Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 14: 1373052, 2024.
Article in English | MEDLINE | ID: mdl-38808067

ABSTRACT

Among the Acinetobacter genus, Acinetobacter pittii stands out as an important opportunistic infection causative agent commonly found in hospital settings, which poses a serious threat to human health. Recently, the high prevalence of carbapenem-resistant A. pittii isolates has created significant therapeutic challenges for clinicians. Bacteriophages and their derived enzymes are promising therapeutic alternatives or adjuncts to antibiotics effective against multidrug-resistant bacterial infections. However, studies investigating the depolymerases specific to A. pittii strains are scarce. In this study, we identified and characterized a capsule depolymerase, Dpo27, encoded by the bacteriophage IME-Ap7, which targets A. pittii. A total of 23 clinical isolates of Acinetobacter spp. were identified as A. pittii (21.91%, 23/105), and seven A. pittii strains with various K locus (KL) types (KL14, KL32, KL38, KL111, KL163, KL207, and KL220) were used as host bacteria for phage screening. The lytic phage IME-Ap7 was isolated using A. pittii 7 (KL220) as an indicator bacterium and was observed for depolymerase activity. A putative tail fiber gene encoding a polysaccharide-degrading enzyme (Dpo27) was identified and expressed. The results of the modified single-spot assay showed that both A. pittii 7 and 1492 were sensitive to Dpo27, which was assigned the KL220 type. After incubation with Dpo27, A. pittii strain was susceptible to killing by human serum; moreover, the protein displayed no hemolytic activity against erythrocytes. Furthermore, the protein exhibited sustained activity across a wide pH range (5.0-10.0) and at temperatures between 20 and 50°C. In summary, the identified capsule depolymerase Dpo27 holds promise as an alternative treatment for combating KL220-type A. pittii infections.


Subject(s)
Acinetobacter Infections , Acinetobacter , Bacteriophages , Glycoside Hydrolases , Bacteriophages/genetics , Bacteriophages/enzymology , Bacteriophages/isolation & purification , Humans , Acinetobacter/enzymology , Acinetobacter/genetics , Acinetobacter/virology , Acinetobacter/drug effects , Acinetobacter Infections/microbiology , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Bacterial Capsules/metabolism , Bacterial Capsules/genetics
2.
J Hazard Mater ; 460: 132399, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37647659

ABSTRACT

The excessive application of chemical fertilizers and pesticides in apple orchards is responsible for high levels of manganese and copper in soil, and this poses a serious threat to soil health. We conducted a three-year field experiment to study the remediation effect and mechanism of fulvic acid on soil with excess manganese and copper. The exogenous application of fulvic acid significantly reduced the content of manganese and copper in soil and plants; increased the content of calcium; promoted the growth of apple plants; improved the fruit quality and yield of apple; increased the content of chlorophyll; increased the activity of superoxide dismutase, peroxidase, and catalase; and reduced the content of malondialdehyde. The number of soil culturable microorganisms, soil enzyme activity, soil microbial community diversity, and relative abundance of functional bacteria were increased, and the detoxification of the glutathione metabolism function was enhanced. The results of this study provide new insights that will aid the remediation of soil with excess manganese and copper using fulvic acid.


Subject(s)
Malus , Metals, Heavy , Copper , Manganese , Metals, Heavy/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL