Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Transl Vis Sci Technol ; 13(3): 9, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38477924

ABSTRACT

Purpose: The porcine retina represents an optimal model system to study treatment approaches for inherited retinal dystrophies owing to close anatomical similarities to the human retina, including a cone enriched visual streak. The aim of this work was to establish a protocol to keep explants in culture for up to 28 days with good morphological preservation. Methods: Two to four retina explants per eye were obtained from the central part of the retina and transferred onto a membrane insert with the photoreceptors facing down. Different medium compositions using Neurobasal-A medium containing 100 or 450 mg/dL glucose and combinations of fetal calf serum, B-27 with or without insulin and N-2 were tested. We developed a tissue quality score with robust markers for different retinal cell types (protein kinase C alpha, peanut agglutinin and 4',6-diamidino-2-phenylindol). Results: Retinae were kept until 28 days with only little degradation. The best results were attained using Neurobasal-A medium containing 100 mg/dL glucose supplemented with B-27 containing insulin and N-2. For an easy preparation process, it is necessary to minimize transport time and keep the eyes on ice until dissected. Heat-mediated decontamination by the butcher has to be avoided. Conclusions: Using a standardized protocol, porcine retina explants represent an easy to handle intermediate model between in vitro and in vivo experimentation. This model system is robustly reproducible and contributes to the implementation of the 3R principle to minimize animal experimentation. Translational Relevance: This model can be used to test future therapeutic approaches for inherited retinal dystrophies.


Subject(s)
Retina , Retinal Dystrophies , Humans , Swine , Animals , Retinal Cone Photoreceptor Cells , Research Design , Glucose
2.
Mol Nutr Food Res ; 67(21): e2300040, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37672803

ABSTRACT

SCOPE: Disruption of the one carbon metabolism during development, i.e., following a gestational vitamin B9 and B12 deficiencies, is involved in birth defects and brain development delay. Using a rat nutritional model, consisting of pups born to dams fed a vitamin B9 and B12 deficient diet (MDD), the study previously reports molecular and cellular alterations in the brain, in a sex dependent manner, with females being more affected than males. The study hypothesizes that epigenetic modifications could participate in the sex differences is observed. METHODS AND RESULTS: The study investigates lysine methylation of histones and expression of microRNAs in the cerebellum of MDD male and female pups. The study reports a differential regulation of H3K36Me2 and H4K20Me3 between males and females, in response to MDD. Moreover, distinct regulation of Kmt5b and Kdm2a expression by miR-134-5p and miR-369-5p from the Dlk1-Dio3 locus, contributes to the maintenance of expression of genes involved in synaptic plasticity. CONCLUSION: These results could explain the neuroprotection to MDD that male pups display. The work will contribute to the understanding of the consequences of vitamin starvation on brain development, as well as how the epigenome is affected by one carbon metabolism disruption.


Subject(s)
MicroRNAs , Rats , Female , Animals , Male , Methylation , MicroRNAs/genetics , Histones/genetics , Folic Acid , Cerebellum , Carbon , DNA Methylation , Membrane Proteins/genetics , Intercellular Signaling Peptides and Proteins
3.
J Vis Exp ; (189)2022 11 11.
Article in English | MEDLINE | ID: mdl-36440839

ABSTRACT

Degenerative disorders of the retina (including age-related macular degeneration), which originate primarily at or within the retinal pigmented epithelial (RPE) layer, lead to a progressive disorganization of the retinal anatomy and the deterioration of visual function. The substitution of damaged RPE cells (RPEs) with in vitro cultured RPE cells using a subretinal cell carrier has shown potential for re-establishing the anatomical structure of the outer retinal layers and is, therefore, being further studied. Here, we present the principles of a surgical technique that allows for the effective subretinal transplantation of a cell carrier with cultivated RPEs into minipigs. The surgeries were performed under general anesthesia and included a standard lens-sparing three-port pars plana vitrectomy (PPV), subretinal application of a balanced salt solution (BSS), a 2.7 mm retinotomy, implantation of a nanofibrous cell carrier into the subretinal space through an additional 3.0 mm sclerotomy, fluid-air exchange (FAX), silicone oil tamponade, and closure of all the sclerotomies. This surgical approach was used in 29 surgeries (18 animals) over the past 8 years with a success rate of 93.1%. Anatomic verification of the surgical placement was carried out using in vivo fundus imaging (fundus photography and optical coherence tomography). The recommended surgical steps for the subretinal implantation of RPEs on a carrier in minipig eyes can be used in future preclinical studies using large-eye animal models.


Subject(s)
Retinal Pigment Epithelium , Vitrectomy , Humans , Animals , Swine , Swine, Miniature , Postoperative Care , Vitrectomy/methods , Retinal Pigment Epithelium/surgery , Retina/surgery
4.
Invest Ophthalmol Vis Sci ; 63(6): 22, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35737378

ABSTRACT

Purpose: To characterize the spatial distribution of the DNA-double strand break-repair protein Ku80 in the murine retina. Even though robust data exist on the complexity of DNA repair mechanisms in dividing cells in vitro, almost nothing is known about it in post-mitotic neurons or photoreceptors (PRs). This knowledge is an important prerequisite for in vivo therapeutic approaches by genome editing in retina and PRs. Recently, it was shown that mouse rod PRs are incapable of repairing double-strand breaks induced by radiation. Material and Methods: Retinae from wild-type, rd10, and RPGR-KI mouse lines were obtained and stained with antibodies against Ku80, and cellular markers CtBP2, beta-Dystropglycan, Lamin B, and peanut agglutinin. Organotypic explant cultures were generated and maintained for up to 10 days. Laser microdissection was performed to obtain photoreceptor nuclei, and Ku80 expression was compared to whole retina by real-time PCR (RT-PCR). Results: Strong Ku80 immunoreactivity was observed in rod but not cone photoreceptor terminals localized in the outer plexiform layer of the retina in all three mouse lines. During retinal explant culture, we observed that Ku80-positive globules translocate into the heterochromatin region of nuclei in the outer nuclear layer (ONL). By quantitative PCR, we showed upregulation of relative Ku80 expression in the ONL during wild-type retinal explant culture. Discussion: The unexpected localization of Ku80 to murine rod terminals indicates another tissue-specific modification to the canonical DNA repair mechanisms and warrants further investigation.


Subject(s)
DNA Repair , Retina , Retinal Cone Photoreceptor Cells , Animals , DNA/genetics , Ku Autoantigen , Mice , Retina/metabolism , Retinal Cone Photoreceptor Cells/physiology , Transcription Factors/metabolism
5.
Biomedicines ; 10(3)2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35327471

ABSTRACT

PURPOSE: The development of primary human retinal pigmented epithelium (hRPE) for clinical transplantation purposes on biodegradable scaffolds is indispensable. We hereby report the results of the subretinal implantation of hRPE cells on nanofibrous membranes in minipigs. METHODS: The hRPEs were collected from human cadaver donor eyes and cultivated on ultrathin nanofibrous carriers prepared via the electrospinning of poly(L-lactide-co-DL-lactide) (PDLLA). "Libechov" minipigs (12-36 months old) were used in the study, supported by preoperative tacrolimus immunosuppressive therapy. The subretinal implantation of the hRPE-nanofibrous carrier was conducted using general anesthesia via a custom-made injector during standard three-port 23-gauge vitrectomy, followed by silicone oil endotamponade. The observational period lasted 1, 2, 6 and 8 weeks, and included in vivo optical coherence tomography (OCT) of the retina, as well as post mortem immunohistochemistry using the following antibodies: HNAA and STEM121 (human cell markers); Bestrophin and CRALBP (hRPE cell markers); peanut agglutining (PNA) (cone photoreceptor marker); PKCα (rod bipolar marker); Vimentin, GFAP (macroglial markers); and Iba1 (microglial marker). RESULTS: The hRPEs assumed cobblestone morphology, persistent pigmentation and measurable trans-epithelial electrical resistance on the nanofibrous PDLLA carrier. The surgical delivery of the implants in the subretinal space of the immunosuppressed minipigs was successfully achieved and monitored by fundus imaging and OCT. The implanted hRPEs were positive for HNAA and STEM121 and were located between the minipig's neuroretina and RPE layers at week 2 post-implantation, which was gradually attenuated until week 8. The neuroretina over the implants showed rosette or hypertrophic reaction at week 6. The implanted cells expressed the typical RPE marker bestrophin throughout the whole observation period, and a gradual diminishing of the CRALBP expression in the area of implantation at week 8 post-implantation was observed. The transplanted hRPEs appeared not to form a confluent layer and were less capable of keeping the inner and outer retinal segments intact. The cone photoreceptors adjacent to the implant scaffold were unchanged initially, but underwent a gradual change in structure after hRPE implantation; the retina above and below the implant appeared relatively healthy. The glial reaction of the transplanted and host retina showed Vimentin and GFAP positivity from week 1 onward. Microglial activation appeared in the retinal area of the transplant early after the surgery, which seemed to move into the transplant area over time. CONCLUSIONS: The differentiated hRPEs can serve as an alternative cell source for RPE replacement in animal studies. These cells can be cultivated on nanofibrous PDLLA and implanted subretinally into minipigs using standard 23-gauge vitrectomy and implantation injector. The hRPE-laden scaffolds demonstrated relatively good incorporation into the host retina over an eight-week observation period, with some indication of a gliotic scar formation, and a likely neuroinflammatory response in the transplanted area despite the use of immunosuppression.

6.
Nutrients ; 13(8)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34444978

ABSTRACT

It is well established that the maternal diet during the periconceptional period affects the progeny's health. A growing body of evidence suggests that the paternal diet also influences disease onset in offspring. For many years, sperm was considered only to contribute half of the progeny's genome. It now appears that it also plays a crucial role in health and disease in offspring's adult life. The nutritional status and environmental exposure of fathers during their childhood and/or the periconceptional period have significant transgenerational consequences. This review aims to describe the effects of various human and rodent paternal feeding patterns on progeny's metabolism and health, including fasting or intermittent fasting, low-protein and folic acid deficient food, and overnutrition in high-fat and high-sugar diets. The impact on pregnancy outcome, metabolic pathways, and chronic disease onset will be described. The biological and epigenetic mechanisms underlying the transmission from fathers to their progeny will be discussed. All these data provide evidence of the impact of paternal nutrition on progeny health which could lead to preventive diet recommendations for future fathers.


Subject(s)
Diet , Fathers , Feeding Behavior , Nutritional Physiological Phenomena , Pregnancy Outcome , Adult , Animals , Child , Child Health , Chronic Disease , Environmental Exposure , Epigenesis, Genetic , Female , Humans , Male , Metabolic Networks and Pathways , Nutritional Status , Pregnancy , Prenatal Exposure Delayed Effects , Rats
7.
Int J Mol Sci ; 21(4)2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32085662

ABSTRACT

Mutations in more than 200 retina-specific genes have been associated with inherited retinal diseases. Genome editing represents a promising emerging field in the treatment of monogenic disorders, as it aims to correct disease-causing mutations within the genome. Genome editing relies on highly specific endonucleases and the capacity of the cells to repair double-strand breaks (DSBs). As DSB pathways are cell-cycle dependent, their activity in postmitotic retinal neurons, with a focus on photoreceptors, needs to be assessed in order to develop therapeutic in vivo genome editing. Three DSB-repair pathways are found in mammalian cells: Non-homologous end joining (NHEJ); microhomology-mediated end joining (MMEJ); and homology-directed repair (HDR). While NHEJ can be used to knock out mutant alleles in dominant disorders, HDR and MMEJ are better suited for precise genome editing, or for replacing entire mutation hotspots in genomic regions. Here, we analyzed transcriptomic in vivo and in vitro data and revealed that HDR is indeed downregulated in postmitotic neurons, whereas MMEJ and NHEJ are active. Using single-cell RNA sequencing analysis, we characterized the dynamics of DSB repair pathways in the transition from dividing cells to postmitotic retinal cells. Time-course bulk RNA-seq data confirmed DSB repair gene expression in both in vivo and in vitro samples. Transcriptomic DSB repair pathway profiles are very similar in adult human, macaque, and mouse retinas, but not in ground squirrel retinas. Moreover, human-induced pluripotent stem-cell-derived neurons and retinal organoids can serve as well suited in vitro testbeds for developing genomic engineering approaches in photoreceptors. Our study provides additional support for designing precise in vivo genome-editing approaches via MMEJ, which is active in mature photoreceptors.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair/genetics , Gene Editing , Gene Expression Profiling , Adult , Animals , Cell Cycle/genetics , Gene Expression Regulation , Genome , Humans , Induced Pluripotent Stem Cells/metabolism , Mammals/genetics , Mice , Photoreceptor Cells, Vertebrate/metabolism
8.
Methods Mol Biol ; 1940: 181-191, 2019.
Article in English | MEDLINE | ID: mdl-30788826

ABSTRACT

Retinal explant culture systems have the potential to mimic the functional dynamics of the organ beyond those of the dissociated cells, thus making this technique a very powerful intermediate model system between in vitro cell cultures and in vivo animal models. The different retinal layers made of highly specialized cell types remain intact, while glia cell reactions and/or intercellular interactions can be evaluated under well-defined conditions in the lab.In retinal disorders neurodegeneration of mature retinal cells takes place. Therefore, we investigated the adult murine neuroretina in organ culture to test its suitability for use in preclinical therapeutic applications. Here we describe a method for the organ culture of adult murine retina (>12 weeks) used to establish survival, cellular changes and early degeneration patterns of neuronal and glial cells. After enucleation of the eyeball and careful dissection of the retina from the sclera and retinal pigment epithelium, the detached retina is cultured with photoreceptor facing down on a supporting track-etched polycarbonate membrane in a 6-well culture plate maintained in a humidified atmosphere of 5% CO2 and 95% air at 37 °C. After 1, 2, 3, 4, 6, 8, or 10 days retinal explants can be harvested and immediately processed for RNA isolation or fixed in paraformaldehyde for histological analysis.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Organ Culture Techniques/methods , Retina/growth & development , Retina/metabolism , Retinal Diseases/therapy , Animals , Cell Culture Techniques , Cells, Cultured , Disease Models, Animal , Gliosis/therapy , Mice , Neuroglia/cytology , Neuroglia/pathology , Neurons/cytology , Neurons/pathology , Retina/transplantation , Retinal Degeneration/therapy , Retinal Detachment/therapy , Retinal Diseases/pathology
9.
Mol Neurobiol ; 56(2): 892-906, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29804229

ABSTRACT

Gestational methyl donor (especially B9 and B12 vitamins) deficiency is involved in birth defects and brain development retardation. The underlying molecular mechanisms that are dysregulated still remain poorly understood, in particular in the cerebellum. As evidenced from previous data, females are more affected than males. In this study, we therefore took advantage of a validated rat nutritional model and performed a microarray analysis on female progeny cerebellum, in order to identify which genes and molecular pathways were disrupted in response to methyl donor deficiency. We found that cerebellum development is altered in female pups, with a decrease of the granular cell layer thickness at postnatal day 21. Furthermore, we investigated the involvement of the Wnt signaling pathway, a major molecular pathway involved in neuronal development and later on in synaptic assembly and neurotransmission processes. We found that Wnt canonical pathway was disrupted following early methyl donor deficiency and that neuronal targets were selectively enriched in the downregulated genes. These results could explain the structural brain defects previously observed and highlighted new genes and a new molecular pathway affected by nutritional methyl donor deprivation.


Subject(s)
Brain/metabolism , Neurogenesis/physiology , Neurons/cytology , Wnt Signaling Pathway/physiology , Animals , Cells, Cultured , Female , Rats, Wistar , Sex Factors
10.
Front Neurosci ; 12: 286, 2018.
Article in English | MEDLINE | ID: mdl-29765300

ABSTRACT

Gene editing is an attractive potential treatment of inherited retinopathies. However, it often relies on endogenous DNA repair. Retinal DNA repair is incompletely characterized in humans and animal models. We investigated recruitment of the double stranded break (DSB) repair complex of γH2AX and 53bp1 in both developing and mature mouse neuroretinas. We evaluated the immunofluorescent retinal expression of these proteins during development (P07-P30) in normal and retinal degeneration models, as well as in potassium bromate induced DSB repair in normal adult (3 months) retinal explants. The two murine retinopathy models used had different mutations in Pde6b: the severe rd1 and the milder rd10 models. Compared to normal adult retina, we found increased numbers of γH2AX positive foci in all retinal neurons of the developing retina in both model and control retinas, as well as in wild type untreated retinal explant cultures. In contrast, the 53bp1 staining of the retina differed both in amount and character between cell types at all ages and in all model systems. There was strong pan nuclear staining in ganglion, amacrine, and horizontal cells, and cone photoreceptors, which was attenuated. Rod photoreceptors did not stain unequivocally. In all samples, 53bp1 stained foci only rarely occurred. Co-localization of 53bp1 and γH2AX staining was a very rare event (< 1% of γH2AX foci in the ONL and < 3% in the INL), suggesting the potential for alternate DSB sensing and repair proteins in the murine retina. At a minimum, murine retinal DSB repair does not appear to follow canonical pathways, and our findings suggests further investigation is warranted.

11.
Bone Res ; 6: 4, 2018.
Article in English | MEDLINE | ID: mdl-29507818

ABSTRACT

Skeletal health relies on architectural integrity and sufficient bone mass, which are maintained through a tightly regulated equilibrium of bone resorption by osteoclasts and bone formation by osteoblasts. Genetic studies have linked the gene coding for low-density lipoprotein receptor-related protein1 (Lrp1) to bone traits but whether these associations are based on a causal molecular relationship is unknown. Here, we show that Lrp1 in osteoblasts is a novel regulator of osteoclast activity and bone mass. Mice lacking Lrp1 specifically in the osteoblast lineage displayed normal osteoblast function but severe osteoporosis due to highly increased osteoclast numbers and bone resorption. Osteoblast Lrp1 limited receptor activator of NF-κB ligand (RANKL) expression in vivo and in vitro through attenuation of platelet-derived growth factor (PDGF-BB) signaling. In co-culture, Lrp1-deficient osteoblasts stimulated osteoclastogenesis in a PDGFRß-dependent manner and in vivo treatment with the PDGFR tyrosine kinase inhibitor imatinib mesylate limited RANKL production and led to complete remission of the osteoporotic phenotype. These results identify osteoblast Lrp1 as a key regulator of osteoblast-to-osteoclast communication and bone mass through a PDGF-RANKL signaling axis in osteoblasts and open perspectives to further explore the potential of PDGF signaling inhibitors in counteracting bone loss as well as to evaluate the importance of functional LRP1 gene variants in the control of bone mass in humans.

12.
PLoS One ; 12(6): e0180547, 2017.
Article in English | MEDLINE | ID: mdl-28666011

ABSTRACT

Key metabolic hormones, such as insulin, leptin, and adiponectin, have been studied extensively in obesity, however the pathophysiologic relevance of the calcitonin family of peptides remains unclear. This family includes calcitonin (CT), its precursor procalcitonin (PCT), and alpha calcitonin-gene related peptide (αCGRP), which are all encoded by the gene Calca. Here, we studied the role of Calca-derived peptides in diet-induced obesity (DIO) by challenging Calcr-/- (encoding the calcitonin receptor, CTR), Calca-/-, and αCGRP-/- mice and their respective littermates with high-fat diet (HFD) feeding for 16 weeks. HFD-induced pathologies were assessed by glucose tolerance, plasma cytokine and lipid markers, expression studies and histology. We found that DIO in mice lacking the CTR resulted in impaired glucose tolerance, features of enhanced nonalcoholic steatohepatitis (NASH) and adipose tissue inflammation compared to wildtype littermates. Furthermore, CTR-deficient mice were characterized by dyslipidemia and elevated HDL levels. In contrast, mice lacking Calca were protected from DIO, NASH and adipose tissue inflammation, and displayed improved glucose tolerance. Mice exclusively lacking αCGRP displayed a significantly less improved DIO phenotype compared to Calca-deficient mice. In summary, we demonstrate that the CT/CTR axis is involved in regulating plasma cholesterol levels while Calca, presumably through PCT, seems to have a detrimental effect in the context of metabolic disease. Our study provides the first comparative analyses of the roles of Calca-derived peptides and the CTR in metabolic disease.


Subject(s)
Calcitonin Gene-Related Peptide/chemistry , Diet, High-Fat , Obesity/metabolism , Peptides/physiology , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/etiology
13.
Int J Mol Sci ; 18(6)2017 Jun 13.
Article in English | MEDLINE | ID: mdl-28608812

ABSTRACT

Adipocytes are master regulators of energy homeostasis. Although the contributions of classical brown and white adipose tissue (BAT and WAT, respectively) to glucose and fatty acid metabolism are well characterized, the metabolic role of adipocytes in bone marrow remains largely unclear. Here, we quantify bone fatty acid metabolism and its contribution to systemic nutrient handling in mice. Whereas in parts of the skeleton the specific amount of nutrients taken-up from the circulation was lower than in other metabolically active tissues such as BAT or liver, the overall contribution of the skeleton as a whole organ was remarkable, placing it among the top organs involved in systemic glucose as well as fatty acid clearance. We show that there are considerable site-specific variations in bone marrow fatty acid composition throughout the skeleton and that, especially in the tibia, marrow fatty acid profiles resemble classical BAT and WAT. Using a mouse model lacking lipoprotein lipase (LPL), a master regulator of plasma lipid turnover specifically in adipocytes, we show that impaired fatty acid flux leads to reduced amounts of dietary essential fatty acids while there was a profound increase in de novo produced fatty acids in both bone marrow and cortical bone. Notably, these changes in fatty acid profiles were not associated with any gross skeletal phenotype. These results identify LPL as an important regulator of fatty acid transport to skeletal compartments and demonstrate an intricate functional link between systemic and skeletal fatty acid and glucose metabolism.


Subject(s)
Adipose Tissue/metabolism , Bone and Bones/metabolism , Fatty Acids/metabolism , Lipoprotein Lipase/metabolism , Adipocytes/enzymology , Adipocytes/metabolism , Adipose Tissue/enzymology , Animals , Female , Glucose/metabolism , Lipid Metabolism , Mice , Mice, Inbred C57BL
14.
Invest Ophthalmol Vis Sci ; 58(4): 1930-1940, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28384714

ABSTRACT

Purpose: The purpose of this study was characterization of adult murine neuroretina in organ culture to investigate its suitability for use in preclinical therapeutic applications. In retinal disorders, neurodegeneration of mature retinal cells takes place. Therefore, neonatal retina cultures are not adequate for therapeutic applications, such as genome editing, as the retina is still developing with cells dividing and differentiating into highly specialized cell types such as photoreceptors. Methods: Retinal explants were prepared from 3-month-old wild-type C57Bl6 mice and evaluated after 1 to 10 days in culture by immunohistochemistry or quantitative (q)PCR. Histologic modifications of the neuroretina were evaluated with TUNEL assay and immunohistochemical markers for neurons, glia cells, and apoptosis. Results: During the first week, disruption and truncation of outer segments were detectable. Unspecific Müller cell reaction was detected from 4 days in culture. Sprouting of individual rod bipolar cell dendrites into the outer nuclear layer (ONL) was visible during all explant stages. During the second week in culture, cell death in the ONL became more prominent. Conclusions: Adult organotypic retinal culture was successful for at least 10 days with characteristic alterations of the morphology during this period. This characterization forms the basis to establish retinal explants for gene therapeutic applications as an intermediate step between cell culture and experiments on adult animals, thus reducing the load of animal experimentation.


Subject(s)
DNA/genetics , Gene Expression , RNA, Messenger/genetics , Retina/metabolism , Retinal Degeneration/genetics , Animals , Cell Culture Techniques , Cell Death , Follow-Up Studies , Immunohistochemistry , In Situ Nick-End Labeling , Mice , Mice, Inbred C57BL , Neuroglia/metabolism , Neuroglia/pathology , Organ Culture Techniques , Polymerase Chain Reaction , Retina/pathology , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinal Photoreceptor Cell Outer Segment/metabolism , Retinal Photoreceptor Cell Outer Segment/pathology
15.
Int J Health Plann Manage ; 32(1): 91-109, 2017 Jan.
Article in English | MEDLINE | ID: mdl-26311614

ABSTRACT

The magnitude of violence and human loss in conflict settings often exceeds the caring capacity of traditional support systems for orphans. The aim of this study is to understand the developmental context for children experiencing armed conflict, parental loss, extreme poverty, violence and social exclusion in a setting affected by interethnic violence. This article challenges the received wisdom that community reintegration is always better than institutional provision. Using a case study employing interviews, focus groups, workshops and observations, we examined how children's experiences of armed violence and parental loss affected their mental well-being, and their relationships within their community. Emerging findings such as experienced violence and psychological distress were further investigated using a cross-sectional survey design to explore the generalisability or transferability of theories or conclusions drawn from qualitative data. Findings showed that parental loss had a major impact on children's lives in the context of armed violence. Four main outcomes of orphanhood emerged: (i) facing the situation and evading harm (feelings of rejection and stigmatisation); (ii) trauma exposure and mental health effects (associations of orphanhood with adverse mental health outcomes and the number and type of experienced trauma); (iii) dealing with psychological distress (seeking caring connections and decreased feelings of isolation); and (iv) education and acceptance (increasing knowledge, skills and attitude and being respected in their community). We discuss the role that contexts such as armed violence, parental loss and social exclusion play for children's mental well-being and their implications for psychosocial interventions and orphan care in humanitarian settings. Copyright © 2015 John Wiley & Sons, Ltd.


Subject(s)
Child, Orphaned/psychology , Ethnicity , Violence , Adolescent , Child , Cross-Sectional Studies , Female , Health Services Needs and Demand , Humans , Interviews as Topic , Male , Qualitative Research , Self Report , Social Isolation , South Sudan , Warfare , Wounds and Injuries
16.
Prog Retin Eye Res ; 56: 1-18, 2017 01.
Article in English | MEDLINE | ID: mdl-27623223

ABSTRACT

In vivo genome editing represents an emerging field in the treatment of monogenic disorders, as it may constitute a solution to the current hurdles in classic gene addition therapy, which are the low levels and limited duration of transgene expression. Following the introduction of a double strand break (DSB) at the mutational site by highly specific endonucleases, such as TALENs (transcription activator like effector nucleases) or RNA based nucleases (clustered regulatory interspaced short palindromic repeats - CRISPR-Cas), the cell's own DNA repair machinery restores integrity to the DNA strand and corrects the mutant sequence, thus allowing the cell to produce protein levels as needed. The DNA repair happens either through the error prone non-homologous end-joining (NHEJ) pathway or with high fidelity through homology directed repair (HDR) in the presence of a DNA donor template. A third pathway called microhomology mediated endjoining (MMEJ) has been recently discovered. In this review, the authors focus on the different DNA repair mechanisms, the current state of the art tools for genome editing and the particularities of the retina and photoreceptors with regard to in vivo therapeutic approaches. Finally, current attempts in the field of retinal in vivo genome editing are discussed and future directions of research identified.


Subject(s)
Gene Editing/methods , Genetic Therapy/methods , Genome , Practice Guidelines as Topic , Retinal Dystrophies , Animals , Humans , Retinal Dystrophies/genetics , Retinal Dystrophies/metabolism , Retinal Dystrophies/therapy
17.
J Comp Neurol ; 523(6): 963-81, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25521284

ABSTRACT

We studied the retinal cone bipolar cells of Carollia perspicillata, a microchiropteran bat of the phyllostomid family. Microchiroptera are strongly nocturnal, with small eyes and rod-dominated retinae. However, they also possess a significant cone population (2-4%) comprising two spectral types, which are hence the basis for daylight and color vision. We used antibodies against the calcium-binding protein recoverin and the carbohydrate epitope 15 (CD15) as reliable markers for certain cone bipolar cells. Dye injections of recoverin- or CD15-prelabeled cone bipolar cells in vertical slices revealed the morphology of the axon terminal system of individual bipolar cells. Seven distinct cone bipolar cell types were identified. They differed in the morphology and stratification level of their axon terminal system in the inner plexiform layer and in immunoreactivity for recoverin and/or CD15. Additional immunocytochemical markers were used to assess the functional ON/OFF subdivision of the inner plexiform layer. In line with the extended thickness of the ON sublayer of the inner plexiform layer in the microbat retina, more ON than OFF cone bipolar cell types were found, namely, four versus three. Most likely, in the bats' predominantly dark environment, ON signals have greater importance for contrast perception. We conclude that the microbat retina conforms to the general mammalian blueprint, in which light signals of intensities above rod sensitivity are detected by cones and transmitted to various types of ON and OFF cone bipolar cells.


Subject(s)
Chiroptera/anatomy & histology , Retina/cytology , Retinal Bipolar Cells/physiology , Retinal Cone Photoreceptor Cells/physiology , Animals , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Lewis X Antigen/metabolism , Nerve Tissue Proteins/metabolism , Protein Kinase C-alpha/metabolism , Recoverin/metabolism , Visual Pathways/cytology
18.
Am J Physiol Endocrinol Metab ; 307(11): E1009-19, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25294213

ABSTRACT

Early deficiency of the methyl donors folate and vitamin B12 produces hyperhomocysteinemia and cognitive and motor disorders in 21-day-old rat pups from dams fed a diet deficient in methyl donors during gestation and lactation. These disorders are associated with impaired neurogenesis and altered synaptic plasticity in cerebellum. We aimed to investigate whether these disorders could be related to impaired expression of neurosteroidogenesis-associated proteins, key regulator receptors, and some steroid content in the cerebellum. The methyl donor deficiency produced a decreased concentration of folate and vitamin B12, along with accumulation of homocysteine in Purkinje cells in both sexes, whereas the S-adenosylmethionine/S-adenosylhomocysteine ratio was reduced only in females. The transcription level and protein expression of StAR, aromatase, ERα, ERß, and LH receptors were decreased only in females, with a marked effect in Purkinje cells, as shown by immunohistochemistry. Consistently, reduced levels of estradiol and pregnenolone were measured in cerebellar extracts of females only. The decreased expression levels of the transcriptional factors CREB, phospho-CREB, and SF-1, the lesser increase of cAMP concentration, and the lower level of phospho-PKC in the cerebellum of deficient females suggest that the activation of neurosteroidogenesis via cAMP-mediated signaling pathways associated with LHR activation would be altered. In conclusion, a gestational methyl donor deficiency impairs neurosteroidogenesis in cerebellum in a sex-dependent manner.


Subject(s)
Cerebellum/metabolism , Cyclic AMP/physiology , Folic Acid Deficiency/metabolism , Neurotransmitter Agents/biosynthesis , Signal Transduction/physiology , Vitamin B 12 Deficiency/metabolism , Animals , Estradiol/metabolism , Female , Microsomes/metabolism , Mitochondria/metabolism , Phosphoproteins/biosynthesis , Phosphoproteins/genetics , Pregnenolone/metabolism , Rats , Rats, Wistar , Transcription, Genetic/genetics , Transcription, Genetic/physiology
19.
Bone ; 62: 90-8, 2014 May.
Article in English | MEDLINE | ID: mdl-24440515

ABSTRACT

A number of unexpected molecules were recently identified as products of osteoblasts, linking bone homeostasis to systemic energy metabolism. Here we identify the lipolytic enzyme hepatic lipase (HL, encoded by Lipc) as a novel cell-autonomous regulator of osteoblast function. In an unbiased genome-wide expression analysis, we find Lipc to be highly induced upon osteoblast differentiation, verified by quantitative Taqman analyses of primary osteoblasts in vitro and of bone samples in vivo. Functionally, loss of HL in vitro leads to increased expression and secretion of osteoprotegerin (OPG), while expression of some osteoblast differentiation makers is impaired. When challenging energy metabolism in a diet-induced obesity (DIO) study, lack of HL leads to a significant increase in bone formation markers and a decrease in bone resorption markers. Accordingly, in the DIO setting, we observe in Lipc(-/-) animals but not in wild-type controls a significant increase in lumbar vertebral trabecular bone mass and formation rate as well as in femoral trabecular bone mass and cortical thickness. Taken together, we demonstrate that HL expressed by osteoblasts has an impact on osteoblast OPG expression and that lack of HL leads to increased bone mass in DIO. These data provide a novel and completely unexpected molecular link in the complex interplay of osteoblasts and systemic energy metabolism.


Subject(s)
Bone Remodeling , Lipase/metabolism , Obesity/enzymology , Obesity/pathology , Osteoblasts/enzymology , Osteoblasts/pathology , Animals , Biomarkers/blood , Biomarkers/urine , Cell Differentiation , Cells, Cultured , Diet, High-Fat , Feeding Behavior , Femur/diagnostic imaging , Femur/pathology , Lipase/deficiency , Lumbar Vertebrae/pathology , Male , Mice, Inbred C57BL , Organ Size , Osteoprotegerin/metabolism , X-Ray Microtomography
20.
Br J Nutr ; 111(6): 1021-31, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24229781

ABSTRACT

Gestational methyl donor deficiency (MDD) leads to growth retardation as well as to cognitive and motor disorders in 21-d-old rat pups. These disorders are related to impaired neurogenesis in the cerebral neurogenic areas. Olfactory bulbs (OB), the main target of neuronal progenitors originating from the subventricular zone, play a critical role during the postnatal period by allowing the pups to identify maternal odour. We hypothesised that growth retardation could result from impaired suckling due to impaired olfactory discrimination through imbalanced apoptosis/neurogenesis in the OB. Since neurosteroidogenesis modulates neurogenesis in OB, in the present study, we investigated whether altered neurosteroidogenesis could explain some these effects. Pups born to dams fed a normal diet (n 24) and a MDD diet (n 27) were subjected to olfactory tests during the lactation and weaning periods (n 24 and 20, respectively). We studied the markers of apoptosis/neurogenesis and the expression levels of the key neurosteroidogenic enzyme aromatase, the cholesterol-transfer protein StAR (steroidogenic acute regulatory protein) and the ERα oestrogen receptor and the content of oestradiol in OB. The 21-d-old MDD female pups displayed lower body weight and impaired olfactory discrimination when compared with the control pups. MDD led to greater homocysteine accumulation and more pronounced apoptosis, along with impaired cell proliferation in the OB of female pups. The expression levels of aromatase, StAR and ERα as well as the content of oestradiol were lower in the OB of the MDD female pups than in those of the control female pups. In conclusion, gestational MDD may alter olfactory discrimination performances by affecting neurogenesis, apoptosis and neurosteroidogenesis in OB in a sex-dependent manner. It may be involved in growth retardation through impaired suckling.


Subject(s)
Animals, Newborn/metabolism , DNA Methylation/physiology , Neurotransmitter Agents/biosynthesis , Olfaction Disorders/etiology , Olfactory Bulb/metabolism , Prenatal Exposure Delayed Effects , Animals , Apoptosis , Aromatase/analysis , Aromatase/genetics , Diet , Estrogen Receptor alpha/analysis , Estrogen Receptor alpha/genetics , Female , Gene Expression , Homocysteine/metabolism , Lactation , Male , Methylation , Neurogenesis , Phosphoproteins/analysis , Phosphoproteins/genetics , Pregnancy , Rats , Rats, Wistar , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL
...