Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Nanobiotechnology ; 21(1): 186, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37301952

ABSTRACT

Targeted chemo-phototherapy has received widespread attention in cancer treatment for its advantages in reducing the side effects of chemotherapeutics and improving therapeutic effects. However, safe and efficient targeted-delivery of therapeutic agents remains a major obstacle. Herein, we successfully constructed an AS1411-functionalized triangle DNA origami (TOA) to codeliver chemotherapeutic drug (doxorubicin, DOX) and a photosensitizer (indocyanine green, ICG), denoted as TOADI (DOX/ICG-loaded TOA), for targeted synergistic chemo-phototherapy. In vitro studies show that AS1411 as an aptamer of nucleolin efficiently enhances the nanocarrier's endocytosis more than 3 times by tumor cells highly expressing nucleolin. Subsequently, TOADI controllably releases the DOX into the nucleus through the photothermal effect of ICG triggered by near-infrared (NIR) laser irradiation, and the acidic environment of lysosomes/endosomes facilitates the release. The downregulated Bcl-2 and upregulated Bax, Cyt c, and cleaved caspase-3 indicate that the synergistic chemo-phototherapeutic effect of TOADI induces the apoptosis of 4T1 cells, causing ~ 80% cell death. In 4T1 tumor-bearing mice, TOADI exhibits 2.5-fold targeted accumulation in tumor region than TODI without AS1411, and 4-fold higher than free ICG, demonstrating its excellent tumor targeting ability in vivo. With the synergetic treatment of DOX and ICG, TOADI shows a significant therapeutic effect of ~ 90% inhibition of tumor growth with negligible systemic toxicity. In addition, TOADI presents outstanding superiority in fluorescence and photothermal imaging. Taken together, this multifunctional DNA origami-based nanosystem with the advantages of specific tumor targeting and controllable drug release provides a new strategy for enhanced cancer therapy.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Neoplasms , Animals , Mice , Drug Delivery Systems/methods , Hyperthermia, Induced/methods , Phototherapy/methods , Doxorubicin , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , DNA/therapeutic use , Hydrogen-Ion Concentration , Nanoparticles/therapeutic use , Drug Liberation , Cell Line, Tumor
2.
Acta Biomater ; 164: 522-537, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37072069

ABSTRACT

Chemotherapy remains the mainstay of cancer treatment, and doxorubicin (DOX) is recommended as a first-line chemotherapy drug against cancer. However, systemic adverse drug reactions and multidrug resistance limit its clinical applications. Here, a tumor-specific reactive oxygen species (ROS) self-supply enhanced cascade responsive prodrug activation nanosystem (denoted as PPHI@B/L) was developed to optimize multidrug resistance tumor chemotherapy efficacy while minimizing the side effects. PPHI@B/L was constructed by encapsulating the ROS-generating agent ß-lapachone (Lap) and the ROS-responsive doxorubicin prodrug (BDOX) in acidic pH-sensitive heterogeneous nanomicelles. PPHI@B/L exhibited particle size decrease and charge increase when it reached the tumor microenvironment due to acid-triggered PEG detachment, to favor its endocytosis efficiency and deep tumor penetration. Furthermore, after PPHI@B/L internalization, rapidly released Lap was catalyzed by the overexpressed quinone oxidoreductase-1 (NQO1) enzyme NAD(P)H in tumor cells to selectively raise intracellular ROS levels. Subsequently, ROS generation further promoted the specific cascade activation of the prodrug BDOX to exert the chemotherapy effects. Simultaneously, Lap-induced ATP depletion reduced drug efflux, synergizing with increased intracellular DOX concentrations to assist in overcoming multidrug resistance. This tumor microenvironment-triggered cascade responsive prodrug activation nanosystem potentiates antitumor effects with satisfactory biosafety, breaking the chemotherapy limitation of multidrug resistance and significantly improving therapy efficiency. STATEMENT OF SIGNIFICANCE: Chemotherapy remains the mainstay of cancer treatment, and doxorubicin (DOX) is recommended as a first-line chemotherapy drug against cancer. However, systemic adverse drug reactions and multidrug resistance limit its clinical applications. Here, a tumor-specific reactive oxygen species (ROS) self-supply enhanced cascade responsive prodrug activation nanosystem (denoted as PPHI@B/L) was developed to optimize multidrug resistance tumor chemotherapy efficacy while minimizing the side effects. The work provides a new sight for simultaneously addressing the molecular mechanisms and physio-pathological disorders to overcome MDR in cancer treatment.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Nanoparticles , Neoplasms , Prodrugs , Humans , Prodrugs/pharmacology , Prodrugs/therapeutic use , Reactive Oxygen Species , Nanoparticles/therapeutic use , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Neoplasms/drug therapy , Drug-Related Side Effects and Adverse Reactions/drug therapy , Cell Line, Tumor , Tumor Microenvironment
3.
ACS Appl Mater Interfaces ; 15(5): 6572-6583, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36709501

ABSTRACT

Antioxidant-defense systems of tumor cells protect them from oxidative damage and is strongly associated with tumor metastasis. In this work, a mussel-inspired multifunctional nanomedicine (ZS-MB@P) has been designed for inhibiting tumor growth and metastasis through amplified oxidative stress and photothermal/magnetothermal/photodynamic triple-combination therapy. This nanomedicine was fabricated via loading a silica shell on the magnetic nano-octahedrons [zinc-doped magnetic Fe3O4 nano-octahedrons] by encapsulating photosensitizer methylene blue (MB) and subsequently coating polydopamine (PDA) shells as "gatekeeper." The nanomedicine could realize photothermal therapy, photodynamic therapy, and magnetic hyperthermia after treatment with near-infrared (NIR) irradiation and applied magnetic field. Under pH and NIR stimulation, controlled amount of MB was released to produced exogenous reactive oxygen species. Noteworthy, PDA can amplify intracellular oxidative stress by depleting glutathione, thus inhibiting breast cancer metastasis effectively since oxidative stress is an important barrier to tumor metastasis. The outstanding ability to suppress tumor growth and metastasis was comprehensively assessed and validated both in vitro and in vivo. Moreover, the nanomedicine showed outstanding T2 magnetic resonance imaging for tracking the treatment process. Taken together, this work offers an innovative approach in the synergistic treatment of recalcitrant breast cancer.


Subject(s)
Breast Neoplasms , Hyperthermia, Induced , Nanoparticles , Photochemotherapy , Humans , Female , Photochemotherapy/methods , Phototherapy , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Oxidative Stress , Cell Line, Tumor , Theranostic Nanomedicine
4.
Article in English | MEDLINE | ID: mdl-30922168

ABSTRACT

Strong intermolecular interaction can prevent an organic molecule from dissolving in a reaction solution, thereby jeopardizing its reactivity and usefulness. Nucleobases and nucleosides (especially many purines and their derivatives) are notoriously difficult to dissolve in most organic solvents, generally attributed to their strong intermolecular interactions caused by the aromaticity, polarity and hydrogen-bonding. Guided by our computational study and prediction, to address this challenge, we have found that by doping the reaction solution with toluene (an inert aromatic compound), the added solvent molecules are capable of generating the stacking interaction with the solute molecules (e.g., purine derivatives) and disrupting the intermolecular stacking of the solute molecules. Thus, this inert doping can successfully address the insoluble challenge, dissolve the poorly soluble reactants (such as purine phosphoramidites), and restore the amidite reactivity for oligonucleotide synthesis. Our research has offered a simple strategy to efficiently synthesize labile oligonucleotides, via disrupting stacking interaction with inert aromatic molecules.


Subject(s)
Models, Molecular , Nucleosides/chemistry , Purines/chemistry , Amides/chemistry , Hydrogen Bonding , Nucleic Acid Conformation , Phosphoric Acids/chemistry , Solvents , Toluene/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL