Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Mater ; 36(32): e2404026, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38762756

ABSTRACT

The artificial nervous system proves the great potential for the emulation of complex neural signal transduction. However, a more bionic system design for bio-signal transduction still lags behind that of physical signals, and relies on additional external sources. Here, this work presents a zero-voltage-writing artificial nervous system (ZANS) that integrates a bio-source-sensing device (BSSD) for ion-based sensing and power generation with a hafnium-zirconium oxide-ferroelectric tunnel junction (HZO-FTJ) for the continuously adjustable resistance state. The BSSD can use ion bio-source as both perception and energy source, and then output voltage signals varied with the change of ion concentrations to the HZO-FTJ, which completes the zero-voltage-writing neuromorphic bio-signal modulation. In view of in/ex vivo biocompatibility, this work shows the precise muscle control of a rabbit leg by integrating the ZANS with a flexible nerve stimulation electrode. The independence on external source enhances the application potential of ZANS in robotics and prosthetics.


Subject(s)
Biosensing Techniques , Zirconium , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Animals , Zirconium/chemistry , Rabbits , Hafnium/chemistry , Oxides/chemistry , Bionics/instrumentation , Electrodes
2.
Science ; 381(6657): 558-563, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37535726

ABSTRACT

Hafnium oxide-based ferroelectric materials are promising candidates for next-generation nanoscale devices because of their ability to integrate into silicon electronics. However, the intrinsic high coercive field of the fluorite-structure oxide ferroelectric devices leads to incompatible operating voltage and limited endurance performance. We discovered a complementary metal-oxide semiconductor (CMOS)-compatible rhombohedral ferroelectric Hf(Zr)1+xO2 material rich in hafnium-zirconium [Hf(Zr)]. X-ray diffraction combined with scanning transmission electron microscopy reveals that the excess Hf(Zr) atoms intercalate within the hollow sites. We found that the intercalated atoms expand the lattice and increase the in-plane and out-of-plane stresses, which stabilize both the rhombohedral phase (r-phase) and its ferroelectric properties. Our ferroelectric devices, which are based on the r-phase Hf(Zr)1+xO2, exhibit an ultralow coercive field (~0.65 megavolts per centimeter). Moreover, we achieved a high endurance of more than 1012 cycles at saturation polarization. This material discovery may help to realize low-cost and long-life memory chips.

3.
Nanomaterials (Basel) ; 13(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37242025

ABSTRACT

In this article, the endurance characteristic of the TiN/HZO/TiN capacitor was improved by the laminated structure of a ferroelectric Hf0.5Zr0.5O2 thin film. Altering the HZO deposition ratio, the laminated-structure interlayer was formed in the middle of the HZO film. Although small remanent polarization reduction was observed in the capacitor with a laminated structure, the endurance characteristic was improved by two orders of magnitude (from 106 to 108 cycles). Moreover, the leakage current of the TiN/HZO/TiN capacitor with the laminated-structure interlayer was reduced by one order of magnitude. The reliability enhancement was proved by the Time-Dependent Dielectric Breakdown (TDDB) test, and the optimization results were attributed to the migration inhibition and nonuniform distribution of oxygen vacancies. Without additional materials and a complicated process, the laminated-structure method provides a feasible strategy for improving HZO device reliability.

SELECTION OF CITATIONS
SEARCH DETAIL