Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 945: 174183, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38909808

ABSTRACT

Coastal areas are an important source of methane (CH4). However, the exact origins of CH4 in the surface waters of coastal regions, which in turn drive sea-air emissions, remain uncertain. To gain a comprehensive understanding of the current and future climate change feedbacks, it is crucial to identify these CH4 sources and processes that regulate its formation and oxidation. This study investigated coastal CH4 dynamics by comparing water column data from six stations located in the brackish Tvärminne Archipelago, Baltic Sea. The sediment biogeochemistry and microbiology were further investigated at two stations (i.e., nearshore and offshore). These stations differed in terms of stratification, bottom water redox conditions, and organic matter loading. At the nearshore station, CH4 diffusion from the sediment into the water column was negligible, because nearly all CH4 was oxidized within the upper sediment column before reaching the sediment surface. On the other hand, at the offshore station, there was significant benthic diffusion of CH4, albeit the majority underwent oxidation before reaching the sediment-water interface, due to shoaling of the sulfate methane transition zone (SMTZ). The potential contribution of CH4 production in the water column was evaluated and was found to be negligible. After examining the isotopic signatures of δ13C-CH4 across the sediment and water column, it became apparent that the surface water δ13C-CH4 values observed in areas with thermal stratification could not be explained by diffusion, advective fluxes, nor production in the water column. In fact, these values bore a remarkable resemblance to those detected below the SMTZ. This supports the hypothesis that the source of CH4 in surface waters is more likely to originate from ebullition than diffusion in stratified brackish coastal systems.

2.
Sci Total Environ ; 895: 165132, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37379918

ABSTRACT

Vegetation holds the key to many properties that make natural mires unique, such as surface microtopography, high biodiversity values, effective carbon sequestration and regulation of water and nutrient fluxes across the landscape. Despite this, landscape controls behind mire vegetation patterns have previously been poorly described at large spatial scales, which limits the understanding of basic drivers underpinning mire ecosystem services. We studied catchment controls on mire nutrient regimes and vegetation patterns using a geographically constrained natural mire chronosequence along the isostatically rising coastline in Northern Sweden. By comparing mires of different ages, we can partition vegetation patterns caused by long-term mire succession (<5000 years) and present-day vegetation responses to catchment eco-hydrological settings. We used the remote sensing based normalized difference vegetation index (NDVI) to describe mire vegetation and combined peat physicochemical measures with catchment properties to identify the most important factors that determine mire NDVI. We found strong evidence that mire NDVI depends on nutrient inputs from the catchment area or underlying mineral soil, especially concerning phosphorus and potassium concentrations. Steep mire and catchment slopes, dry conditions and large catchment areas relative to mire areas were associated with higher NDVI. We also found long-term successional patterns, with lower NDVI in older mires. Importantly, the NDVI should be used to describe mire vegetation patterns in open mires if the focus is on surface vegetation, since the canopy cover in tree-covered mires completely dominated the NDVI signal. With our study approach, we can quantitatively describe the connection between landscape properties and mire nutrient regime. Our results confirm that mire vegetation responds to the upslope catchment area, but importantly, also suggest that mire and catchment aging can override the role of catchment influence. This effect was clear across mires of all ages, but was strongest in younger mires.


Subject(s)
Biodiversity , Ecosystem , Humans , Aged , Trees , Hydrology , Telemetry , Soil
3.
Sci Total Environ ; 889: 163764, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37207761

ABSTRACT

Microbial sulfate reduction (MSR), which transforms sulfate into sulfide through the consumption of organic matter, is an integral part of sulfur and carbon cycling. Yet, the knowledge on MSR magnitudes is limited and mostly restricted to snap-shot conditions in specific surface water bodies. Potential impacts of MSR have consequently been unaccounted for, e.g., in regional or global weathering budgets. Here, we synthesize results from previous studies on sulfur isotope dynamics in stream water samples and apply a sulfur isotopic fractionation and mixing scheme combined with Monte Carlo simulations to derive MSR in entire hydrological catchments. This allowed comparison of magnitudes both within and between five study areas located between southern Sweden and the Kola Peninsula, Russia. Our results showed that the freshwater MSR ranged from 0 to 79 % (interquartile range of 19 percentage units) locally within the catchments, with average values from 2 to 28 % between the catchments, displaying a non-negligible catchment-average value of 13 %. The combined abundance or deficiency of several landscape elements (e.g., the areal percentage of forest and lakes/wetlands) were found to indicate relatively well whether or not catchment-scale MSR would be high. A regression analysis showed specifically that average slope was the individual element that best reflected the MSR magnitude, both at sub-catchment scale and between the different study areas. However, the regression results of individual parameters were generally weak. The MSR-values additionally showed differences between seasons, in particular in wetland/lake dominated catchments. Here MSR was high during the spring flood, which is consistent with the mobilization of water that under low-flow winter periods have developed the needed anoxic conditions for sulfate-reducing microorganisms. This study presents for the first time compelling evidence from multiple catchments of wide-spread MSR at levels slightly above 10 %, implying that the terrestrial pyrite oxidation may be underestimated in global weathering budgets.


Subject(s)
Fresh Water , Sulfur , Sulfur Isotopes/analysis , Sulfates/metabolism , Water
4.
Environ Pollut ; 292(Pt B): 118478, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34752789

ABSTRACT

Laboratory experiments and point observations, for instance in wetlands, have shown evidence that microbial sulfate reduction (MSR) can lower sulfate and toxic metal concentrations in acid mine drainage (AMD). We here hypothesize that MSR can impact the fate of AMD in entire catchments. To test this, we developed a sulfur isotope fractionation and mass-balance method, and applied it at multiple locations in the catchment of an abandoned copper mine (Nautanen, northern Sweden). Results showed that MSR caused considerable, catchment-scale immobilization of sulfur corresponding to a retention of 27 ± 15% under unfrozen conditions in the summer season, with local values ranging between 13 ± 10% and 53 ± 18%. Present evidence of extensive MSR in Nautanen, together with previous evidence of local MSR occurring under many different conditions, suggest that field-scale MSR is most likely important also at other AMD sites, where retention of AMD may be enhanced through nature-based solutions. More generally, the developed isotope fractionation analysis scheme provides a relatively simple tool for quantification of spatio-temporal trends in MSR, answering to the emerging need of pollution control from cumulative anthropogenic pressures in the landscape, where strategies taking advantage of MSR can provide viable options.


Subject(s)
Mining , Sulfates , Acids , Sulfur , Sulfur Isotopes/analysis
5.
J Contam Hydrol ; 232: 103640, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32353562

ABSTRACT

This study was aimed at identifying and quantifying mixing proportions in surface waters downstream of historical Cu-W-F skarn mine tailings at Yxsjöberg, Sweden, using 18O, 2H, and 87Sr/86Sr isotopes. In addition, a simple mathematical model was developed to evaluate the consistency of the mixing calculations. Hydrochemical and isotopic data from 2 groundwater wells, 6 surface water and 2 rainwater sampling sites, spanning 6 sampling campaigns between May and October were used. Three mixed surface waters downstream of the tailings were identified, namely: C7, C11 and C14. C7 was directly influenced by groundwater from the tailings whereas C11 was also subsequently influenced by C7. C14 on the other hand, had contributions from C11. Sequential mixing calculations indicated that the contribution of the groundwater to C7 ranges from 1 to 17%. The subsequent contribution of C7 to C11 varied from 49 to 91% whereas C14 had contributions of C11 ranging between 16 and 56%. A strong agreement between the model data (MD) and measured raw data (RD) for C11 and C14 indicated the accuracy of the mixing calculations. Variations between the MD and RD at C7, however, was mainly due to sorption and reductive processes underneath the tailings, which tend to attenuate the amount of dissolved ions reaching the surface waters, resulting in a low ionic contribution of the tailings groundwater to the surface water. The low ionic contribution of the groundwater to C7 suggested that although the tailings impoundment is of environmental concern, its impact on the downstream surface waters is small. The results of this study suggest that mixing calculations in surface waters involving a closed system such as groundwater (as an end-member) must be treated with caution. It is recommended that the interpretation of such mixing results must be coupled with detailed knowledge of the potential hydrogeochemical processes along its flow paths.


Subject(s)
Groundwater , Water Pollutants, Chemical , Environmental Monitoring , Isotopes/analysis , Sweden , Water Pollutants, Chemical/analysis
6.
Sci Rep ; 10(1): 8141, 2020 05 18.
Article in English | MEDLINE | ID: mdl-32424173

ABSTRACT

Glendonites have been found worldwide in marine sediments from the Neoproterozoic Era to the Quaternary Period. The precursor of glendonite, ikaite (CaCO3 · 6H2O), is metastable and has only been observed in nature at temperatures <7 °C. Therefore, glendonites in the sedimentary record are commonly used as paleotemperature indicators. However, several laboratory experiments have shown that the mineral can nucleate at temperatures>7 °C. Here we investigate the nucleation range for ikaite as a function of temperature and pH. We found that ikaite precipitated at temperatures of at least 35 °C at pH 9.3 -10.3 from a mixture of natural seawater and sodium carbonate rich solution. At pH 9.3, we observed pseudomorphic replacement of ikaite by porous calcite during the duration of the experiment (c. 5 hours). These results imply that ikaite can form at relatively high temperatures but will then be rapidly replaced by a calcite pseudomorph. This finding challenges the use of glendonites as paleotemperature indicators.

7.
Sci Total Environ ; 715: 136671, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32050319

ABSTRACT

Elevated Arsenic (As) and Fluoride (F) concentrations in groundwater have been studied in the shallow aquifers of northeastern of La Pampa province, in the Chaco-Pampean plain, Argentina. The source of As and co-contaminants is mainly geogenic, from the weathering of volcanic ash and loess (rhyolitic glass) that erupted from the Andean volcanic range. In this study we have assessed the groundwater quality in two semi-arid areas of La Pampa. We have also identified the spatial distribution of As and co-contaminants in groundwater and determined the major factors controlling the mobilization of As in the shallow aquifers. The groundwater samples were circum-neutral to alkaline (7.4 to 9.2), oxidizing (Eh ~0.24 V) and characterized by high salinity (EC = 456-11,400 µS/cm) and Na+-HCO3- water types in recharge areas. Carbonate concretions ("tosca") were abundant in the upper layers of the shallow aquifer. The concentration of total As (5.6 to 535 µg/L) and F (0.5 to 14.2 mg/L) were heterogeneous and exceeded the recommended WHO Guidelines and the Argentine Standards for drinking water. The predominant As species were arsenate As(V) oxyanions, determined by thermodynamic calculations. Arsenic was positively correlated with bicarbonate (HCO3-), fluoride (F), boron (B) and vanadium (V), but negatively correlated with iron (Fe), aluminium (Al), and manganese (Mn), which were present in low concentrations. The highest amount of As in sediments was from the surface of the dry lake. The mechanisms for As mobilization are associated with multiple factors: geochemical reactions, hydrogeological characteristics of the local aquifer and climatic factors. Desorption of As(V) at high pH, and ion competition for adsorption sites are considered the principal mechanisms for As mobilization in the shallow aquifers. In addition, the long-term consumption of the groundwater could pose a threat for the health of the local community and low cost remediation techniques are required to improve the drinking water quality.

8.
Sci Rep ; 8(1): 6876, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29720603

ABSTRACT

Peatlands in northern latitudes sequester one third of the world's soil organic carbon. Mineral dusts can affect the primary productivity of terrestrial systems through nutrient transport but this process has not yet been documented in these peat-rich regions. Here we analysed organic and inorganic fractions of an 8900-year-old sequence from Store Mosse (the "Great Bog") in southern Sweden. Between 5420 and 4550 cal yr BP, we observe a seven-fold increase in net peat-accumulation rates corresponding to a maximum carbon-burial rate of 150 g C m-2 yr-1 - more than six times the global average. This high peat accumulation event occurs in parallel with a distinct change in the character of the dust deposited on the bog, which moves from being dominated by clay minerals to less weathered, phosphate and feldspar minerals. We hypothesize that this shift boosted nutrient input to the bog and stimulated ecosystem productivity. This study shows that diffuse sources and dust dynamics in northern temperate latitudes, often overlooked by the dust community in favour of arid and semi-arid regions, can be important drivers of peatland carbon accumulation and by extension, global climate, warranting further consideration in predictions of future climate variability.

9.
Sci Rep ; 7(1): 9158, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28831088

ABSTRACT

It is well established that stream dissolved inorganic carbon (DIC) fluxes play a central role in the global C cycle, yet the sources of stream DIC remain to a large extent unresolved. Here, we explore large-scale patterns in δ13C-DIC from streams across Sweden to separate and further quantify the sources and sinks of stream DIC. We found that stream DIC is governed by a variety of sources and sinks including biogenic and geogenic sources, CO2 evasion, as well as in-stream processes. Although soil respiration was the main source of DIC across all streams, a geogenic DIC influence was identified in the northernmost region. All streams were affected by various degrees of atmospheric CO2 evasion, but residual variance in δ13C-DIC also indicated a significant influence of in-stream metabolism and anaerobic processes. Due to those multiple sources and sinks, we emphasize that simply quantifying aquatic DIC fluxes will not be sufficient to characterise their role in the global C cycle.

10.
Environ Sci Technol ; 48(7): 3783-90, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24576080

ABSTRACT

Stream water concentrations of 13 major and trace elements (Al, Ba, Ca, Cr, Cu, La, Mg, Na, Ni, Si, Sr, U, Y) were used to estimate fluxes from 15 boreal catchments. All elements displayed a significant negative correlation to the wetland coverage, but the influence of wetlands was stronger for organophilic metals; 73% of the spatial differences in the normalized element fluxes could be explained based only on the wetland coverage and the affinity for organic matter, which was quantified using thermodynamic modeling. When the analysis was restrained to the smaller streams (<10 km(2)) the explanatory power increased to 88%. The results suggest that wetlands may decrease the fluxes of metals from boreal forests to downstream recipients by up to 40% at otherwise similar runoff. We suggest that the decrease in element fluxes is caused by a combination of low weathering in peat soils and accumulation of organophilic metals in peat. The model could not explain the spatial patterns for some metals with low affinity for organic matter, some redox-sensitive metals, and some metals with exceptionally high atmospheric deposition, but the results still demonstrate that wetlands play an important role for the biogeochemical cycling of many metals in the boreal landscape.


Subject(s)
Ecosystem , Metals/chemistry , Organic Chemicals/chemistry , Trees/chemistry , Wetlands , Carbon/analysis , Hydrogen-Ion Concentration , Models, Theoretical , Soil/chemistry , Sweden , Trace Elements/analysis
11.
Ambio ; 43(1): 11-25, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24414801

ABSTRACT

The Baltic Sea Action Plan (BSAP) requires tools to simulate effects and costs of various nutrient abatement strategies. Hierarchically connected databases and models of the entire catchment have been created to allow decision makers to view scenarios via the decision support system NEST. Increased intensity in agriculture in transient countries would result in increased nutrient loads to the Baltic Sea, particularly from Poland, the Baltic States, and Russia. Nutrient retentions are high, which means that the nutrient reduction goals of 135 000 tons N and 15 000 tons P, as formulated in the BSAP from 2007, correspond to a reduction in nutrient loadings to watersheds by 675 000 tons N and 158 000 tons P. A cost-minimization model was used to allocate nutrient reductions to measures and countries where the costs for reducing loads are low. The minimum annual cost to meet BSAP basin targets is estimated to 4.7 billion Euro.


Subject(s)
Eutrophication , Baltic States , Cost Allocation , Models, Economic , Oceans and Seas
12.
Ambio ; 43(3): 337-51, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23765871

ABSTRACT

Dynamic model simulations of the future climate and projections of future lifestyles within the Baltic Sea Drainage Basin (BSDB) were considered in this study to estimate potential trends in future nutrient loads to the Baltic Sea. Total nitrogen and total phosphorus loads were estimated using a simple proxy based only on human population (to account for nutrient sources) and stream discharges (to account for nutrient transport). This population-discharge proxy provided a good estimate for nutrient loads across the seven sub-basins of the BSDB considered. All climate scenarios considered here produced increased nutrient loads to the Baltic Sea over the next 100 years. There was variation between the climate scenarios such that sub-basin and regional differences were seen in future nutrient runoff depending on the climate model and scenario considered. Regardless, the results of this study indicate that changes in lifestyle brought about through shifts in consumption and population potentially overshadow the climate effects on future nutrient runoff for the entire BSDB. Regionally, however, lifestyle changes appear relatively more important in the southern regions of the BSDB while climatic changes appear more important in the northern regions with regards to future increases in nutrient loads. From a whole-ecosystem management perspective of the BSDB, this implies that implementation of improved and targeted management practices can still bring about improved conditions in the Baltic Sea in the face of a warmer and wetter future climate.


Subject(s)
Climate Change , Life Style , Models, Theoretical , Oceans and Seas , Europe , Humans , Reproducibility of Results , Rivers , Time Factors , Waste Disposal, Fluid , Water Movements , Water Pollutants
13.
Sci Total Environ ; 431: 402-12, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22706147

ABSTRACT

Delineation of safe aquifer(s) that can be targeted by cheap drilling technology for tubewell (TW) installation becomes highly imperative to ensure access to safe and sustainable drinking water sources for the arsenic (As) affected population in Bengal Basin. This study investigates the potentiality of brown sand aquifers (BSA) as a safe drinking water source by characterizing its hydrogeochemical contrast to grey sand aquifers (GSA) within shallow depth (<70 m) over an area of 100 km(2) in Chakdaha Block of Nadia district, West Bengal, India. The results indicate that despite close similarity in major ion composition, the redox condition is markedly different in groundwater of the two studied aquifers. The redox condition in the BSA is delineated to be Mn oxy-hydroxide reducing, not sufficiently lowered for As mobilization into groundwater. In contrast, the enrichments of NH(4)(+), PO(4)(3-), Fe and As along with lower Eh in groundwater of GSA reflect reductive dissolution of Fe oxy-hydroxide coupled to microbially mediated oxidation of organic matter as the prevailing redox process causing As mobilization into groundwater of this aquifer type. In some portions of GSA the redox status even has reached to the stage of SO(4)(2-) reduction, which to some extent might sequester dissolved As from groundwater by co-precipitation with authigenic pyrite. Despite having low concentration of As in groundwater of the BSA the concentration of Mn often exceeds the drinking water guidelines, which warrants rigorous assessment of attendant health risk for Mn prior to considering mass scale exploitation of the BSA for possible sustainable drinking water supply.


Subject(s)
Drinking Water/chemistry , Groundwater/analysis , Groundwater/chemistry , Water Supply , Ammonia/analysis , Arsenic/analysis , Conservation of Natural Resources , Environmental Monitoring/methods , Factor Analysis, Statistical , India , Iron/analysis , Manganese/analysis , Phosphates/analysis , Silicon Dioxide , Sulfates/analysis , Water Pollutants, Chemical/analysis
14.
Environ Sci Technol ; 45(7): 2677-83, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21395326

ABSTRACT

The concentrations of selenium in 10 catchments of a stream network in northern Sweden were monitored over two years, yielding almost 350 observations of selenium concentrations in streamwater. The export of selenium was found to be systematically greater from forests than from mires. Accounting for atmospheric deposition, which was monitored over four years, there was a net accumulation of selenium in mires, while the export from forest soils was approximately equal to the atmospheric deposition. In forest dominated catchments the concentrations of selenium oscillated rapidly back and forth from high to low levels during spring floods. High selenium concentrations coincided with rising groundwater tables in the riparian forest soils, while low selenium concentrations were associated with receding groundwater. Thermodynamic modeling indicated that precipitation of elemental selenium would occur under reducing conditions in the riparian soils. Since changes in the redox conditions are likely to occur near the transition from the unsaturated to the saturated zone, it is hypothesized that the transport of selenium from forest soils to streams is controlled by redox reactions in riparian soils.


Subject(s)
Fresh Water/chemistry , Selenium/chemistry , Water Pollutants, Chemical/chemistry , Wetlands , Environmental Monitoring , Selenium/analysis , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data , Water Supply/analysis
15.
Environ Sci Technol ; 44(7): 2379-85, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20230019

ABSTRACT

This paper evaluates possible future nitrogen loadings from 105 catchments surrounding the Baltic Sea. Multiple regressions are used to model total nitrogen (TN) flux as a function of specific runoff (Q), atmospheric nitrogen deposition, and primary emissions (PE) from humans and livestock. On average cattle contributed with 63%, humans with 20%, and pigs with 17% of the total nitrogen PE to land. Compared to the reference period (1992-1996) we then evaluated two types of scenarios for year 2070. i) An increased protein consumption scenario that led to 16% to 39% increased mean TN flux (kg per km(-2)). ii) Four climate scenarios addressing effects of changes in river discharge. These scenarios showed increased mean TN flux from the northern catchments draining into the Gulf of Bothnia (34%) and the Gulfs of Finland and Riga (14%), while the mean TN flux decreased (-27%) for catchments draining to the Baltic Proper. However, the net effect of the scenarios showed a possible increase in TN flux ranging from 3-72%. Overall an increased demand for animal protein will be instrumental for the Baltic Sea ecosystem and may be a major holdback to fulfill the environmental goals of the Baltic Sea Action Plan.


Subject(s)
Climate Change , Motion , Nitrogen/analysis , Proteins/metabolism , Rivers/chemistry , Animals , Atmosphere/chemistry , Humans , Models, Chemical , Oceans and Seas
16.
Environ Sci Technol ; 43(2): 447-52, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-19238978

ABSTRACT

The discharge of terrestrial dissolved organic matter (DOM) by streams is an important cross-system linkage that strongly influences downstream aquatic ecosystems. Isotopic tracers are important tools that can help to unravel the source of DOM from different terrestrial compartments in the landscape. Here we demonstrate the spatial and seasonal variation of delta34S of DOM in 10 boreal streams to test if the tracer could provide new insights into the origin of DOM. We found large spatial and seasonal variations in stream water delta34S-DOM values ranging from -5.2 per thousand to +9.6 per thousand with an average of +4.0 +/- 0.6 (N = 62; average and 95% confidence interval). Large seasonal variations were found in stream water delta34S-DOM values: for example, a shift of more than 10 per thousand during the spring snowmelt in a wetland-dominated stream. Spatial differences were also observed during the winter base flow with higher delta34S-DOM values in the fourth-order Krycklan stream at the outlet of the 68 km2 catchment compared to the small (< 1 km2) headwater streams. Our data clearly show that the delta34S-DOM values have the potential to be used as a tracer to identify and generate new insights about terrestrial DOM sources in the boreal landscape.


Subject(s)
Organic Chemicals/analysis , Rivers/chemistry , Seasons , Sulfur/analysis , Water/chemistry , Models, Chemical , Solubility , Sulfur Isotopes , Sweden , Trees
17.
Oecologia ; 160(1): 87-96, 2009 May.
Article in English | MEDLINE | ID: mdl-19169713

ABSTRACT

Soil organic material (SOM) is usually enriched in (15)N in deeper soil layers. This has been explained by discrimination against the heavier isotope during decomposition or by the accumulation of (15)N-enriched microbial biomass versus plant biomass in older SOM. In particular, ectomycorrhizal (EM) fungi have been suggested to accumulate in old SOM since this group is among the most (15)N-enriched components of the microbial community. In the present study we investigated the microbial community in soil samples along a chronosequence (7,800 years) of sites undergoing isostatic rebound in northern Sweden. The composition of the microbial community was analyzed and related to the delta(15)N and delta(13)C isotope values of the SOM in soil profiles. A significant change in the composition of the microbial community was found during the first 2,000 years, and this was positively related to an increase in the delta(15)N values of the E and B horizons in the mineral soil. The proportion of fungal phospholipid fatty acids increased with time in the chronosequence and was positively related to the (15)N enrichment of the SOM. The increase in delta(13)C in the SOM was much less than the increase in delta(15)N, and delta(13)C values in the mineral soil were only weakly related to soil age. The C:N ratio and the pH of the soil were important factors determining the composition of the microbial community. We suggest that the N being transported from the soil to aboveground tissue by EM fungi is a driver for (15)N enrichment of soil profiles.


Subject(s)
Mycorrhizae/physiology , Nitrogen Isotopes/analysis , Soil Microbiology , Soil/analysis , Carbon Isotopes/analysis , Fatty Acids/analysis , Mycorrhizae/metabolism , Phospholipids/analysis , Principal Component Analysis , Sweden
18.
Sci Total Environ ; 407(1): 708-22, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-18940271

ABSTRACT

Spatial and temporal patterns in streamwater acidity are ecologically important, but difficult to measure in parallel. Here we present the spatial distribution of streamwater chemistry relevant to acidity from 60 stream sites distributed throughout a 67 km2 boreal catchment, sampled during a period of winter baseflow (high pH) and during a spring flood episode (low pH). Sites were grouped based on pH level and pH change from winter baseflow to spring flood. The site attributes of each pH group were then assessed in terms of both stream chemistry and subcatchment landscape characteristics. Winter baseflow pH was high throughout most of the stream network (median pH 6.4), but during the spring flood episode stream sites experienced declines in pH ranging from 0-1.6 pH units, resulting in pH ranging from 4.3-6.3. Spring flood pH was highest in larger, lower altitude catchments underlain by fine sorted sediments, and lowest in small, higher altitude catchments with a mixture of peat wetlands and forested till. Wetland-dominated headwater catchments had low but stable pH, while the spring flood pH drop was largest in a group of catchments of intermediate size which contained well-developed coniferous forest and a moderate proportion of peat wetlands. There was a trend with distance downstream of higher pH, acid neutralizing capacity (ANC) and base cation concentrations together with lower dissolved organic carbon (DOC, strongly negatively correlated with pH). This apparent scale-dependence of stream chemistry could be explained by a number of environmental factors which vary predictably with altitude, catchment area and distance downstream--most notably, a shift in surficial sediment type from unsorted till and peat wetlands to fine sorted sediments at lower altitudes in this catchment. As a result of the combination of spatial heterogeneity in landscape characteristics and scale-related processes, boreal catchments like this one can be expected to experience high spatial variability both in terms of chemistry at any given point in time, and in the change experienced during high discharge episodes. Although chemistry patterns showed associations with landscape characteristics, considerable additional variability remained, suggesting that the modeling of dynamic stream chemistry from map parameters will continue to present a challenge.


Subject(s)
Anions/analysis , Cold Climate , Environmental Monitoring , Fresh Water , Seasons , Cations/analysis , Fresh Water/analysis , Fresh Water/chemistry , Hydrogen-Ion Concentration , Sweden , Water Movements
19.
Sci Total Environ ; 407(1): 405-17, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-18804259

ABSTRACT

Sediment profiles from five limed and six reference softwater lakes included in Swedish monitoring programmes were subjected to multi-element analysis to investigate the influence of lime treatment since 1977 on the sequestration of metals in lake sediments. We hypothesised that liming causes increased sedimentation of elements for which the mobility is primarily controlled by pH, e.g. Al, Cd, Co, Ni and Zn, whereas elements that are less influenced by pH fluctuations, e.g. Hg and Pb, are not affected by lime treatment. Further, we introduce a normalisation of metal concentrations with respect to Cu concentration in order to separate the effects of lime treatment from those related to temporal trends in airborne metal deposition or short-term variations in environmental conditions. This approach is shown to emphasise the effect of liming on the sediment accumulation of metals, thus separating it from other sources of variability. We found that liming causes increased sequestration of Al, As, Cd, Co, Fe, Mn, Ni and Zn, in the case of As and Co probably at least partly caused by an increased adsorption to Al, Fe and Mn oxyhydroxides. On the other hand, no influence of lime treatment could be demonstrated for Hg, Pb, Cr, V and P, despite an increase of pH by about two units.


Subject(s)
Calcium Compounds/chemistry , Fresh Water/chemistry , Geologic Sediments/chemistry , Metals/analysis , Oxides/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring , Hydrogen-Ion Concentration , Sweden
20.
Environ Sci Technol ; 42(15): 5449-54, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18754459

ABSTRACT

The distribution of different iron (Fe) species in soils, sediments, and surface waters has a large influence on the mobility and availability of Fe, other nutrients, and potentially toxic trace elements. However, the knowledge about the specific forms of Fe that occurs in these systems is limited, especially regarding associations of Fe with natural organic matter (NOM). In this study, extended X-ray absorption fine structure (EXAFS) spectroscopy was used to characterize Fe(III) in organic soils (pH 4.6-6.0) with varying natural Fe content. The EXAFS data were subjected to wavelet transform analysis, to facilitate the identification of the nature of backscattering atoms, and to conventional EXAFS data fitting. The collective results showed the existence of two pools of iron: mononuclear Fe(III)-NOM complexes and precipitated Fe(III) (hydr)oxides. In the soil with lowest pH (4.6) and Fe content mononuclear organic complexes were the completely dominating fraction whereas in soils with higher pH and Fe content increasing amounts of Fe (hydr)oxides were detected. These results are of environmental importance, as the different iron pools most likely have markedly different reactivities.


Subject(s)
Ferric Compounds/analysis , Iron/analysis , Soil Pollutants/analysis , Soil/analysis , Spectrum Analysis/methods , Cations , Ferric Compounds/chemistry , Hydrogen-Ion Concentration , Iron/chemistry , Soil Pollutants/chemistry , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...