Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 485
Filter
2.
Int J Biol Macromol ; : 136329, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39383923

ABSTRACT

Polyacrylamide (PAM) is a high molecular weight polymer with extensive applications. However, inefficient natural degradation of PAM results in its environmental accumulation. Here, using multi-omics analysis, we constructed the PAM biodegradation pathway in Klebsiella sp. PCX, an efficient PAM-degrading bacterium. Subsequently, two unclassified amidohydrolases (PCX00451 and PCX04581) were identified as key factors for rapid PAM biodegradation, both of which possessed much higher hydrolysis efficiency for PAM than for small molecule amide compounds. Besides, crystal structures of PCX00451 and PCX04581 were solved. Both two amidohydrolases were consisted with a twisted triosephosphateisomerase (TIM)-barrel and a smaller ß-sandwich domain. And their binding pockets were in the conserved metal center of TIM-barrel domain. Moreover, Asp267 of PCX00451 and Asp282 of PCX04581 were examined as active sites for acid/base catalysis. Our research characterized the molecular mechanisms of two efficient amidohydrolases, providing theoretical basis and valuable tools for PAM bioremediation.

3.
BMC Med Genomics ; 17(1): 246, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39379958

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN) has been a major factor in the outbreak of end-stage renal disease for decades. As the underlying mechanisms of DN development remains unclear, there is no ideal methods for the diagnosis and therapy. OBJECTIVE: We aimed to explore the key genes and pathways that affect the rate progression of DN. METHODS: Nanopore-based full-length transcriptome sequencing was performed with serum samples from DN patients with slow progression (DNSP, n = 5) and rapid progression (DNRP, n = 6). RESULTS: Here, transcriptome proclaimed 22,682 novel transcripts and obtained 45,808 simple sequence repeats, 1,815 transcription factors, 5,993 complete open reading frames, and 1,050 novel lncRNA from the novel transcripts. Moreover, a total of 341 differentially expressed transcripts (DETs) and 456 differentially expressed genes (DEGs) between the DNSP and DNRP groups were identified. Functional analyses showed that DETs mainly involved in ferroptosis-related pathways such as oxidative phosphorylation, iron ion binding, and mitophagy. Moreover, Functional analyses revealed that DEGs mainly involved in oxidative phosphorylation, lipid metabolism, ferroptosis, autophagy/mitophagy, apoptosis/necroptosis pathway. CONCLUSION: Collectively, our study provided a full-length transcriptome data source for the future DN research, and facilitate a deeper understanding of the molecular mechanisms underlying the differences in fast and slow progression of DN.


Subject(s)
Diabetic Nephropathies , Disease Progression , Transcriptome , Humans , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Male , Female , Middle Aged , Nanopores , Gene Expression Profiling , Nanopore Sequencing
4.
J Esthet Restor Dent ; 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39329250

ABSTRACT

OBJECTIVE: Digital technology in dentistry has advanced rapidly in recent years, and as a result, the identification of static virtual articulation as a crucial stage in the digital process has attracted increasing attention. The use of intraoral scanners (IOSs) has made the acquisition of occlusal records more efficient. The purpose of this article is to review information on evaluation methods and influencing factors on the accuracy of static virtual articulation obtained by intraoral scanners. OVERVIEW: An electronic search of the published literature was performed up to November 2023 using five databases: PubMed, Cochrane, Embase, Web of Science, and Scopus. The inclusion criteria were defined as relevant clinical or in vitro English studies on the accuracy of the occlusal relationship obtained using intraoral scanners. Therefore, a total of 30 articles were selected, reviewed, and discussed. Based on the results of the literature review, three methods have been used to evaluate the accuracy of virtual interocclusal records, including distance measurement (10 studies), occlusal contact analysis (13 studies), and deviation analysis after superimposing casts (8 studies). However, direct comparisons between these studies are challenging due to the different methods employed. Factors that were found to potentially impact accuracies, such as the range of vestibular scans, the number and position of virtual interocclusal records (VIRs), the location and extension of edentulous areas, alignment methods, and evaluation software programs have been extensively studied, but the extent to which these factors affect accuracy remains uncertain and varies depending on the specific circumstances. CONCLUSIONS: A combination of multiple evaluation methods for a more rigid assessment of virtual interocclusal records may be a better approach. Attention should be given to the factors that may influence the accuracy of virtual interocclusal records. Future research should focus on optimizing these factors to improve the clinical applicability of virtual interocclusal records. CLINICAL SIGNIFICANCE: In restorative dentistry, virtual interocclusal records obtained with intraoral scanners have been successfully used with acceptable accuracy, although they present some issues. Understanding the evaluation methods for virtual interocclusal records and the factors that may affect the accuracy of VIRs may lead to better use in clinical practice.

5.
Virol J ; 21(1): 230, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39334389

ABSTRACT

Porcine circoviruses, particularly porcine circovirus type 2 (PCV2) and porcine circovirus type 3 (PCV3), significantly impact the global pig industry due to their high prevalence and pathogenicity. Conversely, porcine circovirus type 1 (PCV1) and porcine circovirus type 4 (PCV4) currently have low positivity rates. This study aimed to characterize the distribution and epidemiology of porcine circoviruses in Xinjiang, while also analyzing the genetic diversity and evolution of PCV2 and PCV3, which pose the greatest threats to the industry. In this study, we collected blood and tissue samples from 453 deceased pigs across eight regions in Xinjiang Province from 2022 to 2024. We utilized real-time PCR to detect the presence of PCV1, PCV2, PCV3, and PCV4. The positive rates were 15%, 71%, 25%, and 17%, respectively. Genetic analysis showed 9 PCV2 sequences and 12 PCV3 sequences. The capsid protein of PCV2 showed significant variability. In contrast, the amino acid sequences of capsid in PCV3 were relatively stable. Moreover, we predicted antigenic epitopes for PCV3 capsid using IEDB and ElliPro. The findings from this study provide valuable epidemiological data on PCV coinfection in the Xinjiang region and enhance the understanding of virus diversity nationwide. This research may serve as an important reference for the development of strategies to prevent and control porcine circovirus infections.


Subject(s)
Capsid Proteins , Circoviridae Infections , Circovirus , Genetic Variation , Phylogeny , Swine Diseases , Circovirus/genetics , Circovirus/isolation & purification , Circovirus/classification , Animals , Circoviridae Infections/epidemiology , Circoviridae Infections/veterinary , Circoviridae Infections/virology , Swine , Swine Diseases/virology , Swine Diseases/epidemiology , China/epidemiology , Capsid Proteins/genetics , Coinfection/epidemiology , Coinfection/virology , Prevalence , DNA, Viral/genetics
6.
PeerJ Comput Sci ; 10: e2201, 2024.
Article in English | MEDLINE | ID: mdl-39314710

ABSTRACT

Multivariate time series anomaly detection has garnered significant attention in fields such as IT operations, finance, medicine, and industry. However, a key challenge lies in the fact that anomaly patterns often exhibit multi-scale temporal variations, which existing detection models often fail to capture effectively. This limitation significantly impacts detection accuracy. To address this issue, we propose the MFAM-AD model, which combines the strengths of convolutional neural networks (CNNs) and bi-directional long short-term memory (Bi-LSTM). The MFAM-AD model is designed to enhance anomaly detection accuracy by seamlessly integrating temporal dependencies and multi-scale spatial features. Specifically, it utilizes parallel convolutional layers to extract features across different scales, employing an attention mechanism for optimal feature fusion. Additionally, Bi-LSTM is leveraged to capture time-dependent information, reconstruct the time series and enable accurate anomaly detection based on reconstruction errors. In contrast to existing algorithms that struggle with inadequate feature fusion or are confined to single-scale feature analysis, MFAM-AD effectively addresses the unique challenges of multivariate time series anomaly detection. Experimental results on five publicly available datasets demonstrate the superiority of the proposed model. Specifically, on the datasets SMAP, MSL, and SMD1-1, our MFAM-AD model has the second-highest F1 score after the current state-of-the-art DCdetector model. On the datasets NIPS-TS-SWAN and NIPS-TS-GECCO, the F1 scores of MAFM-AD are 0.046 (6.2%) and 0.09 (21.3%) higher than those of DCdetector, respectively(the value ranges from 0 to 1). These findings validate the MFAMAD model's efficacy in multivariate time series anomaly detection, highlighting its potential in various real-world applications.

7.
Front Cardiovasc Med ; 11: 1450737, 2024.
Article in English | MEDLINE | ID: mdl-39234608

ABSTRACT

Atherosclerosis is a chronic inflammatory disease characterized by innate and adaptive immune responses, which seriously threatens human life and health. It is a primary cause of coronary heart disease, myocardial infarction, and peripheral vascular disease. Research has demonstrated that immune cells are fundamental to the development of atherosclerosis and chronic inflammation. Therefore, it is anticipated that immunotherapy targeting immune cells will be a novel technique in the management of atherosclerosis. This article reviews the growth of research on the regulatory role of immune cells in atherosclerosis and targeted therapy approaches. The purpose is to offer new therapeutic approaches for the control and treatment of cardiovascular illnesses caused by atherosclerosis.

8.
medRxiv ; 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39252894

ABSTRACT

Objective: The purpose of this study was to investigate the technical feasibility of integrating the quantitative maps available from SyntheticMR into the head and neck adaptive radiation oncology workflow. While SyntheticMR has been investigated for diagnostic applications, no studies have investigated its feasibility and potential for MR-Simulation or MR-Linac workflow. Demonstrating the feasibility of using this technique will facilitate rapid quantitative biomarker extraction which can be leveraged to guide adaptive radiation therapy decision making. Approach: Two phantoms, two healthy volunteers, and one patient were scanned using SyntheticMR on the MR-Simulation and MR-Linac devices with scan times between four to six minutes. Images in phantoms and volunteers were conducted in a test/retest protocol. The correlation between measured and reference quantitative T1, T2, and PD values were determined across clinical ranges in the phantom. Distortion was also studied. Contours of head and neck organs-at-risk (OAR) were drawn and applied to extract T1, T2, and PD. These values were plotted against each other, clusters were computed, and their separability significance was determined to evaluate SyntheticMR for differentiating tumor and normal tissue. Main Results: The Lin's Concordance Correlation Coefficient between the measured and phantom reference values was above 0.98 for both the MR-Sim and MR-Linac. No significant levels of distortion were measured. The mean bias between the measured and phantom reference values across repeated scans was below 4% for T1, 7% for T2, and 4% for PD for both the MR-Sim and MR-Linac. For T1 vs. T2 and T1 vs. PD, the GTV contour exhibited perfect purity against neighboring OARs while being 0.7 for T2 vs. PD. All cluster significance levels between the GTV and the nearest OAR, the tongue, using the SigClust method was p < 0.001. Significance: The technical feasibility of SyntheticMR was confirmed. Application of this technique to the head and neck adaptive radiation therapy workflow can enrich the current quantitative biomarker landscape.

9.
J Clin Ultrasound ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223774

ABSTRACT

We present a case study highlighting prenatal ultrasound findings in monozygotic twins with chromosome 17q12 deletion syndrome. Fetus A exhibited bilateral fetal pyelectasis and talipes equinovarus, while fetus B showed hyperechogenic kidneys. Despite sharing the same de novo variant, the twins displayed distinct clinical phenotypes, suggesting the presence of non-genetic factors influencing the phenotypic variability of this syndrome. This case represents the first documented instance of prenatally identified identical twins affected by 17q12 deletion syndrome.

10.
J Prosthet Dent ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39304493

ABSTRACT

Patients who undergo hemimandibulectomy have multiple functional impairments, and early initiation of guidance therapy has been associated with an improved definitive occlusal relationship. This article describes a digital workflow to determine the angle and form the shape of the flange of the mandibular guide plane prosthesis (MGPP), and to create an MGPP before mandibular resection surgery. A virtual articulator was used to achieve the movements of the maxilla relative to the mandible, and the shape of the MGPP was adjusted by dynamic occlusion. The MGPP and mandibular case were printed using a digital light processing (DLP) printer. This technique avoids intraoral procedures such as making impression and tooth preparation when mouth opening is limited after surgery and enables early functional training.

11.
Magn Reson Med ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164799

ABSTRACT

PURPOSE: Quantitative MRI enables direct quantification of contrast agent concentrations in contrast-enhanced scans. However, the lengthy scan times required by conventional methods are inadequate for tracking contrast agent transport dynamically in mouse brain. We developed a 3D MR fingerprinting (MRF) method for simultaneous T1 and T2 mapping across the whole mouse brain with 4.3-min temporal resolution. METHOD: We designed a 3D MRF sequence with variable acquisition segment lengths and magnetization preparations on a 9.4T preclinical MRI scanner. Model-based reconstruction approaches were employed to improve the accuracy and speed of MRF acquisition. The method's accuracy for T1 and T2 measurements was validated in vitro, while its repeatability of T1 and T2 measurements was evaluated in vivo (n = 3). The utility of the 3D MRF sequence for dynamic tracking of intracisternally infused gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) in the whole mouse brain was demonstrated (n = 5). RESULTS: Phantom studies confirmed accurate T1 and T2 measurements by 3D MRF with an undersampling factor of up to 48. Dynamic contrast-enhanced MRF scans achieved a spatial resolution of 192 × 192 × 500 µm3 and a temporal resolution of 4.3 min, allowing for the analysis and comparison of dynamic changes in concentration and transport kinetics of intracisternally infused Gd-DTPA across brain regions. The sequence also enabled highly repeatable, high-resolution T1 and T2 mapping of the whole mouse brain (192 × 192 × 250 µm3) in 30 min. CONCLUSION: We present the first dynamic and multi-parametric approach for quantitatively tracking contrast agent transport in the mouse brain using 3D MRF.

12.
Cell Death Dis ; 15(8): 621, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39187513

ABSTRACT

Despite advancements in chemotherapy and the availability of novel therapies, the outcome of adult patients with B-cell acute lymphoblastic leukemia (B-ALL) remains unsatisfactory. Therefore, it is necessary to understand the molecular mechanisms underlying the progression of B-ALL. Brahma-related gene 1 (BRG1) is a poor prognostic factor for multiple cancers. Here, the expression of BRG1 was found to be higher in patients with B-ALL, irrespective of the molecular subtype, than in healthy individuals, and its overexpression was associated with a poor prognosis. Upregulation of BRG1 accelerated cell cycle progression into the S phase, resulting in increased cell proliferation, whereas its downregulation facilitated the apoptosis of B-ALL cells. Mechanistically, BRG1 occupies the transcriptional activation site of PPP2R1A, thereby inhibiting its expression and activating the PI3K/AKT signaling pathway to regulate the proto-oncogenes c-Myc and BCL-2. Consistently, silencing of BRG1 and administration of PFI-3 (a specific inhibitor targeting BRG1) significantly inhibited the progression of leukemia and effectively prolonged survival in cell-derived xenograft mouse models of B-ALL. Altogether, this study demonstrates that BRG1-induced overactivation of the PPP2R1A/PI3K/AKT signaling pathway plays an important role in promoting the progression of B-ALL. Therefore, targeting BRG1 represents a promising strategy for the treatment of B-ALL in adults.


Subject(s)
DNA Helicases , Disease Progression , Nuclear Proteins , Protein Phosphatase 2 , Transcription Factors , Animals , Female , Humans , Male , Mice , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Helicases/metabolism , DNA Helicases/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription, Genetic/drug effects
13.
Talanta ; 280: 126787, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39213887

ABSTRACT

Utilizing non-invasive, real-time dynamic imaging and high-resolution detection tools to track polarity changes in Sjögren's syndrome (SS) contributes to a better understanding of the disease progression. Herein, a ratiometric polarity-sensitive fluorescent probe (DIM) was designed and synthesized, DIM consisted of dicyanoisophorone as the fluorophore and morpholine moiety as lysosome targeting. DIM showed a ratiometric response to polarity and high selectivity (unaffected by viscosity, pH, ROS, RNS, etc.), offering a more accurate analysis of intracellular polarity through a built-in internal reference calibration. The polarity abnormality of submandibular glands in non-obese diabetic (NOD) mice was revealed and verified by in vivo ratiometric fluorescence imaging of DIM, suggesting that fluorescent probe have great potential in the diagnosis of salivary gland abnormalities.


Subject(s)
Fluorescent Dyes , Lysosomes , Mice, Inbred NOD , Sjogren's Syndrome , Animals , Sjogren's Syndrome/diagnostic imaging , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Lysosomes/metabolism , Lysosomes/chemistry , Mice , Optical Imaging , Submandibular Gland/diagnostic imaging , Submandibular Gland/pathology , Female , Morpholines/chemistry , Morpholines/chemical synthesis
14.
Int J Mol Sci ; 25(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39201558

ABSTRACT

Polyacrylamide (PAM) is a high-molecular-weight polymer with extensive applications. However, the inefficient natural degradation of PAM results in environmental accumulation of the polymer. Biodegradation is an environmentally friendly approach in the field of PAM treatment. The first phase of PAM biodegradation is the deamination of PAM, forming the product poly(acrylic acid) (PAA). The second phase of PAM biodegradation involves the cleavage of PAA into small molecules, which is a crucial step in the degradation pathway of PAM. However, the enzyme that catalyzes the degradation of PAA and the molecular mechanism remain unclear. Here, a novel monooxygenase PCX02514 is identified as the key enzyme for PAA degradation. Through biochemical experiments, the monooxygenase PCX02514 oxidizes PAA with the participation of NADPH, causing the cleavage of carbon chains and a decrease in the molecular weight of PAA. In addition, the crystal structure of the monooxygenase PCX02514 is solved at a resolution of 1.97 Å. The active pocket is in a long cavity that extends from the C-terminus of the TIM barrel to the protein surface and exhibits positive electrostatic potential, thereby causing the migration of oxygen-negative ions into the active pocket and facilitating the reaction between the substrates and monooxygenase PCX02514. Moreover, Arg10-Arg125-Ser186-Arg187-His253 are proposed as potential active sites in monooxygenase PCX02514. Our research characterizes the molecular mechanism of this monooxygenase, providing a theoretical basis and valuable tools for PAM bioremediation.


Subject(s)
Acrylic Resins , Biodegradation, Environmental , Mixed Function Oxygenases , Acrylic Resins/chemistry , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/chemistry , Catalytic Domain , Models, Molecular , Crystallography, X-Ray , Protein Conformation
15.
Sci Total Environ ; 949: 175159, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39094650

ABSTRACT

Bisphenol P (BPP) has been detected in human biological samples; however studies on its nephrotoxicity are scarce. Given the susceptibility of kidneys to endocrine-disrupting chemicals, there is an urgent need to investigate the renal toxicity of BPP. This study aimed to evaluate the effects of different concentrations of BPPs on the kidneys of C57BL/6 mice and elucidate the underlying mechanisms of renal damage using a combination of mouse renal transcriptomic data and human renal proximal tubular epithelial cells (HK-2). Mice were exposed to BPP (0, 0.3, 30, 3000 µg/kg bw/d) via gavage for 5 weeks. Renal injury was assessed based on changes in body and kidney weights, serum renal function indices, and histopathological examination. Transcriptomic analysis identified differentially expressed genes and pathways, whereas cellular assays were used to measure cell viability, reactive oxygen species (ROS), apoptosis, and the expression of key genes and proteins. The results show that BPP exposure induces renal injury, as evidenced by increased body weight, abnormal renal function indices, and renal tissue damage. Transcriptomic analysis revealed alterations in genes and pathways related to oxidative stress, p53 signaling, autophagy, and apoptosis. Cellular experiments confirmed that BPP induces oxidative stress and apoptosis. Furthermore, BPP exposure significantly inhibits autophagy, potentially exacerbating apoptosis and contributing to kidney injury. Treatment with a ROS inhibitor (N-Acetylcysteine, NAC) mitigated BPP-induced autophagy inhibition and apoptosis, implicating oxidative stress as a key factor. BPP exposure may lead to renal injury through excessive ROS accumulation, oxidative stress, inflammatory responses, autophagy inhibition, and increased apoptosis. The effects of NAC highlight the role of oxidative stress in BPP-induced nephrotoxicity. These findings enhance our understanding of BPP-induced nephrotoxicity and underscore the need to control BPP exposure to prevent renal disease. This study emphasized the importance of evaluating the safety of new Bisphenol A analogs, including BPP, in environmental toxicology.


Subject(s)
Epithelial Cells , Mice, Inbred C57BL , Oxidative Stress , Phenols , Animals , Humans , Mice , Apoptosis/drug effects , Benzhydryl Compounds/toxicity , Endocrine Disruptors/toxicity , Epithelial Cells/drug effects , Kidney/cytology , Kidney/drug effects , Kidney/pathology , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/pathology , Oxidative Stress/drug effects , Phenols/toxicity , Reactive Oxygen Species/metabolism
16.
Autoimmunity ; 57(1): 2391350, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39155523

ABSTRACT

Antiphospholipid syndrome (APS) is an autoimmune disease characterized by recurrent arteriovenous thrombosis and pathological pregnancy, accompanied by persistent antiphospholipid antibodies, (aPL). The incidence of APS is increasing year by year, clinicians lack of understanding of this type of disease, easy to misdiagnose and miss the diagnosis. Therefore, it is extremely important to establish a suitable animal model to reduce the process of disease development as much as possible and improve clinicians' understanding and understanding. This review will summarize the animal models of APS from the aspects of modeling methods, modeling mechanism, evaluation indicators and advantages and disadvantages of methods, providing a reference for finding an animal model highly similar to human APS, helping researchers to further clarify the pathogenesis of APS and find potential therapeutic targets, so as to achieve early diagnosis, early intervention, and ultimately improve the prognosis of patients.


Subject(s)
Antibodies, Antiphospholipid , Antiphospholipid Syndrome , Disease Models, Animal , Antiphospholipid Syndrome/immunology , Antiphospholipid Syndrome/diagnosis , Animals , Humans , Antibodies, Antiphospholipid/immunology , Mice , Pregnancy
17.
Front Immunol ; 15: 1425443, 2024.
Article in English | MEDLINE | ID: mdl-39104538

ABSTRACT

T cells, as a major lymphocyte population involved in the adaptive immune response, play an important immunomodulatory role in the early stages of autoimmune diseases. Autophagy is a cellular catabolism mediated by lysosomes. Autophagy maintains cell homeostasis by recycling degraded cytoplasmic components and damaged organelles. Autophagy has a protective effect on cells and plays an important role in regulating T cell development, activation, proliferation and differentiation. Autophagy mediates the participation of T cells in the acquired immune response and plays a key role in antigen processing as well as in the maintenance of T cell homeostasis. In autoimmune diseases, dysregulated autophagy of T cells largely influences the pathological changes. Therefore, it is of great significance to study how T cells play a role in the immune mechanism of autoimmune diseases through autophagy pathway to guide the clinical treatment of diseases.


Subject(s)
Autoimmune Diseases , Autophagy , T-Lymphocytes , Humans , Autophagy/immunology , Autoimmune Diseases/immunology , Animals , T-Lymphocytes/immunology , Lymphocyte Activation/immunology
18.
BMC Oral Health ; 24(1): 904, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112986

ABSTRACT

BACKGROUND: Multi-rooted teeth with extensive dental defects often face challenges in stability and biomechanical failure. High-performance polymer PEEK materials, with properties closer to dentin, show promise in reducing stress concentration and preserving tooth structure. This report aimed to explore the use of a highly retentive polyetheretherketone (PEEK) for manufacturing custom-made split post and core for the restoration of grossly destroyed endodontically treated molars. CLINICAL CONSIDERATIONS: A 40-year-old female patient presented with complaints of loss of tooth substance in the posterior mandibular tooth. This case involved the digital design and fabrication of PEEK split post and core to restore multirooted molar with insufficient dental tissue remnants. The restorations were evaluated over a 3-year follow-up using the World Federation criteria (FDI). The restoration was clinically evaluated through intraoral examination, radiographic assessment, and subjective patient satisfaction, and was deemed clinically good according to FDI criteria. CONCLUSION: The outstanding mechanical properties of PEEK, coupled with the structure of the split post, provide an effective treatment option for weakened multirooted teeth. Simultaneously, the restoration configuration effectively addressed the challenge of varying postinsertion directions, and the interlocking mechanism between the primary and auxiliary posts enhanced the stability of the post and core.


Subject(s)
Benzophenones , Ketones , Molar , Polyethylene Glycols , Polymers , Humans , Female , Adult , Molar/surgery , Post and Core Technique , Follow-Up Studies , Dental Prosthesis Design , Tooth, Nonvital/surgery , Computer-Aided Design
19.
Ann Neurol ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096056

ABSTRACT

OBJECTIVES: To develop a multiparametric machine-learning (ML) framework using high-resolution 3 dimensional (3D) magnetic resonance (MR) fingerprinting (MRF) data for quantitative characterization of focal cortical dysplasia (FCD). MATERIALS: We included 119 subjects, 33 patients with focal epilepsy and histopathologically confirmed FCD, 60 age- and gender-matched healthy controls (HCs), and 26 disease controls (DCs). Subjects underwent whole-brain 3 Tesla MRF acquisition, the reconstruction of which generated T1 and T2 relaxometry maps. A 3D region of interest was manually created for each lesion, and z-score normalization using HC data was performed. We conducted 2D classification with ensemble models using MRF T1 and T2 mean and standard deviation from gray matter and white matter for FCD versus controls. Subtype classification additionally incorporated entropy and uniformity of MRF metrics, as well as morphometric features from the morphometric analysis program (MAP). We translated 2D results to individual probabilities using the percentage of slices above an adaptive threshold. These probabilities and clinical variables were input into a support vector machine for individual-level classification. Fivefold cross-validation was performed and performance metrics were reported using receiver-operating-characteristic-curve analyses. RESULTS: FCD versus HC classification yielded mean sensitivity, specificity, and accuracy of 0.945, 0.980, and 0.962, respectively; FCD versus DC classification achieved 0.918, 0.965, and 0.939. In comparison, visual review of the clinical magnetic resonance imaging (MRI) detected 48% (16/33) of the lesions by official radiology report. In the subgroup where both clinical MRI and MAP were negative, the MRF-ML models correctly distinguished FCD patients from HCs and DCs in 98.3% of cross-validation trials for the magnetic resonance imaging negative group and MAP negative group. Type II versus non-type-II classification exhibited mean sensitivity, specificity, and accuracy of 0.835, 0.823, and 0.83, respectively; type IIa versus IIb classification showed 0.85, 0.9, and 0.87. In comparison, the transmantle sign was present in 58% (7/12) of the IIb cases. INTERPRETATION: The MRF-ML framework presented in this study demonstrated strong efficacy in noninvasively classifying FCD from normal cortex and distinguishing FCD subtypes. ANN NEUROL 2024.

20.
Anal Chem ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017607

ABSTRACT

A portable Hadamard-transform Raman spectrometer with excellent performance was fabricated consisting of a 785 nm laser, an optical filter, an optical system, a control system, and a signal processing system. As the core of the spectrometer, the optical system was composed of a slit, collimator, optical grating, reflector, digital micromirror devices (DMD), lens system, and InGaAs photodetector. Compared with a conventional dispersive Raman spectrometer, the proposed Raman spectrometer adopted the DMD and corresponding controlling device (DLPC350 control chip) to collect the Raman spectrum. Thus, in our design, the gratings are fixed, while the full Raman spectrum was collected by the deflection of the micromirror. This design can greatly improve the vibration resistance ability of the spectrometer since the gratings are not rotating during the spectrum collecting. More importantly, Hadamard-transform was used as signal processing technology, which has the ability of faster calculation, the merits of high energy input, single detector multichannel simultaneous detection (imaging) ability, and high signal-to-noise ratio (SNR). Hence, the Hadamard-transform portable Raman spectrometer has the potential to be applied in the field of point-of-care testing (POCT).

SELECTION OF CITATIONS
SEARCH DETAIL