Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.407
1.
Phys Rev Lett ; 132(20): 200801, 2024 May 17.
Article En | MEDLINE | ID: mdl-38829067

A fully homomorphic encryption system enables computation on encrypted data without the necessity for prior decryption. This facilitates the seamless establishment of a secure quantum channel, bridging the server and client components, and thereby providing the client with secure access to the server's substantial computational capacity for executing quantum operations. However, traditional homomorphic encryption systems lack scalability, programmability, and stability. In this Letter, we experimentally demonstrate a proof-of-concept implementation of a homomorphic encryption scheme on a compact quantum chip, verifying the feasibility of using photonic chips for quantum homomorphic encryption. Our work not only provides a solution for circuit expansion, addressing the longstanding challenge of scalability while significantly reducing the size of quantum network infrastructure, but also lays the groundwork for the development of highly sophisticated quantum fully homomorphic encryption systems.

2.
J Environ Manage ; 362: 121303, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824885

Spent phosphor is an important secondary resource for extracting rare earth elements. Microwave absorption properties and enhanced extraction of Eu from blue phosphor by microwave alkali roasting were studied. Dielectric properties of alkali roasting system were measured by resonator perturbation method. Dielectric constant increases linearly from 250 °C until it reaches a peak at 400 °C. The dielectric loss reaches a higher value at 400-550 °C, due to the strong microwave absorption properties of molten alkali and roasted products. Effects of roasting temperature, roasting time and alkali addition amount on Eu leaching were investigated. The phosphor was completely decomposed into Eu2O3, BaCO3 and MgO at 400 °C. The alkaline decomposition process of phosphor is more consistent with diffusion control model with Eα being 28.9 kJ/mol. Effects of the main leaching conditions on Eu leaching were investigated. The leaching kinetic of Eu was in line with diffusion control model with Eα being 5.74 kJ/mol. The leaching rules of rare earths in the mixed phosphor were studied. The results showed that the presence of red and green phosphor affected the recovery of blue phosphor. The optimum process parameters of rare earth recovery in single blue phosphor and mixed phosphor were obtained, and the recovery of Eu were 97.81% and 94.80%, respectively. Microwave alkali roasting promoted the dissociation of phosphor and leaching of rare earths. The results can provide reference for the efficient and selective recovery of rare earths in phosphors.

3.
Transl Res ; 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38838852

BACKGROUND: Arterial remodeling is a common pathophysiological change in the pathogenesis of cardiovascular diseases in which the phenotypic switch of vascular smooth muscle cells (VSMC) plays an important role. Recently, an increasing number of long non-coding RNAs(lncRNAs) have been shown to encode micropeptides that play biological roles and have great clinical transformation potential. However, the role of micropeptides encoded by lncRNAs in arterial remodeling has not been well studied and requires further exploration. METHODS AND RESULTS: Through bioinformatic analysis and experimental verification, we found that a new lncRNA, the mitochondrial function-related lncRNA (MFRL), encodes a 64-amino acid micropeptide, MFRLP. MFRL and MFRLP play important roles in the phenotypic switch of VSMC. Further experiments showed that MFRLP interacts with mitochondrial cytochrome b to reduce accumulation of reactive oxygen species, suppress mitophagy and inhibit the VSMC switch from contractile to synthetic phenotype. CONCLUSIONS: LncRNA MFRL encodes the micropeptide MFRLP, which interacts with mitochondrial cytochrome b to inhibit the VSMC switch from contractile to synthetic phenotype and improve arterial remodeling.

4.
Biol Reprod ; 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38832713

Forkhead box L2 (FOXL2) is an indispensable key regulator of female follicular development, and it plays important roles in the morphogenesis, proliferation, and differentiation of follicle granulosa cells (GCs), such as establishing normal estradiol signaling and regulating steroid hormone synthesis. Nevertheless, the effects of FOXL2 on GC morphology and the underlying mechanism remain unknown. Using FOXL2 ChIP-seq analysis, we found that FOXL2 target genes significantly enriched in the actin cytoskeleton-related pathways. We confirmed that FOXL2 inhibited the expression of RhoA, a key gene for actin cytoskeleton rearrangement, by binding to TCATCCATCTCT in RhoA promoter region. In addition, the overexpression of FOXL2 in GCs induced the depolymerization of F-actin and the disordered of the actin filaments, resulting in a slowdown in the expansion of GCs, while silencing FOXL2 inhibited F-actin depolymerization and stabilized the actin filaments, thereby accelerating GC expansion. RhoA/ROCK pathway inhibitor Y-27632 exhibited similar effects to FOXL2 overexpression, even reversed the actin polymerization in FOXL2 silencing GCs. This study revealed for the first time that FOXL2 regulated GC actin cytoskeleton by RhoA/ROCK pathway, thus affecting GC expansion. Our findings provide new insights for constructing the regulatory network of FOXL2 and propose a potential mechanism for facilitating rapid follicle expansion, thereby laying a foundation for further understanding follicular development.

5.
Nat Commun ; 15(1): 4777, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38839748

Drawing inspiration from cohesive integration of skeletal muscles and sensory skins in vertebrate animals, we present a design strategy of soft robots, primarily consisting of an electronic skin (e-skin) and an artificial muscle. These robots integrate multifunctional sensing and on-demand actuation into a biocompatible platform using an in-situ solution-based method. They feature biomimetic designs that enable adaptive motions and stress-free contact with tissues, supported by a battery-free wireless module for untethered operation. Demonstrations range from a robotic cuff for detecting blood pressure, to a robotic gripper for tracking bladder volume, an ingestible robot for pH sensing and on-site drug delivery, and a robotic patch for quantifying cardiac function and delivering electrotherapy, highlighting the application versatilities and potentials of the bio-inspired soft robots. Our designs establish a universal strategy with a broad range of sensing and responsive materials, to form integrated soft robots for medical technology and beyond.


Robotics , Robotics/instrumentation , Robotics/methods , Animals , Biomimetics/methods , Biomimetics/instrumentation , Humans , Prostheses and Implants , Skin , Equipment Design , Muscle, Skeletal/physiology , Wearable Electronic Devices
6.
Medicine (Baltimore) ; 103(19): e38065, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728521

Knee varus (KV) deformity leads to abnormal forces in the different compartments of the joint cavity and abnormal mechanical loading thus leading to knee osteoarthritis (KOA). This study used computer-aided design to create 3-dimensional simulation models of KOA with varying varus angles to analyze stress distribution within the knee joint cavity using finite element analysis for different varus KOA models and to compare intra-articular loads among these models. Additionally, we developed a cartilage loading model of static KV deformity to correlate with dynamic clinical cases of cartilage injury. Different KV angle models were accurately simulated with computer-aided design, and the KV angles were divided into (0°, 3°, 6°, 9°, 12°, 15°, and 18°) 7 knee models, and then processed with finite element software, and the Von-Mises stress distribution and peak values of the cartilage of the femoral condyles, medial tibial plateau, and lateral plateau were obtained by simulating the human body weight in axial loading while performing the static extension position. Finally, intraoperative endoscopy visualization of cartilage injuries in clinical cases corresponding to KV deformity subgroups was combined to find cartilage loading and injury correlations. With increasing varus angle, there was a significant increase in lower limb mechanical axial inward excursion and peak Von-Mises stress in the medial interstitial compartment. Analysis of patients' clinical data demonstrated a significant correlation between varus deformity angle and cartilage damage in the knee, medial plateau, and patellofemoral intercompartment. Larger varus deformity angles could be associated with higher medial cartilage stress loads and increased cartilage damage in the corresponding peak stress area. When the varus angle exceeds 6°, there is an increased risk of cartilage damage, emphasizing the importance of early surgical correction to prevent further deformity and restore knee function.


Cartilage, Articular , Finite Element Analysis , Knee Joint , Osteoarthritis, Knee , Humans , Osteoarthritis, Knee/physiopathology , Osteoarthritis, Knee/surgery , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/pathology , Knee Joint/physiopathology , Male , Weight-Bearing/physiology , Biomechanical Phenomena , Middle Aged , Stress, Mechanical , Female , Computer Simulation , Aged
7.
PLoS One ; 19(5): e0302277, 2024.
Article En | MEDLINE | ID: mdl-38743665

Enhanced animal welfare has emerged as a pivotal element in contemporary precision animal husbandry, with bovine monitoring constituting a significant facet of precision agriculture. The evolution of intelligent agriculture in recent years has significantly facilitated the integration of drone flight monitoring tools and innovative systems, leveraging deep learning to interpret bovine behavior. Smart drones, outfitted with monitoring systems, have evolved into viable solutions for wildlife protection and monitoring as well as animal husbandry. Nevertheless, challenges arise under actual and multifaceted ranch conditions, where scale alterations, unpredictable movements, and occlusions invariably influence the accurate tracking of unmanned aerial vehicles (UAVs). To address these challenges, this manuscript proposes a tracking algorithm based on deep learning, adhering to the Joint Detection Tracking (JDT) paradigm established by the CenterTrack algorithm. This algorithm is designed to satisfy the requirements of multi-objective tracking in intricate practical scenarios. In comparison with several preeminent tracking algorithms, the proposed Multi-Object Tracking (MOT) algorithm demonstrates superior performance in Multiple Object Tracking Accuracy (MOTA), Multiple Object Tracking Precision (MOTP), and IDF1. Additionally, it exhibits enhanced efficiency in managing Identity Switches (ID), False Positives (FP), and False Negatives (FN). This algorithm proficiently mitigates the inherent challenges of MOT in complex, livestock-dense scenarios.


Algorithms , Animals , Cattle , Animal Husbandry/methods , Unmanned Aerial Devices , Animal Welfare , Deep Learning
8.
J Clin Transl Hepatol ; 12(5): 457-468, 2024 May 28.
Article En | MEDLINE | ID: mdl-38779518

Background and Aims: Hepatitis B virus (HBV) reactivation is commonly observed in individuals with chronic HBV infection undergoing antineoplastic drug therapy. Paclitaxel (PTX) treatment has been identified as a potential trigger for HBV reactivation. This study aimed to uncover the mechanisms of PTX-induced HBV reactivation in vitro and in vivo, which may inform new strategies for HBV antiviral treatment. Methods: The impact of PTX on HBV replication was assessed through various methods including enzyme-linked immunosorbent assay, dual-luciferase reporter assay, quantitative real-time PCR, chromatin immunoprecipitation, and immunohistochemical staining. Transcriptome sequencing and 16S rRNA sequencing were employed to assess alterations in the transcriptome and microbial diversity in PTX-treated HBV transgenic mice. Results: PTX enhanced the levels of HBV 3.5-kb mRNA, HBV DNA, HBeAg, and HBsAg both in vitro and in vivo. PTX also promoted the activity of the HBV core promoter and transcription factor AP-1. Inhibition of AP-1 gene expression markedly suppressed PTX-induced HBV reactivation. Transcriptome sequencing revealed that PTX activated the immune-related signaling networks such as IL-17, NF-κB, and MAPK signaling pathways, with the pivotal common key molecule being AP-1. The 16S rRNA sequencing revealed that PTX induced dysbiosis of gut microbiota. Conclusions: PTX-induced HBV reactivation was likely a synergistic outcome of immune suppression and direct stimulation of HBV replication through the enhancement of HBV core promoter activity mediated by the transcription factor AP-1. These findings propose a novel molecular mechanism, underscoring the critical role of AP-1 in PTX-induced HBV reactivation.

9.
Talanta ; 276: 126239, 2024 May 11.
Article En | MEDLINE | ID: mdl-38781912

In this work, the oxidation of theaflavin-3-gallate (TF-3-G) was investigated using (-)-epicatechin (EC) and (-)-epigallocatechin gallate (EGCG) as substrates in a one-pot reaction. The resulting TF-3-G oxidation product was acquired by employing acetonitrile/water and ethanol/water as eluents, respectively, which was identified as theanaphthoquinone-3'-gallate (TNQ-3'-G). Surprisingly, we discovered that TNQ-3'-G could react with certain protic solvents to form new and unstable complexes through intermolecular hydrogen bond. This reactivity was also confirmed by the presence of irregular peaks in reverse-phase high-performance liquid chromatography (RP-HPLC) besides spectroscopic data. Therefore, we inferred that the number of carboxyl groups may increase through the successive oxidative polymerization of the TFs oxidation products. The high-molecular polymer could also interact with biomacromolecules in a similar manner to their interaction with protic solvents. This interaction might be one of the main factors contributing to the broad hump of thearubigins (TRs) on the RP-HPLC baseline. Additionally, these findings lay a solid foundation for interpreting the structures of TRs and understanding their generation mechanism.

10.
Curr Hypertens Rep ; 2024 May 23.
Article En | MEDLINE | ID: mdl-38780756

PURPOSE OF REVIEW: Pregnancy-induced preeclampsia is a severe pregnancy complication and preeclampsia has been associated with an increased risk of chronic hypertension for offspring. However, the magnitude of the overall effect of exposure to preeclampsia in pregnancy on blood pressure (BP) in offspring is unknown. This systematic review and meta-analysis was sought to systematically assess the effects of preeclampsia on the BP of the offspring. RECENT FINDINGS: Of 2550 publications identified, 23 studies were included. The meta-analysis indicated that preeclampsia increases the potential risk of hypertension in offspring. Systolic blood pressure (SBP) was 2.0 mm Hg (95% CI: 1.2, 2.8) and diastolic blood pressure (DBP) was 1.4 mm Hg (95% CI: 0.9, 1.9) higher in offspring exposed to pre-eclampsia in utero, compared to those born to normotensive mothers. The correlations were similar in stratified analyses of children and adolescents by sex, geographic area, ages, and gestational age. During childhood and young adulthood, the offspring of pregnant women with preeclampsia are at an increased risk of high BP. It is crucial to monitor their BP.

11.
Transl Vis Sci Technol ; 13(5): 13, 2024 May 01.
Article En | MEDLINE | ID: mdl-38767906

Purpose: The purpose of this study was to conduct a large-scale genome-wide association study (GWAS) and construct a polygenic risk score (PRS) for risk stratification in patients with dry eye disease (DED) using the Taiwan Biobank (TWB) databases. Methods: This retrospective case-control study involved 40,112 subjects of Han Chinese ancestry, sourced from the publicly available TWB. Cases were patients with DED (n = 14,185), and controls were individuals without DED (n = 25,927). The patients with DED were further divided into 8072 young (<60 years old) and 6113 old participants (≥60 years old). Using PLINK (version 1.9) software, quality control was carried out, followed by logistic regression analysis with adjustments for sex, age, body mass index, depression, and manic episodes as covariates. We also built PRS prediction models using the standard clumping and thresholding method and evaluated their performance (area under the curve [AUC]) through five-fold cross-validation. Results: Eleven independent risk loci were identified for these patients with DED at the genome-wide significance levels, including DNAJB6, MAML3, LINC02267, DCHS1, SIRPB3P, HULC, MUC16, GAS2L3, and ZFPM2. Among these, MUC16 encodes mucin family protein. The PRS model incorporated 932 and 740 genetic loci for young and old populations, respectively. A higher PRS score indicated a greater DED risk, with the top 5% of PRS individuals having a 10-fold higher risk. After integrating these covariates into the PRS model, the area under the receiver operating curve (AUROC) increased from 0.509 and 0.537 to 0.600 and 0.648 for young and old populations, respectively, demonstrating the genetic-environmental interaction. Conclusions: Our study prompts potential candidates for the mechanism of DED and paves the way for more personalized medication in the future. Translational Relevance: Our study identified genes related to DED and constructed a PRS model to improve DED prediction.


Dry Eye Syndromes , Genetic Predisposition to Disease , Genome-Wide Association Study , Multifactorial Inheritance , Humans , Female , Male , Middle Aged , Retrospective Studies , Dry Eye Syndromes/genetics , Dry Eye Syndromes/epidemiology , Case-Control Studies , Genetic Predisposition to Disease/genetics , Adult , Multifactorial Inheritance/genetics , Aged , Risk Factors , Risk Assessment/methods , Polymorphism, Single Nucleotide , Taiwan/epidemiology , Genetic Risk Score
14.
BMC Biol ; 22(1): 111, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741075

BACKGROUND: Juvenile hormones (JH) play crucial role in regulating development and reproduction in insects. The most common form of JH is JH III, derived from MF through epoxidation by CYP15 enzymes. However, in the higher dipterans, such as the fruitfly, Drosophila melanogaster, a bis-epoxide form of JHB3, accounted most of the JH detected. Moreover, these higher dipterans have lost the CYP15 gene from their genomes. As a result, the identity of the P450 epoxidase in the JH biosynthesis pathway in higher dipterans remains unknown. RESULTS: In this study, we show that Cyp6g2 serves as the major JH epoxidase responsible for the biosynthesis of JHB3 and JH III in D. melanogaster. The Cyp6g2 is predominantly expressed in the corpus allatum (CA), concurring with the expression pattern of jhamt, another well-studied gene that is crucial in the last steps of JH biosynthesis. Mutation in Cyp6g2 leads to severe disruptions in larval-pupal metamorphosis and exhibits reproductive deficiencies, exceeding those seen in jhamt mutants. Notably, Cyp6g2-/-::jhamt2 double mutants all died at the pupal stage but could be rescued through the topical application of JH analogs. JH titer analyses revealed that both Cyp6g2-/- mutant and jhamt2 mutant lacking JHB3 and JH III, while overexpression of Cyp6g2 or jhamt caused a significant increase in JHB3 and JH III titer. CONCLUSIONS: These findings collectively established that Cyp6g2 as the major JH epoxidase in the higher dipterans and laid the groundwork for the further understanding of JH biosynthesis. Moreover, these findings pave the way for developing specific Cyp6g2 inhibitors as insect growth regulators or insecticides.


Drosophila melanogaster , Juvenile Hormones , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Juvenile Hormones/biosynthesis , Juvenile Hormones/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Larva/growth & development , Larva/genetics , Metamorphosis, Biological/genetics , Corpora Allata/metabolism , Pupa/growth & development , Pupa/genetics , Pupa/metabolism , Oxidoreductases
15.
Sensors (Basel) ; 24(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732937

In this article, we address the problem of synchronizing multiple analog-to-digital converter (ADC) and digital-to-analog converter (DAC) chains in a multi-channel system, which is constrained by the sampling frequency and inconsistencies among the components during system integration. To evaluate and compensate for the synchronization differences, we propose a pulse compression shape-based algorithm to measure the entire delay parameter of the ADC/DAC chain, which achieves sub-sampling resolution by mapping the shape of the discrete pulse compression peak to the signal propagation delay. Moreover, owing to the matched filtering in the pulse compression process, the algorithm exhibits good noise performance and is suitable for wireless scenarios. Experiments verified that the algorithm can achieve precise measurements with sub-sampling resolution in scenarios where the signal-to-noise ratio (SNR) is greater than -10 dB.

16.
J Environ Manage ; 359: 121034, 2024 May.
Article En | MEDLINE | ID: mdl-38703649

Frequent algal blooms cause algal cells and their algal organic matter (AOM) to become critical precursors of disinfection by-products (DBPs) during water treatment. The presence of bromide ion (Br-) in water has been demonstrated to affect the formation laws and species distribution of DBPs. However, few researchers have addressed the formation and toxicity alteration of halonitromethanes (HNMs) from algae during disinfection in the presence of Br-. Therefore, in this work, Chlorella vulgaris was selected as a representative algal precursor to investigate the formation and toxicity alteration of HNMs during UV/chloramination involving Br-. The results showed that the formation concentration of HNMs increased and then decreased during UV/chloramination. The intracellular organic matter of Chlorella vulgaris was more susceptible to form HNMs than the extracellular organic matter. When the Br-: Cl2 mass ratio was raised from 0.004 to 0.08, the peak of HNMs total concentration increased 33.99%, and the cytotoxicity index and genotoxicity index of HNMs increased 67.94% and 22.80%. Besides, the formation concentration and toxicity of HNMs increased with increasing Chlorella vulgaris concentration but decreased with increasing solution pH. Possible formation pathways of HNMs from Chlorella vulgaris during UV/chloramination involving Br- were proposed based on the alteration of nitrogen species and fluorescence spectrum analysis. Furthermore, the formation laws of HNMs from Chlorella vulgaris in real water samples were similar to those in deionized water samples. This study contributes to a better comprehension of HNMs formation from Chlorella vulgaris and provides valuable information for water managers to reduce hazards associated with the formation of HNMs.


Bromides , Chlorella vulgaris , Chlorella vulgaris/drug effects , Bromides/chemistry , Bromides/toxicity , Disinfection , Water Purification , Ultraviolet Rays
17.
Adv Healthc Mater ; : e2304196, 2024 May 07.
Article En | MEDLINE | ID: mdl-38712598

For many clinically prevalent severe injuries, the inherent regenerative capacity of skeletal muscle remains inadequate. Skeletal muscle tissue engineering (SMTE) seeks to meet this clinical demand. With continuous progress in biomedicine and related technologies including micro/nanotechnology and 3D printing, numerous studies have uncovered various intrinsic mechanisms regulating skeletal muscle regeneration and developed tailored biomaterial systems based on these understandings. Here, the skeletal muscle structure and regeneration process are discussed and the diverse biomaterial systems derived from various technologies are explored in detail. Biomaterials serve not merely as local niches for cell growth, but also as scaffolds endowed with structural or physicochemical properties that provide tissue regenerative cues such as topographical, electrical, and mechanical signals. They can also act as delivery systems for stem cells and bioactive molecules that have been shown as key participants in endogenous repair cascades. To achieve bench-to-bedside translation, the typical effect enabled by biomaterial systems and the potential underlying molecular mechanisms are also summarized. Insights into the roles of biomaterials in SMTE from cellular and molecular perspectives are provided. Finally, perspectives on the advancement of SMTE are provided, for which gene therapy, exosomes, and hybrid biomaterials may hold promise to make important contributions.

18.
Food Chem X ; 22: 101474, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38817981

(-)-Epigallocatechin gallate (EGCG) and theacrine are involved in imparting tea with its astringent and bitter tastes. This study investigated the effect of theacrine on the astringency of EGCG and its molecular mechanism. Sensory evaluation was used to study the astringent intensities of EGCG solutions in the presence and absence of various concentrations of theacrine. The results indicated a considerable increase in the astringency values of EGCG-theacrine solutions compared with those of EGCG solutions alone. Furthermore, dynamic light scattering (DLS) and molecular dynamics simulations (MD) were to explore the interaction mechanisms. The results revealed that theacrine increased the particle size of EGCG-proline-rich proteins (PRPs) aggregates with that of EGCG and PRPs alone. MD revealed that theacrine potentially acted as a bridge between EGCG and PRPs, promoting their interaction and intensifying the EGCG's astringency. However, theacrine could not bridge two or more mucins owing to the substantial spatial structure of mucin.

19.
Bioresour Technol ; 402: 130765, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692372

Hydrothermal pretreatment has been proposed to enhance straw methane yield during anaerobic digestion recently. However, the combined effect of hydrothermal and organic acid pretreatment (HTOAP) needs further investigation. This study identified optimal pretreatment at 120 °C with 3 % acetic acid for 24 h by orthogonal design method. The HTOAP increased the reducing sugar content by destroying the lignocellulosic structure. A 79 % increment of methane production after HTOAP was observed compared to the untreated group. Microbial analysis showed that HTOAP enriched the relative abundance of lignocellulose-degraders, such as W5053, Thermanaerovibrio, Caldicoprobacter, as well as the syntrophic acetate oxidizing bacteria Syntrophaceticus. Moreover, Methanobacterium conducted hydrogenotrophic methanogenesis dominantly. Furthermore, the potential function analysis showed that HTOAP stimulated the expression of key enzymes in the hydrogenotrophic pathway, including carbon-monoxide dehydrogenase (EC 1.2.7.4) and coenzyme F420 hydrogenase (EC 1.12.98.1). This investigation illustrated the potential of HTOAP of rice straw to facilitate methane production.


Methane , Oryza , Methane/metabolism , Oryza/metabolism , Anaerobiosis/drug effects , Acetic Acid/pharmacology , Acetic Acid/metabolism , Bacteria/metabolism , Bacteria/drug effects , Lignin/metabolism , Water/chemistry
20.
BMC Genomics ; 25(1): 514, 2024 May 24.
Article En | MEDLINE | ID: mdl-38789922

BACKGROUND: In aquaculture, sturgeons are generally maintained in the confined spaces, which not only hinders sturgeon movement, but also threatens their flesh quality that seriously concerned by aquaculture industry. As a typical antioxidant, resveratrol can improve the flesh quality of livestock and poultry. However, the mechanism of resveratrol's effect on the muscle of Siberian sturgeon is still unclear. RESULTS: In this study, the dietary resveratrol increased the myofiber diameter, the content of the amino acids, antioxidant capacity markers (CAT, LDH and SOD) levels and the expression levels of mTORC1 and MYH9 in muscle of Siberian sturgeon. Further transcriptome analysis displayed that ROS production-related pathways ("Oxidative phosphorylation" and "Chemical carcinogenes-reactive oxygen species") were enriched in KEGG analysis, and the expression levels of genes related to the production of ROS (COX4, COX6A, ATPeF1A, etc.) in mitochondria were significantly down-regulated, while the expression levels of genes related to scavenging ROS (SOD1) were up-regulated. CONCLUSIONS: In summary, this study reveals that resveratrol may promote the flesh quality of Siberian sturgeon probably by enhancing myofiber growth, nutritional value and the antioxidant capacity of muscle, which has certain reference significance for the development of a new type of feed for Siberian sturgeon.


Antioxidants , Fishes , Resveratrol , Animals , Resveratrol/pharmacology , Fishes/metabolism , Fishes/growth & development , Fishes/genetics , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Nutrients/metabolism , Animal Feed/analysis , Mechanistic Target of Rapamycin Complex 1/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/cytology , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/genetics , Diet/veterinary , Gene Expression Profiling
...