Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
PLoS One ; 19(4): e0294227, 2024.
Article En | MEDLINE | ID: mdl-38564630

Current evidence suggests that DEP domain containing 1 (DEPDC1) has an important effect on non-small-cell lung cancer (NSCLC). However, the diagnostic value and the regulatory function within NSCLC are largely unclear. This work utilized publicly available databases and in vitro experiments for exploring, DEPDC1 expression, clinical features, diagnostic significance and latent molecular mechanism within NSCLC. According to our results, DEPDC1 was remarkably upregulated in the tissues of NSCLC patients compared with non-carcinoma tissues, linked with gender, stage, T classification and N classification based on TCGA data and associated with smoking status and stage according to GEO datasets. Meanwhile, the summary receiver operating characteristic (sROC) curve analysis result showed that DEPDC1 had a high diagnostic value in NSCLC (AUC = 0.96, 95% CI: 0.94-0.98; diagnostic odds ratio = 99.08, 95%CI: 31.91-307.65; sensitivity = 0.89, 95%CI: 0.81-0.94; specificity = 0.92, 95%CI: 0.86-0.96; positive predictive value = 0.94, 95%CI: 0.89-0.98; negative predictive value = 0.78, 95%CI: 0.67-0.90; positive likelihood ratio = 11.77, 95%CI: 6.11-22.68; and negative likelihood ratio = 0.12, 95%CI: 0.06-0.22). Subsequently, quantitative real-time PCR (qRT-PCR) and western blotting indicated that DEPDC1 was high expressed in NSCLC cells. According to the in vitro MTS and apoptotic assays, downregulated DEPDC1 expression targeting P53 signaling pathway inhibited the proliferation of NSCLC cells while promoting apoptosis of NSCLC cells. Moreover, DEPDC1 was significantly correlated with immune cell infiltrating levels in NSCLC based on TCGA data, which were primarily associated with T cells CD4 memory activated, macrophages M1, B cells memory, mast cells resting, T cells regulatory, monocytes, and T cells CD4 memory resting. Compared with the group with high expression of DEPDC1, the group with low expression level had higher scores for immune checkpoint inhibitors (ICIs) treatment. GSEA confirmed that DEPDC1 was involved in gene expression and tumor-related signaling pathways. Finally, DEPDC1 and its associated immune-related genes were shown to be enriched in 'receptor ligand activity', 'external side of plasma membrane', 'regulation of innate immune response', and 'Epstein-Barr virus infection' pathways. The present study demonstrates that DEPDC1 may contribute to NSCLC tumorigenesis and can be applied as the biomarker for diagnosis and immunology.


Carcinoma, Non-Small-Cell Lung , Epstein-Barr Virus Infections , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Herpesvirus 4, Human/metabolism , Signal Transduction , Neoplasm Proteins/genetics , GTPase-Activating Proteins/metabolism
2.
Biomed Res Int ; 2022: 5699892, 2022.
Article En | MEDLINE | ID: mdl-36457341

ADGRD1 (GPR133), an adhesion G protein-coupled receptor (GPCR), has been linked to cancer. However, the prognostic value and regulatory function within non-small-cell lung cancer (NSCLC) is still unclear. This work adopted various bioinformatics methods, including publicly available databases as well as real-time PCR (RT-PCR), for detecting ADGRD1 expression level and investigating the correlation between ADGRD1 expression level and prognosis, tumor mutational burden (TMB), microsatellite instability (MSI), immune infiltrating cells, immune-related genes, and targeted regulation mechanisms in NSCLC. According to the results, ADGRD1 expression decreased within NSCLC, which might be the factor predicting prognosis of NSCLC. Meanwhile, ADGRD1 showed significant correlation with TMB and MSI, respectively, as well as immune cell infiltrating levels in lung adenocarcinoma (LUAD), which were primarily linked to macrophage M1, mast cell resting, T cell CD4 memory activated, and T cell CD4 memory resting and were associated with mast cell activated and mast cell resting in lung squamous cell carcinoma (LUSC). The most promising upstream regulation pathways of ADGRD1 were likely miR-142-5p, miR-93-5p, and miR-17-5p, which were overexpressed and associated with poor prognosis in NSCLC. ADGRD1 and immune-related genes correlated with ADGRD1 were shown to be enriched in "positive regulation of leukocyte activation," "external side of plasma membrane," "receptor ligand activity," and "cytokine-cytokine receptor interaction" pathways. ADGRD1 expression and regulation may be critical in determining NSCLC prognosis.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Receptors, G-Protein-Coupled , Humans , Biomarkers , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , MicroRNAs/genetics , Microsatellite Instability , Prognosis , Receptors, G-Protein-Coupled/genetics
4.
Cell Death Dis ; 12(11): 1030, 2021 10 30.
Article En | MEDLINE | ID: mdl-34718336

Globally, lung cancer remains one of the most prevalent malignant cancers. However, molecular mechanisms and functions involved in its pathogenesis have not been clearly elucidated. This study aimed to evaluate the specific regulatory mechanisms of exosomal miR-338-3p/CHL1/MAPK signaling pathway axis in non-small-cell lung cancer. Western blotting and qRT-PCR (reverse transcription-polymerase chain reaction) were used to determine the expression levels of CHL1 and exosomal miR-338-3p in NSCLC (non-small-cell lung cancer). The CHL1 gene was upregulated and downregulated to evaluate its functions in NSCLC progression. In vitro MTS and apoptotic assays were used to investigate the functions of CHL1 and exosomal miR-338-3p in NSCLC progression. The high-throughput sequencing was used to explore differently expressed exosomal miRNAs. The biological relationships between MAPK signaling pathway and CHL1 and exosomal miR-338-3p in NSCLC were predicted through bioinformatics analyses and verified by western blotting. Elevated CHL1 levels were observed in NSCLC tissues and cells. Upregulated CHL1 expression enhanced NSCLC cells' progression by promoting tumor cells proliferation while suppressing their apoptosis. Conversely, the downregulation of the CHL1 gene inhibited NSCLC cells' growth and promoted tumor cells' apoptotic rate. Additionally, CHL1 activated the MAPK signaling pathway. Besides, we confirmed that miR-338-3p directly sponged with CHL1 to mediate tumor cells progression. Moreover, exosomal miR-338-3p serum levels in NSCLC patients were found to be low. BEAS-2B cells can transfer exosomal miR-338-3p to A549 cells and SK-MES-1 cells. In addition, elevated exosomal miR-338-3p levels significantly inhibited tumor cells proliferation and promoted their apoptosis by suppressing activation of the MAPK signaling pathway. Exosomal miR-338-3p suppresses tumor cells' metastasis by downregulating the expression of CHL1 through MAPK signaling pathway inactivation.


Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Adhesion Molecules/metabolism , Exosomes/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MAP Kinase Signaling System , MicroRNAs/metabolism , 3' Untranslated Regions/genetics , A549 Cells , Apoptosis/genetics , Base Sequence , Carcinoma, Non-Small-Cell Lung/blood , Case-Control Studies , Cell Adhesion Molecules/genetics , Cell Proliferation/genetics , Cohort Studies , Exosomes/ultrastructure , Female , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/blood , Male , MicroRNAs/blood , MicroRNAs/genetics , Middle Aged , Models, Biological , Neoplasm Metastasis , Up-Regulation
...