. CCL5 and heparin underwent liquid-liquid phase separation and formed gradient, which was confirmed using CCL5 immobilized on heparin-beads. The biological implication of HS in CCL5 gradient formation was established in CHO-K1 (wild-type) and CHO-677 (lacking HS) cells by Transwell assay. The effect of HS on CCL5 chemoattractant activity was further proved by Transwell assay of human peripheral blood cells. Finally, peritoneal injection of the chemokines into mice showed reduced recruitment of inflammatory cells either by mutant CCL5 (lacking heparin-binding sequence) or by addition of heparin to wild-type CCL5. Our experimental data propose that co-phase separation of CCL5 with HS establishes a specific chemokine concentration gradient to trigger directional cell migration. The results warrant further investigation on other heparin-binding chemokines and allows for a more elaborate insight into disease process and new treatment strategies.


Subject(s)
Chemokine CCL5 , Chemotaxis , Cricetulus , Heparitin Sulfate , Chemokine CCL5/metabolism , Chemokine CCL5/genetics , Animals , Heparitin Sulfate/metabolism , Humans , CHO Cells , Mice , Heparin/metabolism , Heparin/pharmacology , Phase Separation
2.
Int Immunopharmacol ; 138: 112570, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971105

ABSTRACT

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) shows promising therapeutic potential in cancer treatment as it is able to trigger extrinsic apoptotic pathways by binding to the cognate death receptor, causing broad-spectrum apoptosis in cancer cells with negligible toxicity to normal cells. However, the majority of cancers display resistance to TRAIL, limiting its clinical utility. Overcoming resistance to TRAIL therapies remains a challenge in the development of effective anti-cancer strategies. To address the limitations of TRAIL therapy, a viable alternative approach involves combining TRAIL with more potent drugs compared to monotherapy. This combination strategy aims to induce synergistic effects or sensitize drug-resistant cancer cells. This review provides an overview of relevant modalities of TRAIL combination therapy, highlighting different drug classes. The findings demonstrate that combining TRAIL with other agents can effectively counteract resistance observed with TRAIL therapies in cancer. These findings lay a foundation for future advancements in TRAIL-based therapies for treating various cancers.

3.
Biomacromolecules ; 25(7): 4374-4383, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38825770

ABSTRACT

Biomacromolecular condensates formed via phase separation establish compartments for the enrichment of specific compositions, which is also used as a biological tool to enhance molecule condensation, thereby increasing the efficiency of biological processes. Proteolysis-targeting chimeras (PROTACs) have been developed as powerful tools for targeted protein degradation in cells, offering a promising approach for therapies for different diseases. Herein, we introduce an intrinsically disordered region in the PROTAC (denoted PSETAC), which led to the formation of droplets of target proteins in the cells and increased degradation efficiency compared with PROTAC without phase separation. Further, using a nucleus targeting intrinsically disordered domain, the PSETAC was able to target and degrade nuclear-located proteins. Finally, we demonstrated intracellular delivery of PSETAC using lipid nanoparticle-encapsulated mRNA (mRNA-LNP) for the degradation of the endogenous target protein. This study established the PSETAC mRNA-LNP method as a potentially translatable, safe therapeutic strategy for the development of clinical applications based on PROTAC.


Subject(s)
Proteolysis , RNA, Messenger , Proteolysis/drug effects , Humans , RNA, Messenger/genetics , Nanoparticles/chemistry , Lipids/chemistry , HeLa Cells , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Phase Separation , Liposomes
4.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 940-944, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38926992

ABSTRACT

OBJECTIVE: To perform molecular diagnosis and pedigree analysis for one case with α-thalassemia who does not conform to the genetic laws, and explore the effects of a newly discovered rare mutation (HBA2:c.*12G>A) on clinical phenotypes. METHODS: Blood samples of the proband and her family members were collected for blood routine analysis, and the hemoglobin components were analyzed by capillary electrophoresis. The common α- and ß-globin gene loci in Chinese population were detected by conventional techniques (Gap-PCR, RDB-PCR). The α-globin gene sequences (HBA1, HBA2) were analyzed by Sanger sequencing. RESULTS: By analyzing the test results of proband and her family members, the genotype of the proband was -α3.7/HBA2:c.*12G>A, her father was HBA2:c.*12G>A heterozygous mutation carrier. CONCLUSION: This study identifies a rare α-globin gene mutation (HBA2:c.*12G>A) that has not been reported before. It is found that heterozygous mutation carriers present with static α-thalassemia.


Subject(s)
Hemoglobin A2 , alpha-Globins , alpha-Thalassemia , Female , Humans , Male , alpha-Globins/genetics , alpha-Thalassemia/genetics , alpha-Thalassemia/diagnosis , Genotype , Hemoglobin A2/genetics , Heterozygote , Mutation , Pedigree , Phenotype , East Asian People/genetics
5.
Ultrason Sonochem ; 107: 106927, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820934

ABSTRACT

A novel technique was proposed for processing silkworm pupae by combining plasma- activated water (PAW) with ultrasound (US). The microbial diversity and quality characteristics of the silkworm pupae were also evaluated. The results of the microbial diversity analysis indicated that PAW combined with US treatment significantly reduced the relative abundance of Streptococcaceae, Leuconostocaceae, and Acetobacteraceae from 32%, 18% and 16% to 27%, 11% and 11%, respectively. Microstructural analysis demonstrated that the collapse of the internal structure of chitin in silkworm pupae facilitated the release of nutrients and flavour compounds including fatty acids, water-soluble proteins (WSP), amino acids, phenolics, and volatile compounds. Furthermore, the increase in antioxidant capacity and the decrease in catalase activity and malondialdehyde content confirmed the mechanism of quality change. These findings provide new insights into the possible mechanism of PAW combined with US to improve the quality of edible insects.


Subject(s)
Bombyx , Pupa , Water , Animals , Pupa/microbiology , Water/chemistry , Bombyx/chemistry , Ultrasonic Waves , Chemical Phenomena , Antioxidants/chemistry , Antioxidants/pharmacology , Biodiversity
6.
J Phys Chem Lett ; 15(22): 5862-5867, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38804506

ABSTRACT

An artificial tactile receptor is crucial for e-skin in next-generation robots, mimicking the mechanical sensing, signal encoding, and preprocessing functionalities of human skin. In the neural network, pressure signals are encoded in spike patterns and efficiently transmitted, exhibiting low power consumption and robust tolerance for bit error rates. Here, we introduce a highly sensitive artificial tactile receptor system integrating a pressure sensor, axon-hillock circuit, and neurotransmitter release device to achieve pressure signal coding with patterned spikes and controlled neurotransmitter release. Owing to the heightened sensitivity of the axon-hillock circuit to pressure-mediated current signals, the artificial tactile receptor achieves a detection limit of 10 Pa that surpasses the human tactile receptors, with a wide response range from 10 to 5 × 105 Pa. Benefiting from the appreciable pressure-responsive performance, the potential application of an artificial tactile receptor in robotic tactile perception has been demonstrated, encompassing tasks such as finger touch and human pulse detection.


Subject(s)
Pressure , Touch , Humans , Robotics , Receptors, Artificial/chemistry , Receptors, Artificial/metabolism , Neurotransmitter Agents/chemistry
7.
Elife ; 122024 May 15.
Article in English | MEDLINE | ID: mdl-38747713

ABSTRACT

During mammalian oocyte meiosis, spindle migration and asymmetric cytokinesis are unique steps for the successful polar body extrusion. The asymmetry defects of oocytes will lead to the failure of fertilization and embryo implantation. In present study, we reported that an actin nucleating factor Formin-like 2 (FMNL2) played critical roles in the regulation of spindle migration and organelle distribution in mouse and porcine oocytes. Our results showed that FMNL2 mainly localized at the oocyte cortex and periphery of spindle. Depletion of FMNL2 led to the failure of polar body extrusion and large polar bodies in oocytes. Live-cell imaging revealed that the spindle failed to migrate to the oocyte cortex, which caused polar body formation defects, and this might be due to the decreased polymerization of cytoplasmic actin by FMNL2 depletion in the oocytes of both mice and pigs. Furthermore, mass spectrometry analysis indicated that FMNL2 was associated with mitochondria and endoplasmic reticulum (ER)-related proteins, and FMNL2 depletion disrupted the function and distribution of mitochondria and ER, showing with decreased mitochondrial membrane potential and the occurrence of ER stress. Microinjecting Fmnl2-EGFP mRNA into FMNL2-depleted oocytes significantly rescued these defects. Thus, our results indicate that FMNL2 is essential for the actin assembly, which further involves into meiotic spindle migration and ER/mitochondria functions in mammalian oocytes.


Subject(s)
Actins , Endoplasmic Reticulum , Formins , Meiosis , Mitochondria , Oocytes , Animals , Endoplasmic Reticulum/metabolism , Oocytes/metabolism , Formins/metabolism , Formins/genetics , Mitochondria/metabolism , Mice , Actins/metabolism , Swine , Female , Spindle Apparatus/metabolism
8.
J Agric Food Chem ; 72(21): 12057-12071, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38753758

ABSTRACT

Plant growth-promoting endophytes (PGPE) can effectively regulate plant growth and metabolism. The regulation is modulated by metabolic signals, and the resulting metabolites can have considerable effects on the plant yield and quality. Here, tissue culture Houttuynia cordata Thunb., was inoculated with Rhizobium sp. (BH46) to determine the effect of BH46 on H. cordata growth and metabolism, and elucidate associated regulatory mechanisms. The results revealed that BH46 metabolized indole-3-acetic acid and induced 1-aminocyclopropane-1-carboxylate deaminase to decrease ethylene metabolism. Host peroxidase synthesis MPK3/MPK6 genes were significantly downregulated, whereas eight genes associated with auxins, cytokinins, abscisic acid, jasmonic acid, and antioxidant enzymes were significantly upregulated. Eight genes associated with flavonoid biosynthesis were significantly upregulated, with the CPY75B1 gene regulating the production of rutin and quercitrin and the HCT gene directly regulating the production of chlorogenic acid. Therefore, BH46 influences metabolic signals in H. cordata to modulate its growth and metabolism, in turn, enhancing yield and quality of H. cordata.


Subject(s)
Endophytes , Houttuynia , Plant Proteins , Houttuynia/microbiology , Houttuynia/metabolism , Houttuynia/genetics , Endophytes/metabolism , Endophytes/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Indoleacetic Acids/metabolism , Rhizobium/genetics , Rhizobium/metabolism , Flavonoids/metabolism , Abscisic Acid/metabolism , Ethylenes/metabolism , Carbon-Carbon Lyases/metabolism , Carbon-Carbon Lyases/genetics
9.
Front Psychol ; 15: 1391258, 2024.
Article in English | MEDLINE | ID: mdl-38817835

ABSTRACT

Mobile phone dependence (also known as internet dependence, MPD), defined as a problematic behavior characterized by excessive use or intermittent craving to use a mobile phone, results in various social, behavioral, and affective problems in daily life. In sports, MPD is directly related to the physical and mental health and sports performance of athletes. The individual and environmental factors, neurobiological mechanisms and theoretical models of MPD affecting athletic performance were analyzed by reviewing previous studies, aiming to construct effective training and development protocols to prevent and control the occurrence of MPD in athletes. At present, athletic performance can be affected by MPD through individual factors and environmental factors. The neurobiological mechanisms between the two are based on the brain reward system and microwave radiation from mobile phones, with athletic performance being restricted by alterations in the corresponding brain regions. Relevant theoretical models mainly include the social cognitive model of self-regulation and the integrative model of self-control, which explain the interrelationship between MPD and athletic performance from the perspectives of athletes' self-regulation and self-control, respectively. As an emerging phenomenon, the influence pathways and mechanisms by which MPD affects athletic performance need to be further investigated. A longitudinal perspective should be adopted to trace the dynamic impact relationship between the two, and developing relevant theoretical frameworks from an interdisciplinary research perspective should be valuable for providing theoretical support for coaches and sports administrators to formulate scientific training protocols and thus improve the mental health of athletes.

10.
Anal Chem ; 96(21): 8300-8307, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38747393

ABSTRACT

An antibody transistor is a promising biosensing platform for the diagnosis and monitoring of various diseases. Nevertheless, the low concentration and short half-life of biomarkers require biodetection at the trace-molecule level, which remains a challenge for existing antibody transistors. Herein, we demonstrate a graphene field-effect transistor (gFET) with electrically oriented antibody probes (EOA-gFET) for monitoring several copies of methylated DNA. The electric field confines the orientation of antibody probes on graphene and diminishes the distance between graphene and methylated DNAs captured by antibodies, generating more induced charges on graphene and amplifying the electric signal. EOA-gFET realizes a limit of detection (LoD) of ∼0.12 copy µL-1, reaching the lowest LoD reported before. EOA-gFET shows a distinguishable signal for liver cancer clinical serum samples within ∼6 min, which proves its potential as a powerful tool for disease screening and diagnosis.


Subject(s)
Antibodies , Biosensing Techniques , DNA Methylation , Graphite , Transistors, Electronic , Humans , Graphite/chemistry , Antibodies/immunology , Antibodies/chemistry , DNA/chemistry , Limit of Detection , Liver Neoplasms/diagnosis , Liver Neoplasms/blood
11.
Front Public Health ; 12: 1354231, 2024.
Article in English | MEDLINE | ID: mdl-38799683

ABSTRACT

Introduction: Although previous research has examined the risk factors for drowning behavior among adolescents, it is unclear whether this association is influenced by water safety knowledge. This study aimed to examine whether water safety knowledge is associated with adolescents' drowning risk behaviors and whether drowning risk perceptions and attitudes could have a chain mediating role in the association between water safety knowledge and adolescents' drowning risk behaviors. Methods: This study included 7,485 adolescents from five Chinese provinces and cities. We used the Drowning Risk Behaviors Scales (DRBS) to evaluate the risk of drowning behaviors. The Water Safety Knowledge Scale (WSKS) was used to evaluate the competence level of water safety knowledge. The Drowning Risk Perceptions Scale (DRPS) was used to evaluate the risk level of perceptions, and the Drowning Risk Attitudes Scale (DRAS) was used to evaluate the risk level of attitudes. Results: The results of the mediating effect test showed that water safety knowledge (WSK) affected drowning risk behaviors (DRB) through three indirect paths. Drowning risk perceptions (DRP) and attitudes (DRA) have significantly mediated the association between WSK and DRB. In conclusion, DRP and DRA can act as mediators between WSK and DRB, not only individually, but also as chain mediators, where the direct effect is-0.301, the total indirect effect is-0.214, and the total mediated indirect effect is 41.5%. Discussion: Water safety knowledge negatively predicts adolescents' drowning risk behaviors; water safety knowledge has an inhibitory effect on drowning risk perceptions. Water safety knowledge can directly influence adolescents' drowning risk perceptions and indirectly affect drowning risk behaviors through the mediation of drowning risk perceptions and attitudes comprising three paths: (1) the drowning risk perceptions mediation path, (2) the drowning risk attitudes mediation path, and (3) the drowning risk perceptions and attitudes mediation paths.


Subject(s)
Drowning , Health Knowledge, Attitudes, Practice , Risk-Taking , Humans , Drowning/prevention & control , Adolescent , Female , Male , China , Surveys and Questionnaires , Risk Factors , Safety , Adolescent Behavior/psychology
12.
J Gerontol Soc Work ; : 1-22, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598564

ABSTRACT

This review assesses interventions to reduce loneliness in Chinese older adults, analyzing 36 studies involving 3965 participants. Focusing on individuals aged 50 and over, the meta-analysis reveals a significant overall effect size (Hedges' g = 0.937, 95% CI [0.71,1.16], p<0.001), highlighting the effectiveness of psychological and mixed-method approaches. Despite promising results, methodological concerns suggest cautious interpretation. Future research should aim to refine intervention quality and examine the impact of technology-supported methods on loneliness.

13.
Cell Prolif ; : e13645, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38601993

ABSTRACT

The biogenesis of exosomes that mediate cell-to-cell communication by transporting numerous biomolecules to neighbouring cells is an essential cellular process. The interaction between the transmembrane protein syndecan-4 (SDC4) and cytosolic protein syntenin plays a key role in the biogenesis of exosomes. However, how the relatively weak binding of syntenin to SDC4 efficiently enables syntenin sorting for packaging into exosomes remains unclear. Here, we demonstrate for the first time that SDC4 can undergo liquid-liquid phase separation (LLPS) to form condensates both in vitro and in the cell membrane and that, the SDC4 cytoplasmic domain (SDC4-CD) is a key contributor to this process. The phase separation of SDC4 greatly enhances the recruitment of syntenin to the plasma membrane (PM) despite the weak SDC4-syntenin interaction, facilitating syntenin sorting for inclusion in exosomes. Interestingly, phosphorylation at the only serine (179) in the SDC4-CD (Ser179) disrupts SDC4 LLPS, and inhibited phosphorylation or dephosphorylation restores the SDC4 LLPS to promote its recruitment of syntenin to the PM and syntenin inclusion into exosomes. This research reveals a novel phosphorylation-regulated phase separation property of SDC4 in the PM through which SDC4 efficiently recruits cytosolic syntenin and facilitates the biogenesis of exosomes, providing potential intervention targets for exosome-mediated biomedical events.

14.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 520-524, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38660861

ABSTRACT

OBJECTIVE: To investigate two cases of rare pathogenic genes, initiation codon mutations in HBA2 gene, combined with Southeast Asian deletion and their family members to understand the relationship of HBA2:c.2T>C and HBA2:c.2delT mutations with clinical phenotype. METHODS: The peripheral blood of family members was obtained for blood cell analysis and capillary electrophoresis hemoglobin analysis. Gap-PCR and reverse dot blotting (RDB) were used to detect common types of mutations in ɑ-thalassaemia gene. Sanger sequencing was used to analyze HBA1 and HBA2 gene sequence. RESULTS: Two proband genotypes were identified as --SEA/αα with HBA2:c.2T>C and --SEA/αα with HBA2:c.2delT. HBA2:c.2T>C/WT and HBA2:c.2delT/WT was detected in family members. They all presented with microcytic hypochromic anemia. CONCLUSION: When HBA2:c.2T>C and HBA2:c.2delT are heterozygous that can lead to static α-thalassemia phenotype, and when combined with mild α-thalassemia, they can lead to the clinical manifestations of hemoglobin H disease. This study provides a basis for genetic counseling.


Subject(s)
Genotype , Mutation , alpha-Thalassemia , Humans , alpha-Thalassemia/genetics , Anemia, Hypochromic/genetics , Hemoglobin A2/genetics , Hemoglobin H/genetics , Heterozygote , Phenotype
15.
J Agric Food Chem ; 72(17): 9746-9754, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38602331

ABSTRACT

The latex of Euphorbia peplus and its major component 20-deoxyingenol-3-angelate (DI3A) displayed significant nematicidal activity against Caenorhabditis elegans and Panagrellus redivivus. DI3A treatment inhibited the growth and development of nematodes and caused significantly negative effects on locomotion behavior, reproduction, and accumulation of reactive oxygen species. Transcriptome analysis indicated that differential expression genes in DI3A-treated C. elegans were mainly associated with the metabolism, growth, and development process, which were further confirmed by RT-qPCR experiments. The expression level of TPA-1 gene encoding a protein kinase C isotype was obviously upregulated by DI3A treatment, and knockdown of TPA-1 by RNAi technology in the nematode could relieve the growth-inhibitory effect of DI3A. Metabolic analysis indicated that DI3A was hardly metabolized by C. elegans, but a glycosylated indole derivative was specifically accumulated likely due to the activation of detoxification. Overall, our findings suggested that DI3A from E. peplus latex exerted a potent nematicidal effect through the gene TPA-1, which provides a potential target for the control of nematodes and also suggests the potential application value of E. peplus latex and DI3A as botanical nematicides.


Subject(s)
Antinematodal Agents , Caenorhabditis elegans , Euphorbia , Latex , Protein Kinase C , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/growth & development , Latex/chemistry , Latex/metabolism , Antinematodal Agents/pharmacology , Antinematodal Agents/chemistry , Antinematodal Agents/metabolism , Euphorbia/chemistry , Protein Kinase C/metabolism , Protein Kinase C/genetics , Plant Extracts/pharmacology , Plant Extracts/chemistry
16.
ACS Appl Mater Interfaces ; 16(13): 16962-16972, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38520330

ABSTRACT

Typical methods for stable immobilization of proteins often involve time-consuming surface modification of silicon-based materials to enable specific binding, while the nonspecific adsorption method is faster but usually unstable. Herein, we fused a silica-binding protein, Si-tag, to target proteins so that the target proteins could attach directly to silica substrates in a single step, markedly streamlining the immobilization process. The adhesion force between the Si-tag and glass substrates was determined to be approximately 400-600 pN at the single-molecule level by atomic force microscopy, which is greater than the unfolding force of most proteins. The adhesion force of the Si-tag exhibits a slight increase when pulled from the C-terminus compared to that from the N-terminus. Furthermore, the Si-tag's adhesion force on a glass surface is marginally higher than that on a silicon nitride probe. The binding properties of the Si-tag are not obviously affected by environmental factors, including pH, salt concentration, and temperature. In addition, the macroscopic adhesion force between the Si-tag-coated hydrogel and glass substrates was ∼40 times higher than that of unmodified hydrogels. Therefore, the Si-tag, with its strong silica substrate binding ability, provides a useful tool as an excellent fusion tag for the rapid and mechanically robust immobilization of proteins on silica and for the surface coating of silica-binding materials.


Subject(s)
Carrier Proteins , Silicon Dioxide , Silicon Dioxide/chemistry , Spectrum Analysis , Microscopy, Atomic Force , Surface Properties
17.
Brain Res ; 1837: 148855, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38471644

ABSTRACT

Subarachnoid hemorrhage (SAH) is characterized by the extravasation of blood into the subarachnoid space, in which erythrocyte lysis is the primary contributor to cell death and brain injuries. New evidence has indicated that meningeal lymphatic vessels (mLVs) are essential in guiding fluid and macromolecular waste from cerebrospinal fluid (CSF) into deep cervical lymph nodes (dCLNs). However, the role of mLVs in clearing erythrocytes after SAH has not been completely elucidated. Hence, we conducted a cross-species study. Autologous blood was injected into the subarachnoid space of rabbits and rats to induce SAH. Erythrocytes in the CSF were measured with/without deep cervical lymph vessels (dCLVs) ligation. Additionally, prior to inducing SAH, we administered rats with vascular endothelial growth factor C (VEGF-C), which is essential for meningeal lymphangiogenesis and maintaining integrity and survival of lymphatic vessels. The results showed that the blood clearance rate was significantly lower after dCLVs ligation in both the rat and rabbit models. DCLVs ligation aggravated neuroinflammation, neuronal damage, brain edema, and behavioral impairment after SAH. Conversely, the treatment of VEGF-C enhanced meningeal lymphatic drainage of erythrocytes and improved outcomes in SAH. In summary, our research highlights the indispensable role of the meningeal lymphatic pathway in the clearance of blood and mediating consequences after SAH.


Subject(s)
Lymphatic Vessels , Rats, Sprague-Dawley , Subarachnoid Hemorrhage , Animals , Rabbits , Subarachnoid Hemorrhage/metabolism , Rats , Male , Ligation/methods , Erythrocytes/metabolism , Disease Models, Animal , Vascular Endothelial Growth Factor C/metabolism , Meninges , Brain Edema/metabolism
18.
J Biol Chem ; 300(3): 105667, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272228

ABSTRACT

The aggregation of α-Synuclein (α-Syn) into amyloid fibrils is the hallmark of Parkinson's disease. Under stress or other pathological conditions, the accumulation of α-Syn oligomers is the main contributor to the cytotoxicity. A potential approach for treating Parkinson's disease involves preventing the accumulation of these α-Syn oligomers. In this study, we present a novel mechanism involving a conserved group of disorderly proteins known as small EDRK-rich factor (SERF), which promotes the aggregation of α-Syn through a cophase separation process. Using diverse methods like confocal microscopy, fluorescence recovery after photobleaching assays, solution-state NMR spectroscopy, and Western blot, we determined that the N-terminal domain of SERF1a plays a role in the interactions that occur during cophase separation. Within these droplets, α-Syn undergoes a gradual transformation from solid condensates to amyloid fibrils, while SERF1a is excluded from the condensates and dissolves into the solution. Notably, in vivo experiments show that SERF1a cophase separation with α-Syn significantly reduces the deposition of α-Syn oligomers and decreases its cellular toxicity under stress. These findings suggest that SERF1a accelerates the conversion of α-Syn from highly toxic oligomers to less toxic fibrils through cophase separation, thereby mitigating the biological damage of α-Syn aggregation.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , Amyloid/chemistry , Parkinson Disease/metabolism , Phase Separation , Protein Aggregates , Protein Aggregation, Pathological/metabolism , Transcription Factors , Blood Group Antigens/chemistry , Blood Group Antigens/metabolism , HeLa Cells , Static Electricity
19.
Acta Pharmacol Sin ; 45(4): 777-789, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38200148

ABSTRACT

Renal fibrosis is the final pathological change in renal disease, and aging is closely related to renal fibrosis. Mitochondrial dysfunction has been reported to play an important role in aging, but the exact mechanism remains unclear. Disulfide-bond A oxidoreductase-like protein (DsbA-L) is mainly located in mitochondria and plays an important role in regulating mitochondrial function and endoplasmic reticulum (ER) stress. However, the role of DsbA-L in renal aging has not been reported. In this study, we showed a reduction in DsbA-L expression, the disruption of mitochondrial function and an increase in fibrosis in the kidneys of 12- and 24-month-old mice compared to young mice. Furthermore, the deterioration of mitochondrial dysfunction and fibrosis were observed in DsbA-L-/- mice with D-gal-induced accelerated aging. Transcriptome analysis revealed a decrease in Flt4 expression and inhibition of the PI3K-AKT signaling pathway in DsbA-L-/- mice compared to control mice. Accelerated renal aging could be alleviated by an AKT agonist (SC79) or a mitochondrial protector (MitoQ) in mice with D-gal-induced aging. In vitro, overexpression of DsbA-L in HK-2 cells restored the expression of Flt4, AKT pathway factors, SP1 and PGC-1α and alleviated mitochondrial damage and cell senescence. These beneficial effects were partially blocked by inhibiting Flt4. Finally, activating the AKT pathway or improving mitochondrial function with chemical reagents could alleviate cell senescence. Our results indicate that the DsbA-L/AKT/PGC-1α signaling pathway could be a therapeutic target for age-related renal fibrosis and is associated with mitochondrial dysfunction.


Subject(s)
Glutathione Transferase , Kidney Diseases , Kidney , Mitochondria , Animals , Mice , Aging , Fibrosis , Homeostasis , Kidney/pathology , Kidney Diseases/enzymology , Mitochondria/enzymology , Mitochondrial Diseases/enzymology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Glutathione Transferase/metabolism
20.
J Asian Nat Prod Res ; 26(1): 78-90, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38069835

ABSTRACT

Phytochemical investigation on the aerial parts of Salvia deserta led to the isolation of eight new pentacyclic triterpenoids including three oleanane- (1 - 3) and five ursane-type (4 - 8) triterpenoids, whose structures were elucidated based on extensive spectroscopic analysis and quantum chemical calculation. Weak immunosuppressive potency was observed for compounds 1, 2, and 4 - 8 via inhibiting the secretion of cytokines TNF-α and IL-6 in LPS-induced macrophages RAW264.7 at 20 µM. In addition, compounds 1, 2, and 4 - 6 exhibited moderate protective activity on t-BHP-induced oxidative injury in HepG2 cells.


Subject(s)
Salvia , Triterpenes , Triterpenes/pharmacology , Triterpenes/chemistry , Salvia/chemistry , Molecular Structure , Cytokines , Plant Components, Aerial/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...