Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38490736

ABSTRACT

Phytoplankton blooms fuel marine food webs with labile dissolved carbon and also lead to the formation of particulate organic matter composed of living and dead algal cells. These particles contribute to carbon sequestration and are sites of intense algal-bacterial interactions, providing diverse niches for microbes to thrive. We analyzed 16S and 18S ribosomal RNA gene amplicon sequences obtained from 51 time points and metaproteomes from 3 time points during a spring phytoplankton bloom in a shallow location (6-10 m depth) in the North Sea. Particulate fractions larger than 10 µm diameter were collected at near daily intervals between early March and late May in 2018. Network analysis identified two major modules representing bacteria co-occurring with diatoms and with dinoflagellates, respectively. The diatom network module included known sulfate-reducing Desulfobacterota as well as potentially sulfur-oxidizing Ectothiorhodospiraceae. Metaproteome analyses confirmed presence of key enzymes involved in dissimilatory sulfate reduction, a process known to occur in sinking particles at greater depths and in sediments. Our results indicate the presence of sufficiently anoxic niches in the particle fraction of an active phytoplankton bloom to sustain sulfate reduction, and an important role of benthic-pelagic coupling for microbiomes in shallow environments. Our findings may have implications for the understanding of algal-bacterial interactions and carbon export during blooms in shallow-water coastal areas.


Subject(s)
Desulfovibrio , Diatoms , Microbiota , Diatoms/genetics , Phytoplankton , Bacteria/genetics , Carbon
2.
Front Microbiol ; 14: 1250140, 2023.
Article in English | MEDLINE | ID: mdl-37779690

ABSTRACT

Background: Methanogenic archaea represent a less investigated and likely underestimated part of the intestinal tract microbiome in swine. Aims/Methods: This study aims to elucidate the archaeome structure and function in the porcine intestinal tract of healthy and H1N1 infected swine. We performed multi-omics analysis consisting of 16S rRNA gene profiling, metatranscriptomics and metaproteomics. Results and discussion: We observed a significant increase from 0.48 to 4.50% of archaea in the intestinal tract microbiome along the ileum and colon, dominated by genera Methanobrevibacter and Methanosphaera. Furthermore, in feces of naïve and H1N1 infected swine, we observed significant but minor differences in the occurrence of archaeal phylotypes over the course of an infection experiment. Metatranscriptomic analysis of archaeal mRNAs revealed the major methanogenesis pathways of Methanobrevibacter and Methanosphaera to be hydrogenotrophic and methyl-reducing, respectively. Metaproteomics of archaeal peptides indicated some effects of the H1N1 infection on central metabolism of the gut archaea. Conclusions/Take home message: Finally, this study provides the first multi-omics analysis and high-resolution insights into the structure and function of the porcine intestinal tract archaeome during a non-lethal Influenza A virus infection of the respiratory tract, demonstrating significant alterations in archaeal community composition and central metabolic functions.

3.
Microbiol Spectr ; 9(2): e0018221, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34612695

ABSTRACT

Seasonal influenza outbreaks represent a large burden for the health care system as well as the economy. While the role of the microbiome has been elucidated in the context of various diseases, the impact of respiratory viral infections on the human microbiome is largely unknown. In this study, swine was used as an animal model to characterize the temporal dynamics of the respiratory and gastrointestinal microbiome in response to an influenza A virus (IAV) infection. A multi-omics approach was applied on fecal samples to identify alterations in microbiome composition and function during IAV infection. We observed significantly altered microbial richness and diversity in the gastrointestinal microbiome after IAV infection. In particular, increased abundances of Prevotellaceae were detected, while Clostridiaceae and Lachnospiraceae decreased. Moreover, our metaproteomics data indicated that the functional composition of the microbiome was heavily affected by the influenza infection. For instance, we identified decreased amounts of flagellin, correlating with reduced abundances of Lachnospiraceae and Clostridiaceae, possibly indicating involvement of a direct immune response toward flagellated Clostridia during IAV infection. Furthermore, enzymes involved in short-chain fatty acid (SCFA) synthesis were identified in higher abundances, while metabolome analyses revealed rather stable concentrations of SCFAs. In addition, 16S rRNA gene sequencing was used to characterize effects on the composition and natural development of the upper respiratory tract microbiome. Our results showed that IAV infection resulted in significant changes in the abundance of Moraxellaceae and Pasteurellaceae in the upper respiratory tract. Surprisingly, temporal development of the respiratory microbiome structure was not affected. IMPORTANCE Here, we used swine as a biomedical model to elucidate the impact of influenza A H1N1 infection on structure and function of the respiratory and gastrointestinal tract microbiome by employing a multi-omics analytical approach. To our knowledge, this is the first study to investigate the temporal development of the porcine microbiome and to provide insights into the functional capacity of the gastrointestinal microbiome during influenza A virus infection.


Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Gastrointestinal Microbiome/physiology , Orthomyxoviridae Infections/pathology , Respiratory System/microbiology , Animals , Bacteria/genetics , Disease Models, Animal , Fatty Acids, Volatile/biosynthesis , Feces/microbiology , Female , Gene Expression Profiling , Influenza A Virus, H1N1 Subtype/pathogenicity , Male , Proteomics , RNA, Ribosomal, 16S/genetics , Swine
4.
Cells ; 10(2)2021 02 11.
Article in English | MEDLINE | ID: mdl-33670309

ABSTRACT

Clostridioides difficile is the leading cause of antibiotic-associated diarrhea but can also result in more serious, life-threatening conditions. The incidence of C. difficile infections in hospitals is increasing, both in frequency and severity, and antibiotic-resistant C. difficile strains are advancing. Against this background antimicrobial peptides (AMPs) are an interesting alternative to classic antibiotics. Information on the effects of AMPs on C. difficile will not only enhance the knowledge for possible biomedical application but may also provide insights into mechanisms of C. difficile to adapt or counteract AMPs. This study applies state-of-the-art mass spectrometry methods to quantitatively investigate the proteomic response of C. difficile 630∆erm to sublethal concentrations of the AMP nisin allowing to follow the cellular stress adaptation in a time-resolved manner. The results do not only point at a heavy reorganization of the cellular envelope but also resulted in pronounced changes in central cellular processes such as carbohydrate metabolism. Further, the number of flagella per cell was increased during the adaptation process. The potential involvement of flagella in nisin adaptation was supported by a more resistant phenotype exhibited by a non-motile but hyper-flagellated mutant.


Subject(s)
Adaptation, Physiological/drug effects , Anti-Bacterial Agents/pharmacology , Gene Expression Regulation, Bacterial/drug effects , Nisin/pharmacology , Pore Forming Cytotoxic Proteins/metabolism , Bacterial Proteins/metabolism , Clostridioides/metabolism , Clostridioides difficile/metabolism , Nisin/genetics , Nisin/metabolism , Pore Forming Cytotoxic Proteins/genetics , Proteomics/methods
5.
Microorganisms ; 8(11)2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33143252

ABSTRACT

The antimicrobial peptide human Beta defensin 3 (hBD3) is an essential part of the innate immune system and is involved in protection against respiratory pathogens by specifically permeabilizing bacterial membranes. The Gram-positive bacterium Streptococcus pneumoniae causes serious diseases including pneumonia, meningitis, and septicemia, despite being frequently exposed to human defense molecules, including hBD3 during colonization and infection. Thus, the question arises how pneumococci adapt to stress caused by antimicrobial peptides. We addressed this subject by analyzing the proteome of S. pneumoniae after treatment with hBD3 and compared our data with the proteomic changes induced by LL-37, another crucial antimicrobial peptide present in the human respiratory tract. As antimicrobial peptides usually cause membrane perturbations, the response to the membrane active cationic detergent cetyltrimethylammonium bromide (CTAB) was examined to assess the specificity of the pneumococcal response to antimicrobial peptides. In brief, hBD3 and LL-37 induce a similar response in pneumococci and especially, changes in proteins with annotated transporter and virulence function have been identified. However, LL-37 causes changes in the abundance of cell surface modification proteins that cannot be observed after treatment with hBD3. Interestingly, CTAB induces unique proteomic changes in S. pneumoniae. Though, the detergent seems to activate a two-component system that is also activated in response to antimicrobial peptide stress (TCS 05). Overall, our data represent a novel resource on pneumococcal adaptation to specific cell surface stresses on a functional level. This knowledge can potentially be used to develop strategies to circumvent pneumococcal resistance to antimicrobial peptides.

6.
Microorganisms ; 8(3)2020 Mar 14.
Article in English | MEDLINE | ID: mdl-32183275

ABSTRACT

Secreted antimicrobial peptides (AMPs) are an important part of the human innate immune system and prevent local and systemic infections by inhibiting bacterial growth in a concentration-dependent manner. In the respiratory tract, the cationic peptide LL-37 is one of the most abundant AMPs and capable of building pore complexes in usually negatively charged bacterial membranes, leading to the destruction of bacteria. However, the adaptation mechanisms of several pathogens to LL-37 are already described and are known to weaken the antimicrobial effect of the AMP, for instance, by repulsion, export or degradation of the peptide. This study examines proteome-wide changes in Streptococcus pneumoniae D39, the leading cause of bacterial pneumonia, in response to physiological concentrations of LL-37 by high-resolution mass spectrometry. Our data indicate that pneumococci may use some of the known adaptation mechanisms to reduce the effect of LL-37 on their physiology, too. Additionally, several proteins seem to be involved in resistance to AMPs which have not been related to this process before, such as the teichoic acid flippase TacF (SPD_1128). Understanding colonization- and infection-relevant adaptations of the pneumococcus to AMPs, especially LL-37, could finally uncover new drug targets to weaken the burden of this widespread pathogen.

SELECTION OF CITATIONS
SEARCH DETAIL
...