Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 219
Filter
1.
Cells ; 13(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38920668

ABSTRACT

Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease caused in almost all patients by expanded guanine-adenine-adenine (GAA) trinucleotide repeats within intron 1 of the FXN gene. This results in a relative deficiency of frataxin, a small nucleus-encoded mitochondrial protein crucial for iron-sulfur cluster biogenesis. Currently, there is only one medication, omaveloxolone, available for FRDA patients, and it is limited to patients 16 years of age and older. This necessitates the development of new medications. Frataxin restoration is one of the main strategies in potential treatment options as it addresses the root cause of the disease. Comprehending the control of frataxin at the transcriptional, post-transcriptional, and post-translational stages could offer potential therapeutic approaches for addressing the illness. This review aims to provide a general overview of the regulation of frataxin and its implications for a possible therapeutic treatment of FRDA.


Subject(s)
Frataxin , Friedreich Ataxia , Iron-Binding Proteins , Animals , Humans , Friedreich Ataxia/genetics , Gene Expression Regulation , Iron-Binding Proteins/genetics
2.
Brain Commun ; 6(3): fcae170, 2024.
Article in English | MEDLINE | ID: mdl-38846537

ABSTRACT

Friedreich's ataxia is a neurodegenerative disorder caused by reduced frataxin levels. It leads to motor and sensory impairments and has a median life expectancy of around 35 years. As the most common inherited form of ataxia, Friedreich's ataxia lacks reliable, non-invasive biomarkers, prolonging and inflating the cost of clinical trials. This study proposes TUG1, a long non-coding RNA, as a promising blood-based biomarker for Friedreich's ataxia, which is known to regulate various cellular processes. In a previous study using a frataxin knockdown mouse model, we observed several hallmark Friedreich's ataxia symptoms. Building on this, we hypothesized that a dual-source approach-comparing the data from peripheral blood samples from Friedreich's ataxia patients with tissue samples from affected areas in Friedreich's ataxia knockdown mice, tissues usually unattainable from patients-would effectively identify robust biomarkers. A comprehensive reanalysis was conducted on gene expression data from 183 age- and sex-matched peripheral blood samples of Friedreich's ataxia patients, carriers and controls and 192 tissue data sets from Friedreich's ataxia knockdown mice. Blood and tissue samples underwent RNA isolation and quantitative reverse transcription polymerase chain reaction, and frataxin knockdown was confirmed through enzyme-linked immunosorbent assays. Tug1 RNA interaction was explored via RNA pull-down assays. Validation was performed in serum samples on an independent set of 45 controls and 45 Friedreich's ataxia patients and in blood samples from 66 heterozygous carriers and 72 Friedreich's ataxia patients. Tug1 and Slc40a1 emerged as potential blood-based biomarkers, confirmed in the Friedreich's ataxia knockdown mouse model (one-way ANOVA, P ≤ 0.05). Tug1 was consistently downregulated after Fxn knockdown and correlated strongly with Fxn levels (R 2 = 0.71 during depletion, R 2 = 0.74 during rescue). Slc40a1 showed a similar but tissue-specific pattern. Further validation of Tug1's downstream targets strengthened its biomarker candidacy. In additional human samples, TUG1 levels were significantly downregulated in both whole blood and serum of Friedreich's ataxia patients compared with controls (Wilcoxon signed-rank test, P < 0.05). Regression analyses revealed a negative correlation between TUG1 fold-change and disease onset (P < 0.0037) and positive correlations with disease duration and functional disability stage score (P < 0.04). This suggests that elevated TUG1 levels correlate with earlier onset and more severe cases. This study identifies TUG1 as a potential blood-based biomarker for Friedreich's ataxia, showing consistent expression variance in human and mouse tissues related to disease severity and key Friedreich's ataxia pathways. It correlates with frataxin levels, indicating its promise as an early, non-invasive marker. TUG1 holds potential for Friedreich's ataxia monitoring and therapeutic development, meriting additional research.

3.
J Neurol Sci ; 461: 123053, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38759249

ABSTRACT

Friedreich ataxia is a progressive autosomal recessive neurodegenerative disorder characterized by ataxia, dyscoordination, and cardiomyopathy. A subset of patients with Friedreich ataxia have elevated levels of serum cardiac troponin I, but associations with disease outcomes and features of cardiomyopathy remain unclear. In this study, we characterized clinically obtained serum cardiac biomarker levels including troponin I, troponin T, and B-type natriuretic peptide in subjects with Friedreich ataxia and evaluated their association with markers of disease. While unprovoked troponin I levels were elevated in 36% of the cohort, cTnI levels associated with a cardiac event (provoked) were higher than unprovoked levels. In multivariate linear regression models, younger age predicted increased troponin I values, and in logistic regression models younger age, female sex, and marginally longer GAA repeat length predicted abnormal troponin I levels. In subjects with multiple assessments, mean unprovoked troponin I levels decreased slightly over time. The presence of abnormal troponin I values and their levels were predicted by echocardiographic measures of hypertrophy. In addition, troponin I levels predicted long-term markers of clinical cardiac dysfunction over time to a modest degree. Consequently, troponin I values provide a marker of hypertrophy but only a minimally predictive biomarker for later cardiac manifestations of disease such as systolic dysfunction or arrhythmia.


Subject(s)
Biomarkers , Friedreich Ataxia , Natriuretic Peptide, Brain , Troponin I , Humans , Friedreich Ataxia/blood , Friedreich Ataxia/diagnosis , Female , Male , Biomarkers/blood , Adult , Troponin I/blood , Natriuretic Peptide, Brain/blood , Middle Aged , Young Adult , Troponin T/blood , Adolescent , Cardiomyopathies/blood , Cardiomyopathies/diagnosis , Cohort Studies
4.
Neurol Clin Pract ; 14(3): e200303, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38751829

ABSTRACT

Background and Objectives: The Friedreich ataxia (FRDA) scientific community needs access to patient-centered outcome measures that satisfy regulatory guidelines and are capable of tracking clinically meaningful changes in FRDA disease burden. The objective of this research was to develop a novel, disease-specific caregiver-reported outcome measure for use in FRDA research and clinical care. Methods: In prior work, we conducted qualitative interviews and a cross-sectional study of FRDA caregivers and patients to determine the symptoms of greatest importance to individuals with FRDA. We designed the Friedreich Ataxia Caregiver-Reported Health Index (FACR-HI) to serially measure the symptoms of greatest importance to patients and utilized factor analysis, beta testing, reliability testing, and cross-sectional subgroup analysis to further evaluate and optimize this disease-specific outcome measure. Results: The FACR-HI was designed to measure total disease burden and disease burden in 18 symptomatic domains. The FACR-HI total score demonstrated high internal consistency (Cronbach's α = 0.98) and test-retest reliability (intraclass correlation coefficient = 0.96). Beta interview participants found the FACR-HI to be highly relevant, comprehensive, and easy to use. FACR-HI total and subscale scores were associated with functional staging for ataxia scores and speech impairment. Discussion: Initial evaluation of the FACR-HI supports its content validity, test-retest reliability, and construct validity as a caregiver-reported outcome measure for assessing how pediatric individuals with FRDA feel and function. The FACR-HI provides a potential mechanism to quantify changes in multifactorial FRDA disease burden during future clinical trials.

5.
Ann Clin Transl Neurol ; 11(5): 1290-1300, 2024 May.
Article in English | MEDLINE | ID: mdl-38556905

ABSTRACT

OBJECTIVES: Friedreich ataxia (FRDA) is a rare genetic disorder caused by mutations in the FXN gene, leading to progressive coordination loss and other symptoms. The recently approved omaveloxolone targets this condition but is limited to patients over 16 years of age, highlighting the need for pediatric treatments due to the disorder's early onset and more rapid progression in children. This population also experiences increased non-neurological complications; the FACHILD study aimed to augment and expand the knowledge about the natural history of the disease and clinical outcome assessments for trials in children in FRDA. METHODS: The study enrolled 108 individuals aged 7-18 years with a confirmed FRDA diagnosis, with visits occurring from October 2017 to November 2022 across three institutions. Several measures were introduced to minimize the impact of the COVID-19 pandemic, including virtual visits. Outcome measures centered on the mFARS score and its subscores, and data were analyzed using mixed models for repeated measures. For context and to avoid misinterpretation, the analysis was augmented with data from patients enrolled in the Friedreich's Ataxia Clinical Outcome Measures Study. RESULTS: Results confirmed the general usefulness of the mFARS score in children, but also highlighted issues, particularly with the upper limb subscore (FARS B). Increased variability, limited homogeneity across study subgroups, and potential training effects might limit mFARS application in clinical trials in pediatric populations. INTERPRETATION: The FARS E (Upright Stability) score might be a preferred outcome measure in this patient population.


Subject(s)
Friedreich Ataxia , Humans , Friedreich Ataxia/physiopathology , Friedreich Ataxia/genetics , Friedreich Ataxia/diagnosis , Child , Adolescent , Male , Female , COVID-19/complications , Outcome Assessment, Health Care , Severity of Illness Index
6.
Expert Opin Pharmacother ; 25(5): 529-539, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38622054

ABSTRACT

INTRODUCTION: Friedreich ataxia (FRDA) is a rare autosomal recessive disease, marked by loss of coordination as well as impaired neurological, endocrine, orthopedic, and cardiac function. There are many symptomatic medications for FRDA, and many clinical trials have been performed, but only one FDA-approved medication exists. AREAS COVERED: The relative absence of the frataxin protein (FXN) in FRDA causes mitochondrial dysfunction, resulting in clinical manifestations. Currently, the only approved treatment for FRDA is an Nrf2 activator called omaveloxolone (Skyclarys). Patients with FRDA also rely on various symptomatic medications for treatment. Because there is only one approved medication for FRDA, clinical trials continue to advance in FRDA. Although some trials have not met their endpoints, many current and upcoming clinical trials provide exciting possibilities for the treatment of FRDA. EXPERT OPINION: The approval of omaveloxolone provides a major advance in FRDA therapeutics. Although well tolerated, it is not curative. Reversal of deficient frataxin levels with gene therapy, protein replacement, or epigenetic approaches provides the most likely prospect for enduring, disease-modifying therapy in the future.


Subject(s)
Frataxin , Friedreich Ataxia , Iron-Binding Proteins , Humans , Friedreich Ataxia/drug therapy , Friedreich Ataxia/genetics , Genetic Therapy/methods , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Iron-Binding Proteins/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Triterpenes
7.
Pediatr Cardiol ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38427090

ABSTRACT

We examined the clinical features of Friedreich ataxia (FRDA) patients who present first with cardiac disease in order to understand the earliest features of the diagnostic journey in FRDA. We identified a group of subjects in the FACOMS natural history study whose first identified clinical feature was cardiac. Only 0.5% of the total cohort belonged to this group, which was younger on average at the time of presentation. Their cardiac symptoms ranged from asymptomatic features to heart failure with severe systolic dysfunction. Two of those individuals with severe dysfunction proceeded to heart transplantation, but others spontaneously recovered. In most cases, diagnosis of FRDA was not made until well after cardiac presentation. The present study shows that some FRDA patients present based on cardiac features, suggesting that earlier identification of FRDA might occur through enhancing awareness of FRDA among pediatric cardiologists who see such patients. This is important in the context of newly identified therapies for FRDA.

8.
Muscle Nerve ; 69(5): 613-619, 2024 May.
Article in English | MEDLINE | ID: mdl-38515223

ABSTRACT

INTRODUCTION/AIMS: Traditional exercise is often difficult for individuals with Friedreich ataxia (FRDA), and evidence is limited regarding how to measure exercise performance in this population. We evaluated the feasibility, reliability, and natural history of adaptive cardiopulmonary exercise test (CPET) performance in children and adults with FRDA. METHODS: Participants underwent CPET on either an arm cycle ergometer (ACE) or recumbent leg cycle ergometer (RLCE) at up to four visits (baseline, 2 weeks, 4 weeks, and 1 year). Maximum work, oxygen consumption (peak VO2), oxygen (O2) pulse, and anaerobic threshold (AT) were measured in those who reached maximal volition. Test-retest reliability was assessed with intraclass coefficients, and longitudinal change was assessed using regression analysis. RESULTS: In our cohort (N = 23), median age was 18 years (interquartile range [IQR], 14-23), median age of FRDA onset was 8 years (IQR 6-13), median Friedreich Ataxia Rating Scale score was 58 (IQR 54-62), and GAA repeat length on the shorter FXN allele (GAA1) was 766 (IQR, 650-900). Twenty-one (91%) completed a maximal CPET (n = 8, ACE and n = 13, RLCE). Age, sex, and GAA1 repeat length were each associated with peak VO2. Preliminary estimates demonstrated reasonable agreement between visits 2 and 3 for peak work by both ACE and RLCE, and for peak VO2, O2 pulse, and AT by RLCE. We did not detect significant performance changes over 1 year. DISCUSSION: Adaptive CPET is feasible in FRDA, a relevant clinical trial outcome for interventions that impact exercise performance and will increase access to participation as well as generalizability of findings.


Subject(s)
Exercise Test , Friedreich Ataxia , Adult , Child , Humans , Adolescent , Friedreich Ataxia/diagnosis , Reproducibility of Results , Oxygen Consumption , Respiratory Function Tests
9.
Cell Mol Life Sci ; 81(1): 153, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38538865

ABSTRACT

N-methyl-D-aspartate receptors (NMDARs) are members of the glutamate receptor family and participate in excitatory postsynaptic transmission throughout the central nervous system. Genetic variants in GRIN genes encoding NMDAR subunits are associated with a spectrum of neurological disorders. The M3 transmembrane helices of the NMDAR couple directly to the agonist-binding domains and form a helical bundle crossing in the closed receptors that occludes the pore. The M3 functions as a transduction element whose conformational change couples ligand binding to opening of an ion conducting pore. In this study, we report the functional consequences of 48 de novo missense variants in GRIN1, GRIN2A, and GRIN2B that alter residues in the M3 transmembrane helix. These de novo variants were identified in children with neurological and neuropsychiatric disorders including epilepsy, developmental delay, intellectual disability, hypotonia and attention deficit hyperactivity disorder. All 48 variants in M3 for which comprehensive testing was completed produce a gain-of-function (28/48) compared to loss-of-function (9/48); 11 variants had an indeterminant phenotype. This supports the idea that a key structural feature of the M3 gate exists to stabilize the closed state so that agonist binding can drive channel opening. Given that most M3 variants enhance channel gating, we assessed the potency of FDA-approved NMDAR channel blockers on these variant receptors. These data provide new insight into the structure-function relationship of the NMDAR gate, and suggest that variants within the M3 transmembrane helix produce a gain-of-function.


Subject(s)
Epilepsy , Receptors, N-Methyl-D-Aspartate , Child , Humans , Epilepsy/genetics , Mutation, Missense , Phenotype , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction
10.
Front Pharmacol ; 15: 1352311, 2024.
Article in English | MEDLINE | ID: mdl-38495102

ABSTRACT

Friedreich's ataxia (FRDA), the most common recessive inherited ataxia, results from homozygous guanine-adenine-adenine (GAA) repeat expansions in intron 1 of the FXN gene, which leads to the deficiency of frataxin, a mitochondrial protein essential for iron-sulphur cluster synthesis. The study of frataxin protein regulation might yield new approaches for FRDA treatment. Here, we report tumorous imaginal disc 1 (TID1), a mitochondrial J-protein cochaperone, as a binding partner of frataxin that negatively controls frataxin protein levels. TID1 interacts with frataxin both in vivo in mouse cortex and in vitro in cortical neurons. Acute and subacute depletion of frataxin using RNA interference markedly increases TID1 protein levels in multiple cell types. In addition, TID1 overexpression significantly increases frataxin precursor but decreases intermediate and mature frataxin levels in HEK293 cells. In primary cultured human skin fibroblasts, overexpression of TID1S results in decreased levels of mature frataxin and increased fragmentation of mitochondria. This effect is mediated by the last 6 amino acids of TID1S as a peptide made from this sequence rescues frataxin deficiency and mitochondrial defects in FRDA patient-derived cells. Our findings show that TID1 negatively modulates frataxin levels, and thereby suggests a novel therapeutic target for treating FRDA.

11.
Ann Clin Transl Neurol ; 11(5): 1110-1121, 2024 May.
Article in English | MEDLINE | ID: mdl-38396238

ABSTRACT

OBJECTIVE: Most individuals with Friedreich ataxia (FRDA) have homozygous GAA triplet repeat expansions in the FXN gene, correlating with a typical phenotype of ataxia and cardiomyopathy. A minority are compound heterozygotes carrying a GAA expansion on one allele and a mutation on the other. The study aim was to examine phenotypic variation among compound heterozygotes. METHODS: Data on FXN mutations were obtained from the Friedreich Ataxia Clinical Outcome Measures Study (FA-COMS). We compared clinical features in a single-site FA-COMS cohort of 51 compound heterozygous and 358 homozygous patients, including quantitative measures of cardiac, neurologic, and visual disease progression. RESULTS: Non-GAA repeat mutations were associated with reduced cardiac disease, and patients with minimal/no function mutations otherwise had a typical FRDA phenotype but with significantly more severe progression. The partial function mutation group was characterized by relative sparing of bulbar and upper limb function, as well as particularly low cardiac involvement. Other clinical features in this group, including optic atrophy and diabetes mellitus, varied widely depending on the specific type of partial function mutation. INTERPRETATION: These data support that the typical FRDA phenotype is driven by frataxin deficiency, especially severe in compound heterozygotes with minimal/no function mutations, whereas the heterogeneous presentations of those with partial function mutations may indicate other contributing factors to FRDA pathogenesis.


Subject(s)
Frataxin , Friedreich Ataxia , Heterozygote , Phenotype , Adolescent , Adult , Child , Female , Humans , Male , Middle Aged , Young Adult , Cohort Studies , Friedreich Ataxia/genetics , Friedreich Ataxia/physiopathology , Mutation , Trinucleotide Repeat Expansion/genetics
12.
Mol Ther Methods Clin Dev ; 32(1): 101193, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38352270

ABSTRACT

Friedreich's ataxia (FRDA) is an autosomal-recessive disorder primarily attributed to biallelic GAA repeat expansions that reduce expression of the mitochondrial protein frataxin (FXN). FRDA is characterized by progressive neurodegeneration, with many patients developing cardiomyopathy that progresses to heart failure and death. The potential to reverse or prevent progression of the cardiac phenotype of FRDA was investigated in a mouse model of FRDA, using an adeno-associated viral vector (AAV8) containing the coding sequence of the FXN gene. The Fxnflox/null::MCK-Cre conditional knockout mouse (FXN-MCK) has an FXN gene ablation that prevents FXN expression in cardiac and skeletal muscle, leading to cardiac insufficiency, weight loss, and morbidity. FXN-MCK mice received a single intravenous injection of an AAV8 vector containing human (hFXN) or mouse (mFXN) FXN genes under the control of a phosphoglycerate kinase promoter. Compared to vehicle-treated FXN-MCK control mice, AAV-treated FXN-MCK mice displayed increases in body weight, reversal of cardiac deficits, and increases in survival without apparent toxicity in the heart or liver for up to 12 weeks postdose. FXN protein expression in heart tissue was detected in a dose-dependent manner, exhibiting wide distribution throughout the heart similar to wild type, but more speckled. These results support an AAV8-based approach to treat FRDA-associated cardiomyopathy.

13.
Expert Rev Neurother ; 24(3): 251-258, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38269532

ABSTRACT

INTRODUCTION: Omavaloxolone, an NRF2 activator, recently became the first drug approved specifically for the treatment of Friedreich ataxia (FRDA). This landmark achievement provides a background for a review of the detailed data leading to the approval. AREAS COVERED: The authors review the data from the 4 major articles on FRDA in the context of the authors' considerable (>1000 patients) experience in treating individuals with FRDA. The data is presented in the context not only of its scientific meaning but also in the practical context of therapy in FRDA. EXPERT OPINION: Omaveloxolone provides a significant advance in the treatment of FRDA that is likely to be beneficial in a majority of the FRDA population. The data suggesting a benefit is consistent, and adverse issues are relatively modest. The major remaining questions are the subgroups that are most responsive and how long the beneficial effects will remain significant in FRDA patients.


Subject(s)
Friedreich Ataxia , Triterpenes , Humans , Friedreich Ataxia/drug therapy , Triterpenes/therapeutic use
14.
J Neurol ; 271(4): 1844-1849, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38063871

ABSTRACT

BACKGROUND: Friedreich ataxia is a progressive multisystem disorder caused by deficiency of the protein frataxin; a small mitochondrial protein involved in iron sulfur cluster synthesis. Two types of frataxin exist: FXN-M, found in most cells, and FXN-E, found almost exclusively in red blood cells. Treatments in clinical trials include frataxin restoration by gene therapy, protein replacement, and epigenetic therapies, all of which necessitate sensitive assays for assessing frataxin levels. METHODS: In the present study, we have used a triple quadrupole mass spectrometry-based assay to examine the features of both types of frataxin levels in blood in a large heterogenous cohort of 106 patients with FRDA. RESULTS: Frataxin levels (FXN-E and FXN M) were predicted by GAA repeat length in regression models (R2 values = 0.51 and 0.27, respectively), and conversely frataxin levels predicted clinical status as determined by modified Friedreich Ataxia Rating scale scores and by disability status (R2 values = 0.13-0.16). There was no significant change in frataxin levels in individual subjects over time, and apart from start codon mutations, FXN-E and FXN-M levels were roughly equal. Accounting for hemoglobin levels in a smaller sub-cohort improved prediction of both FXN-E and FXN-M levels from R2 values of (0.3-0.38 to 0.20-0.51). CONCLUSION: The present data show that assay of FXN-M and FXN-E levels in blood provides an appropriate biofluid for assessing their repletion in particular clinical contexts.


Subject(s)
Frataxin , Friedreich Ataxia , Humans , Friedreich Ataxia/genetics , Mitochondrial Proteins/genetics , Mass Spectrometry , Iron-Binding Proteins/genetics , Iron-Binding Proteins/metabolism
15.
Ann Clin Transl Neurol ; 11(1): 4-16, 2024 01.
Article in English | MEDLINE | ID: mdl-37691319

ABSTRACT

OBJECTIVE: The natural history of Friedreich ataxia is being investigated in a multi-center longitudinal study designated the Friedreich ataxia Clinical Outcome Measures Study (FACOMS). To understand the utility of this study in analysis of clinical trials, we performed a propensity-matched comparison of data from the open-label MOXIe extension (omaveloxolone) to that from FACOMS. METHODS: MOXIe extension patients were matched to FACOMS patients using logistic regression to estimate propensity scores based on multiple covariates: sex, baseline age, age of onset, baseline modified Friedreich Ataxia Rating scale (mFARS) score, and baseline gait score. The change from baseline in mFARS at Year 3 for the MOXIe extension patients compared to the matched FACOMS patients was analyzed as the primary efficacy endpoint using mixed model repeated measures analysis. RESULTS: Data from the MOXIe extension show that omaveloxolone provided persistent benefit over 3 years when compared to an untreated, matched cohort from FACOMS. At each year, in all analysis populations, patients in the MOXIe extension experienced a smaller change from baseline in mFARS score than matched FACOMS patients. In the primary pooled population (136 patients in each group) by Year 3, patients in the FACOMS matched set progressed 6.6 points whereas patients treated with omaveloxolone in MOXIe extension progressed 3 points (difference = -3.6; nominal p value = 0.0001). INTERPRETATION: These results suggest a meaningful slowing of Friedreich ataxia progression with omaveloxolone, and consequently detail how propensity-matched analysis may contribute to understanding of effects of therapeutic agents. This demonstrates the direct value of natural history studies in clinical trial evaluations.


Subject(s)
Friedreich Ataxia , Triterpenes , Humans , Friedreich Ataxia/drug therapy , Longitudinal Studies , Outcome Assessment, Health Care , Male , Female , Clinical Trials as Topic
16.
bioRxiv ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38014032

ABSTRACT

Background: Friedreich's ataxia (FA) is an inherited neurodegenerative disorder that causes progressive nervous system damage resulting in impaired muscle coordination. FA is the most common autosomal recessive form of ataxia and is caused by an expansion of the DNA triplet guanine-adenine-adenine (GAA) in the first intron of the Frataxin gene (FXN), located on chromosome 9q13. In the unaffected population, the number of GAA repeats ranges from 6 to 27 repetitions. In FA patients, GAA repeat expansions range from 44 to 1,700 repeats which decreases frataxin protein expression. Frataxin is a mitochondrial protein essential for various cellular functions, including iron metabolism. Reduced frataxin expression is thought to negatively affect mitochondrial iron metabolism, leading to increased oxidative damage. Although FA is considered a neurodegenerative disorder, FA patients display heart disease that includes hypertrophy, heart failure, arrhythmias, conduction abnormalities, and cardiac fibrosis. Objective: In this work, we investigated whether abnormal Ca 2+ handling machinery is the molecular mechanism that perpetuates cardiac dysfunction in FA. Methods: We used the frataxin knock-out (FXN-KO) mouse model of FA as well as human heart samples from donors with FA and from unaffected donors. ECG and echocardiography were used to assess cardiac function in the mice. Expression of calcium handling machinery proteins was assessed with proteomics and western blot. In left ventricular myocytes from FXN-KO and FXN-WT mice, the IonOptix system was used for calcium imaging, the seahorse assay was utilized to measure oxygen consumption rate (OCR), and confocal imaging was used to quantify the mitochondrial membrane potential (Δψm) and reactive oxygen species (ROS). Results: We found that major contractile proteins, including SERCA2a and Ryr2, were downregulated in human left ventricular samples from deceased donors with FA compared to unaffected donors, similar to the downregulation of these proteins in the left ventricular tissue from FXN-KO compared to FXN-WT. On the ECG, the RR, PR, QRS, and QTc were significantly longer in the FXN-KO mice compared to FXN-WT. The ejection fraction and fractional shortening were significantly decreased and left ventricular wall thickness and diameter were significantly increased in the FXN-KO mice versus FXN-WT. The mitochondrial membrane potential Δψm was depolarized, ROS levels were elevated, and OCR was decreased in ventricular myocytes from FXN-KO versus FXN-WT. Conclusion: The development of left ventricular contractile dysfunction in FA is associated with reduced expression of calcium handling proteins and mitochondrial dysfunction.

17.
Neurol Clin Pract ; 13(5): e200180, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37646046

ABSTRACT

Background and Objectives: To develop a valid, disease-specific, patient-reported outcome (PRO) measure for adolescents and adults with Friedreich ataxia (FA) for use in therapeutic trials. Methods: We conducted semistructured qualitative interviews and a national cross-sectional study of individuals with FA to determine the most prevalent and burdensome symptoms and symptomatic themes to this population. These symptoms and symptomatic themes were included as questions in the first version of the Friedreich's Ataxia-Health Index (FA-HI). We subsequently used factor analysis, beta interviews with 17 individuals with FA, and test-retest reliability assessments with 20 individuals with FA to evaluate, refine, and optimize the FA-HI. Finally, we determined the capability of the FA-HI to differentiate between subgroups of FA participants with varying levels of disease severity. Results: Participants with FA identified 18 symptomatic themes of importance to be included as subscales in the FA-HI. The FA-HI demonstrates high internal consistency and test-retest reliability, and it was identified by participants as highly relevant, comprehensive, and easy to complete. FA-HI total and subscale scores statistically differentiated between subgroups of participants with varying levels of disease burden. Discussion: Initial evaluation of the FA-HI supports its validity and reliability as a PRO for assessing how individuals with FA feel and function.

18.
Neurology ; 101(17): e1747-e1752, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37596043

ABSTRACT

A 48-year-old man was referred to the movement disorders clinic for 10 years of progressive slurred speech, spasticity, limb incoordination, and wide-based gait. Extensive neurologic workup was inconclusive, including serum and CSF testing, neuroimaging, EMG/NCS, exome sequencing, and mitochondrial testing. An ataxia repeat expansion panel ultimately revealed the final diagnosis. In this report, we review the clinical characteristics of a rare, late-onset, autosomal recessive cerebellar ataxia and discuss the importance of pursuing targeted gene testing to avoid diagnostic delays, especially as new treatments for this and other genetic diseases become available.


Subject(s)
Cerebellar Ataxia , Spinocerebellar Degenerations , Male , Humans , Middle Aged , Cerebellar Ataxia/diagnosis , Cerebellar Ataxia/genetics , Ataxia , Muscle Spasticity/diagnosis , Muscle Spasticity/genetics , Clinical Reasoning
19.
Ann Clin Transl Neurol ; 10(8): 1397-1406, 2023 08.
Article in English | MEDLINE | ID: mdl-37334854

ABSTRACT

OBJECTIVE: Friedreich ataxia (FRDA) is an inherited condition caused by a GAA triplet repeat (GAA-TR) expansion in the FXN gene. Clinical features of FRDA include ataxia, cardiomyopathy, and in some, vision loss. In this study, we characterize features of vision loss in a large cohort of adults and children with FRDA. METHODS: Using optical coherence tomography (OCT), we measured peripapillary retinal nerve fiber layer (RNFL) thickness in 198 people with FRDA, and 77 controls. Sloan letter charts were used to determine visual acuity. RNFL thickness and visual acuity were compared to measures of disease severity obtained from the Friedreich Ataxia Clinical Outcomes Measures Study (FACOMS). RESULTS: The majority of patients, including children, had pathologically thin RNFLs (mean = 73 ± 13 µm in FRDA; 98 ± 9 µm in controls) and low-contrast vision deficits early in the disease course. Variability in RNFL thickness in FRDA (range: 36 to 107 µm) was best predicted by disease burden (GAA-TR length X disease duration). Significant deficits in high-contrast visual acuity were apparent in patients with an RNFL thickness of ≤68 µm. RNFL thickness decreased at a rate of -1.2 ± 1.4 µm/year and reached 68 µm at a disease burden of approximately 12,000 GAA years, equivalent to disease duration of 17 years for participants with 700 GAAs. INTERPRETATION: These data suggest that both hypoplasia and subsequent degeneration of the RNFL may be responsible for the optic nerve dysfunction in FRDA and support the development of a vision-directed treatment for selected patients early in the disease to prevent RNFL loss from reaching the critical threshold.


Subject(s)
Friedreich Ataxia , Adult , Child , Humans , Friedreich Ataxia/complications , Vision Disorders/etiology , Ataxia , Retina/diagnostic imaging , Disease Progression
20.
Mov Disord ; 38(6): 970-977, 2023 06.
Article in English | MEDLINE | ID: mdl-36928898

ABSTRACT

BACKGROUND: Friedreich's ataxia (FRDA), most commonly caused by a GAA triplet repeat (GAA-TR) expansion in intron 1 of the FXN gene, is characterized by deficiency of frataxin protein and clinical features such as progressive ataxia, dysarthria, impaired proprioception and vibration, abolished deep tendon reflexes, Babinski sign, and vision loss in association with non-neurological features such as skeletal anomalies, hearing loss, cardiomyopathy, and diabetes. Pathogenic GAA-TRs range in size from 60 to 1500 triplets and negatively correlate with age of onset. Clinical severity is predicted by a combination of GAA-TR length and disease duration (DD) via multivariable regressions, which cannot typically be used for the small sample sizes in most studies on this rare disease. OBJECTIVE: We aimed to develop a single metric, which we call "disease burden" (DB), that encompasses both GAA-TR length and DD for predicting disease features of FRDA in small sample sizes. METHODS: Linear regression and multivariable regression analysis was used to determine correlation coefficients between different disease features of FRDA. RESULTS: Using large datasets for validation, we found that DB predicts measures of neurological dysfunction in FRDA better than GAA-TR length or DD. Analogous results were found using small datasets. CONCLUSIONS: FRDA DB is a novel metric of disease severity that has utility in small datasets to demonstrate correlations that would not otherwise be evident with either GAA-TR or DD alone. This is important for discovering new biomarkers, as well as improving the prediction of severity of disease features in FRDA. © 2023 International Parkinson and Movement Disorder Society.


Subject(s)
Friedreich Ataxia , Humans , Friedreich Ataxia/genetics , Trinucleotide Repeats , Trinucleotide Repeat Expansion/genetics , Introns , Severity of Illness Index , Iron-Binding Proteins/genetics , Iron-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...