Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
Nat Commun ; 15(1): 4954, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862516

ABSTRACT

Spaceflight induces an immune response in astronauts. To better characterize this effect, we generated single-cell, multi-ome, cell-free RNA (cfRNA), biochemical, and hematology data for the SpaceX Inspiration4 (I4) mission crew. We found that 18 cytokines/chemokines related to inflammation, aging, and muscle homeostasis changed after spaceflight. In I4 single-cell multi-omics data, we identified a "spaceflight signature" of gene expression characterized by enrichment in oxidative phosphorylation, UV response, immune function, and TCF21 pathways. We confirmed the presence of this signature in independent datasets, including the NASA Twins Study, the I4 skin spatial transcriptomics, and 817 NASA GeneLab mouse transcriptomes. Finally, we observed that (1) T cells showed an up-regulation of FOXP3, (2) MHC class I genes exhibited long-term suppression, and (3) infection-related immune pathways were associated with microbiome shifts. In summary, this study reveals conserved and distinct immune disruptions occurring and details a roadmap for potential countermeasures to preserve astronaut health.


Subject(s)
Single-Cell Analysis , Space Flight , Transcriptome , Animals , Female , Male , Humans , Mice , Astronauts , Cytokines/metabolism , T-Lymphocytes/immunology , Sex Factors , Gene Expression Profiling , Oxidative Phosphorylation
2.
Nat Commun ; 15(1): 4964, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862509

ABSTRACT

The SpaceX Inspiration4 mission provided a unique opportunity to study the impact of spaceflight on the human body. Biospecimen samples were collected from four crew members longitudinally before (Launch: L-92, L-44, L-3 days), during (Flight Day: FD1, FD2, FD3), and after (Return: R + 1, R + 45, R + 82, R + 194 days) spaceflight, spanning a total of 289 days across 2021-2022. The collection process included venous whole blood, capillary dried blood spot cards, saliva, urine, stool, body swabs, capsule swabs, SpaceX Dragon capsule HEPA filter, and skin biopsies. Venous whole blood was further processed to obtain aliquots of serum, plasma, extracellular vesicles and particles, and peripheral blood mononuclear cells. In total, 2,911 sample aliquots were shipped to our central lab at Weill Cornell Medicine for downstream assays and biobanking. This paper provides an overview of the extensive biospecimen collection and highlights their processing procedures and long-term biobanking techniques, facilitating future molecular tests and evaluations.As such, this study details a robust framework for obtaining and preserving high-quality human, microbial, and environmental samples for aerospace medicine in the Space Omics and Medical Atlas (SOMA) initiative, which can aid future human spaceflight and space biology experiments.


Subject(s)
Biological Specimen Banks , Space Flight , Specimen Handling , Humans , Specimen Handling/methods , Astronauts
3.
Res Sq ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38853850

ABSTRACT

Extracellular vesicles and particles (EVPs) are pivotal mediators of pre-metastatic niche formation and cancer progression, including induction of vascular permeability, which facilitates tumor cell extravasation and metastasis. However, the mechanisms through which EVPs exert this effect remain poorly understood. Here, we elucidate a novel mechanism by which tumor EVPs enhance endothelial cell permeability, tumor extravasation, and lung metastasis to different degrees, depending on tumor type. Strikingly, vascular leakiness is observed within 48h following tumor implantation and as early as one hour following intravenous injection of tumour-derived EVPs in naïve mice. Surprisingly, rather than acting directly on endothelial cells, EVPs first activate interstitial macrophages (IMs) leading to activation of JAK/STAT signaling and IL-6 secretion in IMs which subsequently promote endothelial permeability. Depletion of IMs significantly reduces tumour-derived EVP-dependent vascular leakiness and metastatic potential. Tumour EVPs that strongly induce vascular leakiness express high levels of ITGα5, and ITGα5 ablation impairs IM activation, cytokine secretion, and subsequently vascular permeability and metastasis. Importantly, IL-6 expression is elevated in IMs from non-involved tumor-adjacent lung tissue compared to distal lung tissue in lung cancer patients, highlight the clinical relevance of our discovery. Our findings identify a key role for IM activation as an initiating step in tumor type-specific EVP-driven vascular permeability and metastasis, offering promising targets for therapeutic intervention.

4.
Cell Rep ; 43(6): 114311, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38848214

ABSTRACT

The lymphatic fluid is the conduit by which part of the tissue "omics" is transported to the draining lymph node for immunosurveillance. Following cannulation of the pre-nodal cervical and mesenteric afferent lymphatics, herein we investigate the lymph proteomic composition, uncovering that its composition varies according to the tissue of origin. Tissue specificity is also reflected in the dendritic cell-major histocompatibility complex class II-eluted immunopeptidome harvested from the cervical and mesenteric nodes. Following inflammatory disruption of the gut barrier, the lymph antigenic and inflammatory loads are analyzed in both mice and subjects with inflammatory bowel diseases. Gastrointestinal tissue damage reflects the lymph inflammatory and damage-associated molecular pattern signatures, microbiome-derived by-products, and immunomodulatory molecules, including metabolites of the gut-brain axis, mapped in the afferent mesenteric lymph. Our data point to the relevance of the lymphatic fluid to probe the tissue-specific antigenic and inflammatory load transported to the draining lymph node for immunosurveillance.


Subject(s)
Antigens , Inflammation , Lymph Nodes , Lymph , Mice, Inbred C57BL , Animals , Mice , Lymph/metabolism , Lymph/immunology , Inflammation/immunology , Inflammation/pathology , Inflammation/metabolism , Lymph Nodes/immunology , Lymph Nodes/metabolism , Humans , Antigens/metabolism , Antigens/immunology , Male , Female , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/pathology , Inflammatory Bowel Diseases/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism
5.
Nature ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862026

ABSTRACT

Human spaceflight has historically been managed by government agencies, such as in the NASA Twins Study1, but new commercial spaceflight opportunities have opened spaceflight to a broader population. In 2021, the SpaceX Inspiration4 mission launched the first all-civilian crew to low Earth orbit, which included the youngest American astronaut (aged 29), new in-flight experimental technologies (handheld ultrasound imaging, smartwatch wearables and immune profiling), ocular alignment measurements and new protocols for in-depth, multi-omic molecular and cellular profiling. Here we report the primary findings from the 3-day spaceflight mission, which induced a broad range of physiological and stress responses, neurovestibular changes indexed by ocular misalignment, and altered neurocognitive functioning, some of which match those of long-term spaceflight2, but almost all of which did not differ from baseline (pre-flight) after return to Earth. Overall, these preliminary civilian spaceflight data suggest that short-duration missions do not pose a significant health risk, and moreover present a rich opportunity to measure the earliest phases of adaptation to spaceflight in the human body at anatomical, cellular, physiological and cognitive levels. Finally, these methods and results lay the foundation for an open, rapidly expanding biomedical database for astronauts3, which can inform countermeasure development for both private and government-sponsored space missions.

6.
STAR Protoc ; 5(1): 102754, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38096060

ABSTRACT

Characterization of isolated extracellular vesicles and particles (EVPs) is crucial for determining functions and biomarker potential. Here, we present a protocol to analyze size, number, morphology, and EVP protein cargo and to validate EVP proteins in both humans and mice. We describe steps for nanoparticle tracking analysis, transmission electron microscopy, single-EVP immunodetection, EVP proteomic mass spectrometry and bioinformatic analysis, and EVP protein validation by ExoELISA and western blot analysis. This allows for EVP cross-validation across different platforms. For complete details on the use and execution of this protocol, please refer to Hoshino et al.1.


Subject(s)
Extracellular Vesicles , Proteomics , Humans , Animals , Mice , Blotting, Western , Computational Biology , Mass Spectrometry
7.
EMBO Rep ; 24(12): e57339, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37929643

ABSTRACT

Breast adipose tissue is an important contributor to the obesity-breast cancer link. Extracellular vesicles (EVs) are nanosized particles containing selective cargo, such as miRNAs, that act locally or circulate to distant sites to modulate target cell functions. Here, we find that long-term education of breast cancer cells with EVs obtained from breast adipose tissue of women who are overweight or obese (O-EVs) results in increased proliferation. RNA-seq analysis of O-EV-educated cells demonstrates increased expression of genes involved in oxidative phosphorylation, such as ATP synthase and NADH: ubiquinone oxidoreductase. O-EVs increase respiratory complex protein expression, mitochondrial density, and mitochondrial respiration in tumor cells. The mitochondrial complex I inhibitor metformin reverses O-EV-induced cell proliferation. Several miRNAs-miR-155-5p, miR-10a-3p, and miR-30a-3p-which promote mitochondrial respiration and proliferation, are enriched in O-EVs relative to EVs from lean women. O-EV-induced proliferation and mitochondrial activity are associated with stimulation of the Akt/mTOR/P70S6K pathway, and are reversed upon silencing of P70S6K. This study reveals a new facet of the obesity-breast cancer link with human breast adipose tissue-derived EVs causing metabolic reprogramming of breast cancer cells.


Subject(s)
Breast Neoplasms , Extracellular Vesicles , MicroRNAs , Humans , Female , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Adipose Tissue/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Obesity/metabolism , Breast Neoplasms/metabolism , Proteins/metabolism , Extracellular Vesicles/metabolism
8.
bioRxiv ; 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37808646

ABSTRACT

Scanning electron microscopy (SEM) offers an unparalleled view of the membrane topography of mammalian cells by using a conventional osmium (OsO4) and ethanol-based tissue preparation. However, conventional SEM methods limit optimal resolution due to ethanol and lipid interactions and interfere with visualization of fluorescent reporter proteins. Therefore, SEM correlative light and electron microscopy (CLEM) has been hindered by the adverse effects of ethanol and OsO4 on retention of fluorescence signals. To overcome this technological gap in achieving high-resolution SEM and retain fluorescent reporter signals, we developed a freeze-drying method with gaseous nitrogen (FDGN). We demonstrate that FDGN preserves cyto-architecture to allow visualization of detailed membrane topography while retaining fluorescent signals and that FDGN processing can be used in conjunction with a variety of high-resolution imaging systems to enable collection and validation of unique, high-quality data from these approaches. In particular, we show that FDGN coupled with high resolution microscopy provided detailed insight into viral or tumor-derived extracellular vesicle (TEV)-host cell interactions and may aid in designing new approaches to intervene during viral infection or to harness TEVs as therapeutic agents.

9.
Oncoimmunology ; 12(1): 2222560, 2023.
Article in English | MEDLINE | ID: mdl-37363104

ABSTRACT

Focal radiation therapy (RT) has attracted considerable attention as a combinatorial partner for immunotherapy (IT), largely reflecting a well-defined, predictable safety profile and at least some potential for immunostimulation. However, only a few RT-IT combinations have been tested successfully in patients with cancer, highlighting the urgent need for an improved understanding of the interaction between RT and IT in both preclinical and clinical scenarios. Every year since 2016, ImmunoRad gathers experts working at the interface between RT and IT to provide a forum for education and discussion, with the ultimate goal of fostering progress in the field at both preclinical and clinical levels. Here, we summarize the key concepts and findings presented at the Sixth Annual ImmunoRad conference.


Subject(s)
Neoplasms , Humans , Combined Modality Therapy , Neoplasms/radiotherapy , Neoplasms/drug therapy , Immunotherapy
10.
bioRxiv ; 2023 May 02.
Article in English | MEDLINE | ID: mdl-37205403

ABSTRACT

The SpaceX Inspiration4 mission provided a unique opportunity to study the impact of spaceflight on the human body. Biospecimen samples were collected from the crew at different stages of the mission, including before (L-92, L-44, L-3 days), during (FD1, FD2, FD3), and after (R+1, R+45, R+82, R+194 days) spaceflight, creating a longitudinal sample set. The collection process included samples such as venous blood, capillary dried blood spot cards, saliva, urine, stool, body swabs, capsule swabs, SpaceX Dragon capsule HEPA filter, and skin biopsies, which were processed to obtain aliquots of serum, plasma, extracellular vesicles, and peripheral blood mononuclear cells. All samples were then processed in clinical and research laboratories for optimal isolation and testing of DNA, RNA, proteins, metabolites, and other biomolecules. This paper describes the complete set of collected biospecimens, their processing steps, and long-term biobanking methods, which enable future molecular assays and testing. As such, this study details a robust framework for obtaining and preserving high-quality human, microbial, and environmental samples for aerospace medicine in the Space Omics and Medical Atlas (SOMA) initiative, which can also aid future experiments in human spaceflight and space biology.

11.
Semin Cancer Biol ; 93: 70-82, 2023 08.
Article in English | MEDLINE | ID: mdl-37178822

ABSTRACT

Primary tumors secrete a variety of factors to turn distant microenvironments into favorable and fertile 'soil' for subsequent metastases. Among these 'seeding' factors that initiate pre-metastatic niche (PMN) formation, tumor-derived extracellular vesicles (EVs) are of particular interest as tumor EVs can direct organotropism depending on their surface integrin profiles. In addition, EVs also contain versatile, bioactive cargo, which include proteins, metabolites, lipids, RNA, and DNA fragments. The cargo incorporated into EVs is collectively shed from cancer cells and cancer-associated stromal cells. Increased understanding of how tumor EVs promote PMN establishment and detection of EVs in bodily fluids highlight how tumor EVs could serve as potential diagnostic and prognostic biomarkers, as well as provide a therapeutic target for metastasis prevention. This review focuses on tumor-derived EVs and how they direct organotropism and subsequently modulate stromal and immune microenvironments at distal sites to facilitate PMN formation. We also outline the progress made thus far towards clinical applications of tumor EVs.


Subject(s)
Extracellular Vesicles , Neoplasms , Humans , Neoplasms/metabolism , Extracellular Vesicles/metabolism , Cell Communication , Tumor Microenvironment
12.
J Extracell Vesicles ; 12(5): e12326, 2023 05.
Article in English | MEDLINE | ID: mdl-37194998

ABSTRACT

The capture of tumour-derived extracellular vesicles (TEVs) by cells in the tumour microenvironment (TME) contributes to metastasis and notably to the formation of the pre-metastatic niche (PMN). However, due to the challenges associated with modelling release of small EVs in vivo, the kinetics of PMN formation in response to endogenously released TEVs have not been examined. Here, we have studied the endogenous release of TEVs in mice orthotopically implanted with metastatic human melanoma (MEL) and neuroblastoma (NB) cells releasing GFP-tagged EVs (GFTEVs) and their capture by host cells to demonstrate the active contribution of TEVs to metastasis. Human GFTEVs captured by mouse macrophages in vitro resulted in transfer of GFP vesicles and the human exosomal miR-1246. Mice orthotopically implanted with MEL or NB cells showed the presence of TEVs in the blood between 5 and 28 days after implantation. Moreover, kinetic analysis of TEV capture by resident cells relative to the arrival and outgrowth of TEV-producing tumour cells in metastatic organs demonstrated that the capture of TEVs by lung and liver cells precedes the homing of metastatic tumour cells, consistent with the critical roles of TEVs in PMN formation. Importantly, TEV capture at future sites of metastasis was associated with the transfer of miR-1246 to lung macrophages, liver macrophages, and stellate cells. This is the first demonstration that the capture of endogenously released TEVs is organotropic as demonstrated by the presence of TEV-capturing cells only in metastatic organs and their absence in non-metastatic organs. The capture of TEVs in the PMN induced dynamic changes in inflammatory gene expression which evolved to a pro-tumorigenic reaction as the niche progressed to the metastatic state. Thus, our work describes a novel approach to TEV tracking in vivo that provides additional insights into their role in the earliest stages of metastatic progression.


Subject(s)
Extracellular Vesicles , Melanoma , MicroRNAs , Humans , Animals , Mice , Extracellular Vesicles/metabolism , Kinetics , MicroRNAs/metabolism , Melanoma/metabolism , Inflammation/metabolism , Tumor Microenvironment
13.
Nature ; 618(7964): 374-382, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225988

ABSTRACT

Cancer alters the function of multiple organs beyond those targeted by metastasis1,2. Here we show that inflammation, fatty liver and dysregulated metabolism are hallmarks of systemically affected livers in mouse models and in patients with extrahepatic metastasis. We identified tumour-derived extracellular vesicles and particles (EVPs) as crucial mediators of cancer-induced hepatic reprogramming, which could be reversed by reducing tumour EVP secretion via depletion of Rab27a. All EVP subpopulations, exosomes and principally exomeres, could dysregulate hepatic function. The fatty acid cargo of tumour EVPs-particularly palmitic acid-induced secretion of tumour necrosis factor (TNF) by Kupffer cells, generating a pro-inflammatory microenvironment, suppressing fatty acid metabolism and oxidative phosphorylation, and promoting fatty liver formation. Notably, Kupffer cell ablation or TNF blockade markedly decreased tumour-induced fatty liver generation. Tumour implantation or pre-treatment with tumour EVPs diminished cytochrome P450 gene expression and attenuated drug metabolism in a TNF-dependent manner. We also observed fatty liver and decreased cytochrome P450 expression at diagnosis in tumour-free livers of patients with pancreatic cancer who later developed extrahepatic metastasis, highlighting the clinical relevance of our findings. Notably, tumour EVP education enhanced side effects of chemotherapy, including bone marrow suppression and cardiotoxicity, suggesting that metabolic reprogramming of the liver by tumour-derived EVPs may limit chemotherapy tolerance in patients with cancer. Our results reveal how tumour-derived EVPs dysregulate hepatic function and their targetable potential, alongside TNF inhibition, for preventing fatty liver formation and enhancing the efficacy of chemotherapy.


Subject(s)
Extracellular Vesicles , Fatty Acids , Fatty Liver , Liver , Pancreatic Neoplasms , Animals , Mice , Cytochrome P-450 Enzyme System/genetics , Extracellular Vesicles/metabolism , Fatty Acids/metabolism , Fatty Liver/drug therapy , Fatty Liver/etiology , Fatty Liver/metabolism , Fatty Liver/prevention & control , Liver/metabolism , Liver/pathology , Liver/physiopathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Tumor Microenvironment , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , Liver Neoplasms/secondary , Humans , Inflammation/metabolism , Palmitic Acid/metabolism , Kupffer Cells , Oxidative Phosphorylation , rab27 GTP-Binding Proteins/deficiency
14.
Cancer Cell ; 41(5): 970-985.e3, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37084736

ABSTRACT

We analyzed 2,532 lung adenocarcinomas (LUAD) to identify the clinicopathological and genomic features associated with metastasis, metastatic burden, organotropism, and metastasis-free survival. Patients who develop metastasis are younger and male, with primary tumors enriched in micropapillary or solid histological subtypes and with a higher mutational burden, chromosomal instability, and fraction of genome doublings. Inactivation of TP53, SMARCA4, and CDKN2A are correlated with a site-specific shorter time to metastasis. The APOBEC mutational signature is more prevalent among metastases, particularly liver lesions. Analyses of matched specimens show that oncogenic and actionable alterations are frequently shared between primary tumors and metastases, whereas copy number alterations of unknown significance are more often private to metastases. Only 4% of metastases harbor therapeutically actionable alterations undetected in their matched primaries. Key clinicopathological and genomic alterations in our cohort were externally validated. In summary, our analysis highlights the complexity of clinicopathological features and tumor genomics in LUAD organotropism.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Male , Adenocarcinoma of Lung/genetics , Mutation , DNA Copy Number Variations , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Genomics , DNA Helicases/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics
15.
Cancer Cell ; 41(3): 546-572, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36917952

ABSTRACT

Primary tumors actively and specifically prime pre-metastatic niches (PMNs), the future sites of organotropic metastasis, preparing these distant microenvironments for disseminated tumor cell arrival. While initial studies of the PMN focused on extracellular matrix alterations and stromal reprogramming, it is increasingly clear that the far-reaching effects of tumors are in great part achieved through systemic and local PMN immunosuppression. Here, we discuss recent advances in our understanding of the tumor immune microenvironment and provide a comprehensive overview of the immune determinants of the PMN's spatiotemporal evolution. Moreover, we depict the PMN immune landscape, based on functional pre-clinical studies as well as mounting clinical evidence, and the dynamic, reciprocal crosstalk with systemic changes imposed by cancer progression. Finally, we outline emerging therapeutic approaches that alter the dynamics of the interactions driving PMN formation and reverse immunosuppression programs in the PMN ensuring early anti-tumor immune responses.


Subject(s)
Neoplasms , Humans , Neoplasms/pathology , Immune Tolerance , Tumor Microenvironment/physiology , Neoplasm Metastasis
16.
Methods Mol Biol ; 2628: 291-300, 2023.
Article in English | MEDLINE | ID: mdl-36781793

ABSTRACT

Plasma extracellular vesicles and particles (EVPs) are enriched in biomolecules that reflect individuals' physiological and pathological states. Several studies have demonstrated the potential of human plasma EVPs as a novel liquid biopsy. Here we describe a protocol for human plasma EVPs isolation and proteomic characterization. We isolated human plasma EVPs by the classical ultracentrifugation method and performed mass spectrometry-based proteomic profiling. Using this protocol, researchers can reveal the plasma EVPs proteome and explore the clinical application of plasma EVPs proteins for developing disease biomarkers.


Subject(s)
Extracellular Vesicles , Proteomics , Humans , Proteomics/methods , Mass Spectrometry , Ultracentrifugation , Blood Proteins/metabolism , Extracellular Vesicles/metabolism , Proteome/metabolism
17.
bioRxiv ; 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36798307

ABSTRACT

Breast adipose tissue is an important contributor to the obesity-breast cancer link. Dysregulated cell metabolism is now an accepted hallmark of cancer. Extracellular vesicles (EVs) are nanosized particles containing selective cargo, such as miRNAs, that act locally or circulate to distant sites to modulate target cell functions. Here, we found that long-term education of breast cancer cells (MCF7, T47D) with EVs from breast adipose tissue of women who are overweight or obese (O-EVs) leads to sustained increased proliferative potential. RNA-Seq of O-EV-educated cells demonstrates increased expression of genes, such as ATP synthase and NADH: ubiquinone oxidoreductase, involved in oxidative phosphorylation. O-EVs increase respiratory complex protein expression, mitochondrial density, and mitochondrial respiration in tumor cells. Mitochondrial complex I inhibitor, metformin, reverses O-EV-induced cell proliferation. Several miRNAs, miR-155-5p, miR-10a-3p, and miR-30a-3p, which promote mitochondrial respiration and proliferation, are enriched in O-EVs relative to EVs from lean women. O-EV-induced proliferation and mitochondrial activity are associated with stimulation of the Akt/mTOR/P70S6K pathway, and are reversed upon silencing of P70S6K. This study reveals a new facet of the obesity-breast cancer link with human breast adipose tissue-derived EVs causing the metabolic reprogramming of ER+ breast cancer cells.

18.
Extracell Vesicles Circ Nucl Acids ; 4(3): 461-485, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38707985

ABSTRACT

Over the past decade, extracellular vesicles and particles (EVPs) have emerged as critical mediators of intercellular communication, participating in numerous physiological and pathological processes. In the context of cancer, EVPs exert local effects, such as increased invasiveness, motility, and reprogramming of tumor stroma, as well as systemic effects, including pre-metastatic niche formation, determining organotropism, promoting metastasis and altering the homeostasis of various organs and systems, such as the liver, muscle, and circulatory system. This review provides an overview of the critical advances in EVP research during the past decade, highlighting the heterogeneity of EVPs, their roles in intercellular communication, cancer progression, and metastasis. Moreover, the clinical potential of systemic EVPs as useful cancer biomarkers and therapeutic agents is explored. Last but not least, the progress in EVP analysis technologies that have facilitated these discoveries is discussed, which may further propel EVP research in the future.

19.
Nat Commun ; 13(1): 6513, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36316305

ABSTRACT

Tumors initiate by mutations in cancer cells, and progress through interactions of the cancer cells with non-malignant cells of the tumor microenvironment. Major players in the tumor microenvironment are cancer-associated fibroblasts (CAFs), which support tumor malignancy, and comprise up to 90% of the tumor mass in pancreatic cancer. CAFs are transcriptionally rewired by cancer cells. Whether this rewiring is differentially affected by different mutations in cancer cells is largely unknown. Here we address this question by dissecting the stromal landscape of BRCA-mutated and BRCA Wild-type pancreatic ductal adenocarcinoma. We comprehensively analyze pancreatic cancer samples from 42 patients, revealing different CAF subtype compositions in germline BRCA-mutated vs. BRCA Wild-type tumors. In particular, we detect an increase in a subset of immune-regulatory clusterin-positive CAFs in BRCA-mutated tumors. Using cancer organoids and mouse models we show that this process is mediated through activation of heat-shock factor 1, the transcriptional regulator of clusterin. Our findings unravel a dimension of stromal heterogeneity influenced by germline mutations in cancer cells, with direct implications for clinical research.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Clusterin , Heat Shock Transcription Factors , Pancreatic Neoplasms , Animals , Mice , Cancer-Associated Fibroblasts/metabolism , Carcinoma, Pancreatic Ductal/pathology , Clusterin/genetics , Clusterin/metabolism , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Pancreatic Neoplasms/pathology , Tumor Microenvironment/genetics , Humans , Pancreatic Neoplasms
20.
Nat Commun ; 13(1): 6239, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266345

ABSTRACT

The systemic metabolic shifts that occur during aging and the local metabolic alterations of a tumor, its stroma and their communication cooperate to establish a unique tumor microenvironment (TME) fostering cancer progression. Here, we show that methylmalonic acid (MMA), an aging-increased oncometabolite also produced by aggressive cancer cells, activates fibroblasts in the TME, which reciprocally secrete IL-6 loaded extracellular vesicles (EVs) that drive cancer progression, drug resistance and metastasis. The cancer-associated fibroblast (CAF)-released EV cargo is modified as a result of reactive oxygen species (ROS) generation and activation of the canonical and noncanonical TGFß signaling pathways. EV-associated IL-6 functions as a stroma-tumor messenger, activating the JAK/STAT3 and TGFß signaling pathways in tumor cells and promoting pro-aggressive behaviors. Our findings define the role of MMA in CAF activation to drive metastatic reprogramming, unveiling potential therapeutic avenues to target MMA at the nexus of aging, the tumor microenvironment and metastasis.


Subject(s)
Cancer-Associated Fibroblasts , Extracellular Vesicles , Neoplasms , Humans , Cancer-Associated Fibroblasts/metabolism , Reactive Oxygen Species/metabolism , Methylmalonic Acid/metabolism , Interleukin-6/metabolism , Tumor Microenvironment , Neoplasms/pathology , Extracellular Vesicles/metabolism , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL