Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Biol Macromol ; 277(Pt 1): 134055, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39038583

ABSTRACT

Gauze wound dressings have received considerable attention due to their cost-effectiveness, excellent mechanical properties, and widespread applications. However, their inability to actively combat microorganisms and effectively scavenge free radicals results in suboptimal wound management. In this study, a novel nonwoven-based gauze dressing coated with quaternized chitosan/tannic acid (QCS/TA), based on electrostatic interaction and hydrogen bonding, was successfully prepared using a spray-assisted layer-by-layer assembly method. The bio-based nonwoven dressing, assembled with multiple interlacing bilayers, demonstrated outstanding antimicrobial properties, eliminating 99.99 % of Staphylococcus aureus (S. aureus) and 85 % of Escherichia coli (E. coli). Compared to the pristine nonwoven dressing, the QCS/TA-coated nonwoven dressing scavenged >85 % of the surrounding radicals within 2 h. Additionally, the nonwoven dressing exhibits excellent coagulation properties. Notably, the facile spraying procedure preserved most of the softness and breathability of the nonwoven substrate. After the deposition of seven bilayers, the bending stiffness and drape coefficient increased by only 37.63 % and 3.85 %, respectively, while the air permeability and moisture permeability reached 1712 mm/s and 3683.58 g/m2/d, respectively. This bio-based nonwoven dressing, derived from safe and non-toxic ingredients, holds promise as the next generation of multifunctional gauze dressings.


Subject(s)
Anti-Bacterial Agents , Bandages , Chitosan , Escherichia coli , Staphylococcus aureus , Tannins , Chitosan/chemistry , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Tannins/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Polyphenols
2.
J Colloid Interface Sci ; 656: 376-388, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38000250

ABSTRACT

Achieving rapid hemostasis and highly effective antibacterial holds significant importance in the early-stage treatment of wounds. In this study, a hybrid aerogel patch comprising carbon quantum dots (CQDs) modified 2-dimensional (2D) porphyrinic metal-organic framework (MOF) nanosheets was designed by incorporating gelatin methacrylate (GelMA) and polyacrylamide (PAM) based matrix. On one hand, CQDs were stably doped onto the surface of the 2D MOF nanosheets, thereby enhancing the photodynamic activity through fluorescence resonance energy transfer (FRET) process. After the preparation of hybrid aerogel patch, the patch loaded with CQDs-doped 2D MOF exhibited excellent photodynamic bactericidal activity against Gram-positive Staphylococcus aureus (>99.99 %) and Gram-negative Escherichia coli (>99.99 %). On the other hand, the hybrid patch with highly porous and absorbent structure can rapidly absorb blood to aggregate clotting components and form a hydration barrier covering the wound to enhance hemostasis. Besides, the hemolysis and cytotoxicity assays demonstrated a good biocompatibility of this designed patch. In summary, this 2D MOF-loaded aerogel patch holds a potential to achieve rapid hemostasis and effective anti-infection in the early-stage treatment of traumatic wounds.


Subject(s)
Hemostatics , Metal-Organic Frameworks , Metal-Organic Frameworks/pharmacology , Blood Coagulation , Gelatin , Anti-Bacterial Agents/pharmacology , Carbon
3.
Environ Sci Pollut Res Int ; 28(15): 18604-18615, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33058063

ABSTRACT

The heavy metals, which derived from accumulated coal gangue, are important source of environmental pollution. In this study, coal gangue dumps, collected in Shaanxi Province, China, were used to evaluate the potential ecological risks and release characteristics of heavy metals, including the chemical forms, release characteristics, and potential ecological risks by using the methods of Tessier's sequential extractions, leaching experiments, gray GM (1, 1) forecasting mode, and potential ecological risk index. The results indicated that gangue samples contained high levels of metals, especially of Pb, which was the 20-31 times of the background value, whereas the sum of exchangeable and carbonate fractions in Co and Cu was a large proportion (4-11%) of the total. Potential ecological risks were at strong level regardless of the type of the coal gangue because of Mo and Pb and the comprehensive ecological risk index of 351.51-412.27. Weathering promotes the release of heavy metals in the gangue. Furthermore, the contents of Cu and Pb in leaching solution and their release times in weathered gangue were significantly higher than those of the fresh one. This research provides a scientific basis for the prevention and control of heavy metal pollution in coal-containing areas.


Subject(s)
Metals, Heavy , Soil Pollutants , China , Coal/analysis , Environmental Monitoring , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis
4.
Materials (Basel) ; 13(18)2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32957677

ABSTRACT

Towards the goal of developing scalable, economical and effective antimicrobial textiles to reduce infection transmission, here we prepared color-variable photodynamic materials comprised of photosensitizer (PS)-loaded wool/acrylic (W/A) blends. Wool fibers in the W/A blended fabrics were loaded with the photosensitizer rose bengal (RB), and the acrylic fibers were dyed with a variety of traditional cationic dyes (cationic yellow, cationic blue and cationic red) to broaden their color range. Investigations on the colorimetric and photodynamic properties of a series of these materials were implemented through CIELab evaluation, as well as photooxidation and antibacterial studies. Generally, the photodynamic efficacy of these dual-dyed fabrics was impacted by both the choice, and how much of the traditional cationic dye was employed in the dyeing of the W/A fabrics. When compared with the PS-only singly-dyed material, RB-W/A, that showed a 99.97% (3.5 log units; p = 0.02) reduction of Staphylococcus aureus under visible light illumination (λ ≥ 420 nm, 60 min), the addition of cationic dyes led to a slight decrease in the photoinactivation ability of the dual-dyed fabrics, but was still able to achieve a 99.3% inactivation of S. aureus. Overall, our findings demonstrate the feasibility and potential applications of low cost and color variable RB-loaded W/A blended fabrics as effective self-disinfecting textiles against pathogen transmission.

5.
Polymers (Basel) ; 12(1)2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31935886

ABSTRACT

Removal of a triphenylmethane dye (crystal violet, CV) by a simultaneous enzymatic-photocatalytic-adsorption treatment was investigated in this work. A desirable synergistic effect on dye treatment was achieved by decorating laccase (Lac) onto the surface of TiO2 sol-gel coated polyacrylonitrile/organically modified montmorillonite (PAN/O-MMT) nanofibers prepared by electrospinning. The assembly of Lac on the surface of PAN/O-MMT/TiO2 nanofibers was confirmed by confocal laser scanning microscope (CLSM). In comparison with free Lac, the immobilized Lac showed better pH, temperature and operational stabilities, reaching highest relative activity at an optimum pH of 3 and optimum temperature of 50 °C. Therefore, the immobilized Lac displayed a higher degradation efficiency of CV at an initial dye concentration of 100 mg/L, an optimum pH of 4.5 and temperature at 60 °C. Under UV illumination, the CV removal efficiency was further improved by ~20%. These results demonstrated that the Lac-immobilized PAN/O-MMT/TiO2 composite nanofibers with a combined effect between the immobilized enzyme and the polymeric support have potential for industrial dye degradation.

SELECTION OF CITATIONS
SEARCH DETAIL